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Abstract

Background: Protein-protein docking is a valuable computational approach for investigating protein-protein
interactions. Shape complementarity is the most basic component of a scoring function and plays an important role
in protein-protein docking. Despite significant progresses, shape representation remains an open question in the
development of protein-protein docking algorithms, especially for grid-based docking approaches.

Results: We have proposed a new pairwise shape-based scoring function (LSC) for protein-protein docking which
adopts an exponential form to take into account long-range interactions between protein atoms. The LSC scoring
function was incorporated into our FFT-based docking program and evaluated for both bound and unbound docking
on the protein docking benchmark 4.0. It was shown that our LSC achieved a significantly better performance than
four other similar docking methods, ZDOCK 2.1, MolFit/G, GRAMM, and FTDock/G, in both success rate and number of
hits. When considering the top 10 predictions, LSC obtained a success rate of 51.71% and 6.82% for bound and
unbound docking, respectively, compared to 42.61% and 4.55% for the second-best program ZDOCK 2.1. LSC also
yielded an average of 8.38 and 3.94 hits per complex in the top 1000 predictions for bound and unbound docking,
respectively, followed by 6.38 and 2.96 hits for the second-best ZDOCK 2.1.

Conclusions: The present LSC method will not only provide an initial-stage docking approach for post-docking
processes but also have a general implementation for accurate representation of other energy terms on grids in
protein-protein docking. The software has been implemented in our HDOCK web server at http://hdock.phys.hust.
edu.cn/.

Keywords: Molecular docking, Shape complementarity, Protein-protein Interactions, Scoring function, Fast-Fourier
transform

Background
As one of the most fundamental organic macromolecules
in living systems, proteins are involved in many biolog-
ical processes like signal transduction, immune recog-
nition, and intracellular trafficking. [1–12]. Therefore,
the atomic structures of protein-protein complexes are
valuable to investigate the interaction mechanism and
thus develop potential drugs. [13–16]. With the rapid
development of structural proteomics project in the past
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decades, the 3D structures of many proteins have been
solved and deposited in the Protein Data Bank(PDB) [17].
Nevertheless, due to the technical difficulties and high
cost of experimental approaches, the number of complex
structures is still very limited compared to the number
of individual proteins in the PDB [18]. Therefore, com-
putational methods like protein-protein docking, which
predicts the complex structures from individual proteins,
have become an important complement of experimen-
tal approaches in determining the structures of protein-
protein complexes [1, 13, 19–23].
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For years, a number of protein-protein docking algo-
rithms with different speed and accuracy have been devel-
oped [13, 22, 24–29]. Current protein docking methods
can be grouped into three broad categories according
to their different sampling strategies: direct search, fast-
Fourier transform (FFT)-based search, and post-docking
methods [13]. In direct search methods, putative binding
modes are directly sampled in real space, i.e. Cartesian
space. The sampling process can be local or global [30–
39] depending on the availability of information about
the binding site. FFT-based docking is a grid-based algo-
rithm and was first proposed by Katchalski-Katzir et al.
[40], in which the search for binding modes is acceler-
ated by an FFT algorithm in three-dimensional transla-
tional space and thus the computational time was reduced
from O(N6) to O(N3 log(N3)) in global sampling [40–51].
Due to its fast global search, many FFT-based protein-
protein docking algorithms have been developed in the
past decade and achieved considerable successes in the
community-wide CAPRI (Critical Assessment of Predic-
tion of Interactions) experiments (http://capri.ebi.ac.uk/)
[52–57]. Post-docking algorithms are designed to improve
the ranking/quality of correct binding modes by refin-
ing the putative modes obtained from other sampling
strategies [58–64]. As the biological information and pro-
tein flexibility can be conveniently incorporated in a
small number of docking solutions, post-docking refine-
ment/filtering has been become a common procedure
during protein-protein docking processes and received
significant successes in the field [26, 52–56, 65].

Scoring function is essential for all docking algorithms
to evaluate and rank the sampled conformations. Shape
complementarity is the most basic component of scoring
function [20, 47, 66, 67], and plays a vital role in search-
ing putative binding poses [13, 68, 69] and ranking the
sampled poses [13, 20, 22]. As for FFT-based docking
algorithms, shape complementarity is particularly crucial
because in addition to serving as a basic scoring ele-
ment, it also influences the grid discretization of other
energy terms [13]. As such, various approaches have been
developed to characterize the shape complementarity in
existing docking programs. For the direct search in real
space, docking algorithms normally use graphics-based
algorithms like distance geometry and Geometry Hashing
to search the curvature-dependent shape complementar-
ity between molecular surfaces [70–75]. For FFT-based
algorithms, most docking programs simply try to find
the optimal matches between the surface layers minus
the clash penalty between the protein cores by map-
ping proteins onto grids, which we call grid-based shape
complementarity function (GSC) [40]. To include infor-
mation regarding surface curvature, the Weng group has
presented a state-of-art pairwise shape complementar-
ity (PSC) scoring function to reward the close atomic

contacts between the receptor and the ligand [47], which
significantly improved the docking performance.

Despite the significant progresses in current shape com-
plementarity functions, all of them just simply consider
the effects of neighboring atoms for a grid point, as we can
see from the Fig 1 in the Weng’s pervious study [47]. How-
ever, some shape-based interactions like van der Waals
interactions involve not only the nearest-neighboring
atoms, but also many more other non nearest-neighboring
interactions. Therefore, we have here presented a new
pairwise scoring function for our FFT-based docking algo-
rithm, which we call LSC, to consider the long range
effect of protein atoms by an exponential form. Our
docking algorithm HDOCK with LSC has been exten-
sively tested on the protein-protein docking benchmark
4.0 [76]. The docking results have been compared with
four other shape-based scoring methods that use GSC or
PSC scoring function and simply consider the nearest-
neighboring atoms. The comparison has shown the sig-
nificant improvement of our LSC for both the success
rate and the number of hits in predicting binding modes
for both bound and unbound docking. Our FFT-based
algorithm with LSC may act as the initial stage of hybrid
docking strategy for post-docking algorithms. Moreover,
as shape complementarity is important for characteriz-
ing other energy terms like desolvation, electrostatics and
hydrogen bonding, our LSC method is also expected to be
useful in developing accurate docking/scoring algorithms.

Materials and methods
Sampling strategy
We have used a global search approach to sample puta-
tive binding modes in our docking algorithm, as shown in
Fig. 1, which is similar to that in other FFT-based docking
methods. Specifically, the receptor protein is fixed and the
ligand protein is rotated in the rotational space by an inter-
val of Euler angles (�θ , �φ, �ψ). Then the receptor and
the ligand are discretized into grids and for each rotation,
3D FFT is used to accelerate the calculation of shape com-
plementarity scores between the receptor and ligand grids
During the rotational sampling and translational search of
the docking process, an angle interval of 15° is adopted
and a grid spacing of 1.2 Å is used respectively. After sam-
pling the rotation by uniformly distributed Euler angles,
4392 orientations in the rotational space are obtained. For
each rotation of the ligand, the translation with the best
shape complementarity score is retained, which yields a
total of 4392 predicted models for a global docking run.

FFT-based docking with lSC
To perform the FFT algorithm, both the receptor and
ligand proteins are first discretized onto a three dimen-
sional grid of N × N × N points [40, 47]. If the grid
points are within the VDW radius of any protein atoms,
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Fig. 1 A flowchart of our FFT-based docking algorithm

they are defined as inside the protein; otherwise, they are
considered as outside the protein. The VDW radii of pro-
tein atoms with different type are derived from literature
[77]. Then, the grid points inside the protein are divided
into three parts: core region, near-surface layer and sur-
face layer. If any of neighboring grid point is outside the
protein, the grid point is defined as in the surface layer.
Similarly, if any of neighbors belongs to the surface layer,
the grid point is considered as the near-surface-layer grid
point. Finally, all the remaining inside-protein grid points
are defined as the core region. According to the descrip-
tion above, the core region and near-surface layer are
usually occupied by protein atoms, and the surface layer
are the spacer layer which separates the inside of the pro-
tein from the outside. Then, each receptor (R) and ligand
(L) grid point is assigned a complex value as:

R(l, m, n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− ∑

i,j,k
exp[ −(r − 1)2] +J for the surface layer

−1+2J × ∑

i,j,k
exp(−r2) for the near surface layer

−1+10J for the core
0 outside the protein

(1)

and

L(l, m, n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1−J for the surface layer
1−2J × ∑

i,j,k
exp(−r2) for the near surface layer

1−10J for the core
0 outside the protein

(2)

where J2 = −1, l, m, and n are the 3D indices of the grid
(l, m, n = 1, · · · , N), and r is the distance between the grid

points of (i, j, k) and (l, m, n). Here, for the near-surface
layer, i ∈[ l−1, l+1], j ∈[ m−1, m+1], and k ∈[ n−1, n+1]
, and for the surface layer, i ∈[ l−3, l+3], j ∈[ m−3, m+3],
and k ∈[ n − 3, n + 3]. In addition, the grid point (i, j, k)

should belong to the near-surface layer or the protein core.
Here, up to 7 neighbouring layers are considered for the
surface and up to 3 neighbouring layers are considered for
the near surface to take into account the effects of the long
range interactions, while the GSC and PSC only consider
the nearest layer.

On the basis of grid discretization of the pro-
teins, the shape complementarity score of a receptor-
ligand complex can be calculated using the following
formula [40, 47]

E(o, p, q) =
Re

[
N∑

l=1

N∑

m=1

N∑

n=1
R(l, m, n) × L(l + o, m + p, n + q)

]
(3)

where Re[ x] stands for the real part of a complex num-
ber x, N × N × N is the size of the receptor and ligand
grid box, and o, p, and q are the numbers of shifted grid
points in three translational dimensions of the ligand (L)
relative to the receptor (R). Namely, o, p, and q are the
moved translational distances, in the x, y, z dimensions of
the lattice, respectively. If the index l + o, m + p, or n + q
is larger than N, it will take the number after subtracting
N from itself. The calculation of Eq. (3) can be accelerated
by 3D FFT. For a translation of (o, p, q), higher correlation
score means better shape complementarity between the
receptor and ligand grids.

Repeating the FFT calculation of Eq. (3) for all the
ligand rotations, our docking program can perform the
exhaustive global sampling in the six (three translational
+ three rotational) degrees of freedom of the search
space. A docking calculation can be completed in 10
mins on average on a 2.6 GHZ Intel CPU core which
shows the computational efficiency of our FFT-based
docking program.

Test set
The protein-protein docking benchmark 4.0 constructed
by the Weng’s group [76] was used to evaluate our FFT-
based docking program with LSC. There are a total of
176 diverse targets in the benchmark, which contains 52
enzyme-inhibitor cases (EI), 25 antibody-antigen cases
(AA), and 99 cases of other types (OT). Each target con-
sists of the co-crystalized bound structures and their cor-
responding unbound structures for the receptor and the
ligand. The unbound structures are superimposed onto
their respective bound structures for the convenience of
evaluation. The benchmark has been extensively used
to evaluate the performance of docking algorithms and
scoring functions [22].
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Evaluation criteria
Similar to previous studies [22], the ligand root mean
square deviation (Lrmsd) was adopted to evaluate the qual-
ity of predicted models, and it was calculated based on
the Cα atoms of the ligand between the predicted mode
and the native structure after the receptor proteins were
superimposed according to their backbone atoms. A pre-
dicted binding pose with an Lrmsd less than 10 Å was
considered as a successful prediction or a ‘hit’. The success
rate was used to assess the performance of a scoring func-
tion in binding mode predictions, which was defined as
the percentage of the test cases in benchmark with at least
one hit when a certain number of top predictions were
considered.

Results
Bound docking
We first performed bound docking with our LSC scoring
function on the protein docking benchmark 4.0. As there
is no conformational change in the bound structures,
so bound docking can serves as a first-step to evaluate
the performance of a docking/scoring algorithm. A rea-
sonable scoring function should preform well in bound
docking.

The results of bound docking with the success rate and
the average number of hits per case as a function of the
number of top predictions by our LSC method are shown
in Fig. 2. Tables 1 and 2 list the values of success rate and
average number of hits for several certain numbers of top
predictions. For comparison, the corresponding results of
four other shape-based docking programs, ZDOCK 2.1
[47], MolFit/G [45], GRAMM [42], and FTDock/G [41],
are also shown in Fig. 2 and Tables 1-2. Here, a grid-based
shape complementarity (GSC) scoring function is used in
GRAMM and FTDock/G, while a pairwise shape comple-
mentarity (PSC) function is adopted by ZDOCK 2.1 in
docking. From Fig. 2a we can see that our LSC method

performed better than the other four docking/scoring
programs in binding mode predictions. Our LSC method
obtained a success rate of 34.09, 51.71, 69.32, and 87.50%
for top 1, 10, 100 and 1000 predictions respectively, while
ZDOCK 2.1 achieved a success rate of 25.57, 42.61, 61.36,
and 83.52%, followed by 24.43, 33.52, 51.14, and 79.55%
for MolFit/G, 9.09, 15.91, 38.64, 67.61% for GRAMM, and
4.55, 14.21, 43.18, and 77.27 for FTDock/G correspond-
ingly (Table 1). As for the average number of hits, our LSC
also achieved a better performance compared to the other
four methods. For top 100, 500, 1000 and 2000 predic-
tions, our LSC obtained an average of 3.21, 6.26, 8.38, and
11.64 hits per complex, compared to 2.18, 4.51, 6.38, and
8.97 hits for ZDOCK 2.1, 1.96, 4.36, 6.37, and 9.47 hits
for MolFit/G, 0.76, 1.73, 2.54, and 3.66 hits for GRAMM,
and 1.05, 2.43, 3.87, and 5.82 hits for FTDock/G (Fig. 2b
and Table 2). The considerably better results of our LSC
than similar methods for bound docking suggests that it is
important and necessary to consider the long range inter-
actions when using the shape complementarity scoring
function in protein-protein docking.

Unbound docking
We have further evaluated our docking algorithm with
LSC on the unbound structures of the 176 cases in the
benchmark. Although bound docking is a more suitable
way to test the scoring function, unbound docking is more
realistic as only unbound structures are available in real
applications.

The success rate and the average number of hits per
case for unbound docking of our LSC method are shown
in Fig. 3. Tables 1 and 2 list values of success rates and
average number of hits for several certain numbers of top
predictions. For comparison, Fig. 3 and Tables 1-2 also
give the corresponding results of the other four docking
programs, ZDOCK 2.1 [47], MolFit/G [45], GRAMM [42],
and FTDock/G [41]. From Fig. 3a we can see that our LSC

Fig. 2 The success rate (a) and the average number of hits per target (b) as a function of the number of top predictions for our LSC-implemented
docking program, ZDOCK 2.1, MolFit/G, GRAMM, and FTDock/G for bound docking on the protein-protein docking benchmark 4.0. The results of
MolFit/G, GRAMM, and FTDock/G were taken from our previous study [22]
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Table 1 The success rates (%) predicted by our docking program with LSC and four other docking approaches with shape-based
scoring functions on the protein docking benchmark 4.0 of 176 test cases when the top 1, 10, 100, and 100 predictions were considered

Method Bound docking Unbound docking

1 10 100 1000 1 10 100 1000

LSC 34.09 51.71 69.32 87.50 2.84 6.82 26.14 55.11

ZDOCK 2.1 25.57 42.61 61.36 83.52 1.71 4.55 23.86 48.86

MolFit/G 24.43 33.52 51.14 79.55 1.14 2.84 18.75 46.02

GRAMM 9.09 15.91 38.64 67.61 0.00 2.84 10.80 30.68

FTDock/G 4.55 14.21 43.18 77.27 0.57 1.71 11.36 42.61

again performed the best among the five scoring meth-
ods in binding mode predictions. For top 1, 10, 100, and
1000 predictions, LSC obtained a success rate of 2.84,
6.82, 26.14, and 55.11%, respectively, followed by 1.71,
4.55, 23.86, and 48.86% for ZDOCK 2.1, 1.14, 2.84, 18.75,
and 46.02% for MolFit/G, 0.00, 2.84, 10.80, and 30.68% for
GRAMM, and 0.57, 1.71, 11.36, and 42.61% for FTDock/G
(Table 1). As for the average number of hits, our LSC also
achieved the best performance among the five methods
and obtained an average of 0.83, 2.54, 3.94, and 6.51 hits
when the top 100, 500,1000, and 2000 predictions were
considered, followed by 0.61, 1.89, 2.96, and 4.84 hits for
ZDOCK 2.1, 0.36, 1.47, 2.62, and 4.55 hits for MolFit/G,
0.18, 0.51, 0.86, and 1.63 hits for GRAMM, and 0.18, 0.65,
1.13, and 2.08 hits for FTDock/G (Table 2).

Comparing the results of bound and unbound docking
also shows that although the absolute performances of
unbound docking are worse than those of bound dock-
ing for all five scoring methods, the relative improvement
of LSC over the other scoring functions is more signif-
icant for unbound docking compared to that for bound
docking (Figs. 2 and 3). For example, the success rate
increases 21.4% from 42.61% of the second-best ZDOCK
2.1 to 51.71% of the best LSC for bound docking, while
the success rate increases 49.9% from 4.55% of the second-
best ZDOCK 2.1 function to 6.82% of the best LSC for
unbound docking for top 10 predictions. The signifi-
cantly better performance of our LSC scoring method for
unbound docking again demonstrates the robustness of

our scoring method for describing shape complementarity
in docking unbound structures.

Performance by complex types
It has been shown that different types of complexes may
exhibit intrinsically different interaction characteristics
[20]. To investigate the effect of different complex types
on our docking results, Fig. 4 shows the success rates and
the average number of hits per target as a function of
the number of top predictions for three types of targets:
52 enzyme/inhibitor cases (EI), 25 antibody/antigen cases
(AA), and 99 other types (OT) of cases. From the figure
we can see that overall the enzyme/inhibitor type have
many more hits than the antibody/antigen and other types
of complexes. For example, our docking program yielded
an average of 13.8 hits per complex for enzyme/inhibitor
when the top 2000 predictions were considered, com-
pared to 3.2 hits for antibody/antigen and 3.7 hits for
other types, respectively. For the success rate, the EI cases
always performed better than OT cases and also better
than AA cases until the top 1268 predictions were con-
sidered. After the top 1268 predictions, the success rate of
AA type increases fast and then surpasses that of the EI
type. Finally the success rates of AA and EI types become
comparable. This phenomenon can be explained by pre-
vious findings that enzymes and their inhibitors have coe-
volved resulting in a highly complementary interface [78].
However, the antibody/antigen and other types of com-
plexes do not necessarily form the best possible binding

Table 2 The average number of hits per complex obtained by our docking algorithm with LSC and four other docking approaches
with shape-based scoring functions on the protein docking benchmark 4.0 of 176 test cases when the top 100, 500, 1000, and 2000
predictions were considered

Method Bound docking Unbound docking

100 500 1000 2000 100 500 1000 2000

LSC 3.21 6.26 8.38 11.64 0.83 2.54 3.94 6.51

ZDOCK 2.1 2.18 4.51 6.38 8.97 0.61 1.89 2.96 4.84

MolFit/G 1.96 4.36 6.37 9.47 0.36 1.47 2.62 4.55

GRAMM 0.76 1.73 2.54 3.66 0.18 0.51 0.86 1.63

FTDock/G 1.05 2.43 3.87 5.82 0.18 0.65 1.13 2.08
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Fig. 3 The success rate (a) and the average number of hits per case (b) as a function of the number of top predictions for our LSC-implemented
docking program, ZDOCK 2.1, MolFit/G, GRAMM, and FTDock/G for unbound docking on the protein-protein docking benchmark 4.0. The results of
MolFit/G, GRAMM, and FTDock/G were taken from our previous study [22]

interface. For example, many different antibodies are pro-
duced by the immune system in response to an antigen,
while some quite poorly bind with the antigen. There-
fore, the EI complexes tend to be easier targets due to
their better shape complementarity between two partners
and have more hits, compared to the AA and other types
of complexes. Therefore, the near-native ones of EI com-
plexes will get a higher shape complementarity and rank
higher than AA or OT cases. However, this result does not
indicate that the shape complementarity is not important
for the complexes of AA type. As we can see from Fig. 4,
there are still many near-native hits for AA complexes in
the low-ranking predictions, and the final success rate of
AA type is almost the same as that of the EI type. This
indicates that our docking program can still sample the
near-native hits for many AA complexes, although most
of them have a low ranking. Therefore, using shape com-
plementarity as the first filter is still an efficient docking
strategy even for AA complexes and in this case, we should

consider more predictions for post-docking approaches,
compared to the EI cases.

Computational efficiency
Besides the docking performance, computational effi-
ciency is also an important index to evaluate the docking
algorithm, especially when the computational resources
are insufficient. The average running times of LSC and
other four shape-based docking algorithms for both
bound and unbound docking tested on the protein-
protein docking benchmark 4.0 are shown in Fig. 5, where
the running times of ZDOCK 2.1, GRAMM, MolFit/G,
and FTDock/G were extracted from our pervious study
[22] and adjusted for the present new hardware by using
ZDOCK2.1 as the reference. It can be seen from Fig. 5
that our algorithm LSC consumes the least time with an
average of 8.7 min for a bound docking run and 8.9 min
for a unbound docking run, compared to 15.0 and 14.3
min for ZDOCK 2.1, 43.8 and 43.9 min for GRAMM,

Fig. 4 The success rate (a) and the average number of hits per target (b) as a function of the number of top predictions for our LSC-implemented
docking program on three categories of complexes including Enzyme/Inhibitor(EI), Antibody/Antigen (AA), and Other types (OT)
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Fig. 5 The average running time for both bound and unbound
docking of our LSC docking program and four other shape-based
docking algorithms on the 176 targets of the protein docking
benchmark 4.0, where the running times of ZDOCK2.1, MolFit/G,
GRAMM, and FTDock/G were obtained based on our previous study
[22]

68.3 and 67.1 min for MolFit/G, and 231.0 and 231.8 min
for FTDock/G. The computational efficiency for an FFT-
based docking algorithm is mainly determined by the sizes
the proteins to be docked. As the size of unbound struc-
tures is very similar to that of the bound structures for
each target, the average running times for bound and
unbound docking are almost the same for each docking
method. The least running time of our LSC in both bound
docking and unbound docking demonstrated its high-
est computational efficiency among the five shape-based
docking algorithms.

Discussion
To consider the long range interactions of protein atoms in
shape complementarity, we have developed an FFT-based
docking program with a long-range pairwise shape-based
scoring function (LSC) through an exponential form. In
many cases, only the shape complementarity scoring func-
tion is necessary for a docking calculation. The reason
for this is that as the binding mode input for other
post-docking refinement/rescoring approaches, a protein
docking algorithm should offer a set of widely sampled
protein-protein binding poses that do not bias towards
to any special interaction energies. The shape comple-
mentarity is exactly the choice for such requirements. In
addition, the shape is such a simple descriptor for a pro-
tein and therefore the shape complementarity will put less
limitation on filtering the generated binding modes so that
the docking program can yield diversely sampled protein
binding orientations.

Shape representation is also the foundation of other
energy terms for a scoring function. For example, in

FFT-based docking algorithms, all the energy terms like
electrostatic interactions and hydrogen bonding should be
mapped onto discrete grids that characterize the proteins.
During the energy mapping, the scoring function may lose
part of the accuracy, where shape representation of the
protein has a critical impact on the accuracy of energy
mapping. Therefore, the present LSC lays a good basis for
the characterization of other energy terms on grids.

Exact comparison between our protein docking pro-
gram and other algorithms is not feasible due to different
sampling and/or scoring methods. One closest docking
program to our docking model is the ZDOCK 2.1 which
uses a pairwise shape complementarity scoring function
(PSC) for protein-protein docking [47]. Therefore, we
used ZDOCK 2.1 as a reference to verify our FFT-based
algorithm with LSC, although we also listed the results
of other three shape-based docking methods, MolFit/G,
GRAMM, and FTDock/G. As shown in the docking
results, our LSC-based docking program performed bet-
ter than ZDOCK 2.1 in both the success rate and the
average number of hits per target for bound and unbound
docking. As described in the methods, our LSC consid-
ered the effects of more distant grids than PSC and GSC
to partly consider the long range effect of the interactions
such as van der Waals interactions. The better perfor-
mance of our docking program compared to ZDOCK
2.1 indicated the importance of considering long-range
interactions in shape complementarity.

The different performances on three types of complexes
are consistent with the previous findings that the inter-
face of antigen-antibody complex is usually small and
has a poor shape complementarity. Therefore, their near-
native hits are often within the low-ranking predictions.
Accordingly, for post-docking purposes, if the comput-
ing resource is limited, it is suggested that the top 100
predictions are kept for EI complexes while the top 1000
predictions are retained for AA and OT complexes, which
correspond to a success rate of about 50% in the present
LSC-based docking. However, if possible, considering the
all 4392 predictions is recommended.

Conclusions
We have developed a new pairwise shape complementar-
ity scoring function to take into account the effects of
long-range interactions in protein-protein docking. The
protein grid is divided into a protein core, a near-surface
layer, a surface layer and outside space for the long-range
shape-based scoring (LSC) function. The repulsion com-
ponent for the near-surface layer is the sum of the con-
tributions of neighboring core atoms in the protein, and
the favorable component for the surface layer comes from
the near-surface and core atoms. Our FFT-based docking
program with LSC was extensively tested on the pro-
tein docking benchmark 4.0 by the Weng group for both
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bound docking and unbound docking. Compared to other
four shape-based docking programs, ZDOCK 2.1, MolFit,
GRAMM, and FTDock, our LSC significantly improved
the docking performance in both the success rate and
the average number of hits. The significantly better per-
formance of LSC compared to other shape-based scoring
functions for bound and unbound docking suggests the
accuracy and robustness of our method in characteriz-
ing shape complementarity. The different performances
on three types of complexes (AA, EI, and OT) are con-
sistent with the previous findings. It is suggested that if
the computing resource is limited, the top 100 predictions
are kept for EI complexes while the top 1000 predictions
are retained for AA and OT complexes for post-docking
processes, though using all the 4392 binding modes are
recommended if possible.
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