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Abstract

annotation pprocess.

Background: Vast amounts of next generation sequencing RNA data has been deposited in archives, accompanying
very diverse original studies. The data is readily available also for other purposes such as genome annotation or
transcriptome assembly. However, selecting a subset of available experiments, sequencing runs and reads for this
purpose is a nontrivial task and complicated by the inhomogeneity of the data.

Results: This article presents the software VARUS that selects, downloads and aligns reads from NCBI's Sequence
Read Archive, given only the species’ binomial name and genome. VARUS automatically chooses runs from among all
archived runs to randomly select subsets of reads. The objective of its online algorithm is to cover a large number of
transcripts adequately when network bandwidth and computing resources are limited. For most tested species
VARUS achieved both a higher sensitivity and specificity with a lower number of downloaded reads than when runs
were manually selected. At the example of twelve eukaryotic genomes, we show that RNA-Seq that was sampled with
VARUS is well-suited for fully-automatic genome annotation with BRAKER.

Conclusions: With VARUS, genome annotation can be automatized to the extent that not even the selection and
quality control of RNA-Seq has to be done manually. This introduces the possibility to have fully automatized genome
annotation loops over potentially many species without incurring a loss of accuracy over a manually supervised
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Background

A very large amount of next generation sequencing data is
being deposited in public databases such as the sequence
read archive (SRA) of the National Center for Biotechnol-
ogy Information (NCBI) [1] and the European nucleotide
archive [2]. At the time of writing, in March 2019, the
SRA stored about 2.7 - 10'® bp of raw sequencing data [3].
This archived data provides experimental support for a
very large number of manifold individual studies with very
specific purposes for diverse species.

A large fraction of this next generation sequencing data
is RNA-Seq. In many studies, RNA has been sequenced
from many replicates to draw statistical conclusions about
the expression of transcripts [4, 5]. Besides being a
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requirement for the reproducability of the original stud-
ies, a large value of the repository lies in the possibility
to use the data for further studies including such with
very different purposes than the original studies. One
important reason to repurpose or use RNA-Seq is struc-
tural genome (re)annotation. Often a genome is anno-
tated only after several transcriptomic studies of the same
species have been conducted. There are many reasons for
structural genome reannotation as well, e.g. the assembly
has been improved, the genomes of further strains have
been sequenced, to apply newer more accurate annotation
methods, or annotate a large number of species’ genomes
consistently.

Taking all available RNA-Seq data for a species is often
not feasible or counterproductive due to issues of the qual-
ity of data or alignments. The available data can be very
abundant and redundant. For example, there are more
than 30,000 RNA-Seq sequencing runs for Drosophila
melanogaster (Table 1) totaling to more than 41 tera base
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Species Transcriptomic < 5% of reads align
runs in SRA uniquely

Anopheles gambiae 597 15.5%
Bombus terrestris 357 6.4%
Chlamydomonas reinhardtii -~ 1250 7.1%
Cucumis sativus 685 21.2%
Drosophila melanogaster 30207 22.8%
Fragaria vesca 170 10.6%
Hymenolepis microstoma 31 32.2%
Medicago truncatula 1252 9.2%
Parasteatoda tepidariorum 80 16.3%
Prunus persica 268 13.2%
Saccharomyces cerevisiae 16139 30.5%
Verticillium dahliae 30 40.0%

The second column shows the total number of RNA runs in SRA for the studied
species. The last column shows the percentage of runs that were sampled by
VARUS of which the first batch exhibited very low unique alignability, more
specifically, at least 95% of reads aligned either not at all or multiple times using
HISAT2. Such runs are subsequently ignored by VARUS

pairs. Further, quality control of sequencing runs is nec-
essary as some genomic libraries are mislabeled as tran-
scriptomic, contain adapter sequences or simply have low
quality or alignability (see Table 1). Therefore, it is sen-
sible to choose a subset of all available reads for genome
annotation. In doing this, the complementarity of chosen
reads should be the aim in order to cover a large fraction of
all transcripts of the organism, while keeping the burden
on computation and data throughput manageable. Due to
tissue- or condition-specific expression it may be neces-
sary to use reads from many different sequencing runs
from a diverse set of tissues or conditions. The meta data
that the uploaders entered includes often an abstract of
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the study. The ‘'manual’ scan of these abstracts is tedious,
is not always conclusive on tissue and condition and —
even if so — does not allow to conclude which fraction of
the transcripts may be expressed that have not yet been
covered by other choices of sequencing runs. Further, the
meta data could be incorrect.

Ohta, Nakazato and Bono performed a large-scale
assessment of reported read qualities in SRA, but did
not align the reads at all [6]. To our knowledge no pre-
vious software existed for automatically sampling reads
from SRA from a maximal set of transcripts. A trivial ran-
dom sampling from all libraries is not optimal as there
may be large biases on the tissues or conditions that are
represented in the archive.

We present the new tool VARUS [7] that automati-
cally samples, downloads and aligns reads from all runs
available on SRA for a given species. It implements an
online algorithm that iteratively downloads small ran-
dom samples from sequencing runs and thereby selects
such runs for download of further samples that were
estimated to complement best the previously down-
loaded reads and that have a relatively high percent-
age of reads or reads pairs that align uniquely to
the genome. We tested VARUS on twelve genomes
and compared the introns suggested by spliced align-
ments to those of the reference annotations. Compared
with a manual selection of sequencing runs, VARUS
achieves for most species a higher accuracy with a
smaller number of downloaded reads than the manual
selection.

Implementation

VARUS takes as input binomial (Latin) species names and
corresponding genome FASTA files (see Fig. 1). A script
(RunListRetriever.pl) queries the SRA for a list
of IDs of all sequencing runs of molecule type RNA for

. . paths to
binomial genome
names FASTAs
|nput Medicago truncatula Mt.genome. fa
Drosophila melanogaster Dm.genome.fa
Solanum lycopersicum Sl.genome.fa
Prunus persica Pp.genome. fa
l each: :
VARUS VARUS .bam
eutils/esearch. fegi —3 spliced -3 BRAKER
- choose run . ;
SRA —) alignments
fastg-dump -N -X C download sample
- align (HISAT or STAR)
- annotation genes. {gff,fa}
OUtpUt - AUGUSTUS parameters
Fig. 1 VARUS flowchart. VARUS itself outputs a file VARUS . bam with all spliced alignments for each species in the input list. In this study, these
alignments were used to annotate the genomes with BRAKER [11]
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the given species. The output, a 'run list} is then used by
VARUS to choose, download and align samples of RNA-
Seq reads. The alignment is performed automatically,
either with HISAT2 [8] or STAR [9]. For each species
a single BAM formatted file with spliced alignments is
output.

The objective of VARUS is to collect samples of RNA-
Seq reads from all available sequencing runs that together
adequately cover as many transcribed RNAs as possible.
We neither make prior assumptions on the expression
profiles of runs nor do we require an (assembled) tran-
scriptome as input. Adequate coverage is a vague formu-
lation and certainly depends on the downstream applica-
tion. We use the VARUS output for genome annotation,
where we expect that the accuracy, with which an indi-
vidual gene structure can be annotated, increases with its
coverage when it is lowly covered, but the expected accu-
racy returns are diminishing with increasing coverage.
Formally, our objective is to maximize a score

T
S(c) := Zln(l +¢j) — max. (1)
j=1

Here, the transcribed units are numbered from 1 to T,
¢j is the count of aligned reads or read pairs from tran-
scribed unit j and ¢ = (cy,...,c7). The logarithm was
chosen to reflect diminishing returns of additional cover-
age for genome annotation accuracy. As we do not know
the set of all transcribed RNAs themselves in our appli-
cation setting, we use genome tiles (of default size 5Kb)
as proxy for transcribed units. Admittedly, such tiles may
not be expressed at all or may contain multiple genes.
However, the idea is that the similarity of expression pro-
files from different runs is approximated sufficiently using
whole-genome tile coverages for purposes of annotation.

VARUS implements a heuristic online algorithm to
approximate above goal step by step. If c is the current vec-
tor of read counts for all transcribed units, the next batch
of b reads (default » = 50,000) to download and align are
chosen from run

r* = argmax S(c + b - g,pr). (2)

1<r<R
Here, the available runs are numbered from 1 to R, p, €
[0,1]7 is the parameter vector of a multinomial distri-
bution that is an estimate of the distribution on 1..T" of
a randomly drawn read from the r-th run. g, is an esti-
mate of alignment quality, a weighted sum of the fraction
of uniquely alignable and spliced reads. Ties occur — in
particular for all runs of which no reads have been down-
loaded yet at all — and are broken randomly with a bias
towards longer average read lengths. In (2) the next batch
is chosen greedily from a run so as to maximize the score
of the expected count vector after the choice, ¢ + b - g,p;.
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The distribution p, over transcribed units is estimated
from values c; , the current count of aligned reads or read
pairs from run » mapping to transcribed unit j. Naturally,
this estimate is not possible or accurate when the number
of reads sampled from run r is 0 or small. Therefore, we

add pseudocounts and use the estimate
Prljlocd 4+ T pljl +a. 3

Here, a is a general pseudocount, chosen as 1 by default,
the weight A was chosenas 10 and p[j]=}_,¢j/ >, ¢; is
the relative frequency of transcript unit j over all sampled
batches. Note that VARUS does not obtain samples from
all runs when maxBatches < R. The distribution esti-
mates for the runs yet unsampled is similar to the overall
observed relative frequency p if > a. p, is normalized,
so that Zjﬁ,[j] =1.

When a run for downloading the next batch of reads has
been chosen, VARUS calls fastg-dump which allows
to download a range of consecutive ’spots’ from a speci-
fied run. VARUS keeps track of the set of all batches of a
run that have been downloaded previously, so that even-
tually all reads would be downloaded exactly once. How-
ever, VARUS downloads (at most) only a fixed number of
batches (here mostly maxBat ches=1000).

Results

Data sets

We tested VARUS on the twelve species listed in Table 1,
which include model organisms with much data as well
as other organisms with relatively little data. Table 1 also
shows that 6%-40% of sequencing runs do not satisfy our
requirements for quality: At least 5% of reads needed
to align uniquely to the genome using HISAT2. Paired
libraries were thereby handled accordingly. For command
lines see Additional file 1. The reasons for failing even
these weak criteria are diverse. They include the insuffi-
ciency of the alignment program for the sequencing plat-
form, but also inappropriate data for that purpose such as
miRNA sequencing runs, a mislabeled source species and
very short reads. An example of the latter is S. cerevisiae,
where 13% of the sampled runs had at least one out of
two ("paired’) sequence files with an average read length of
< 10 base pairs. Further we found cases where genomic
libraries were clearly mislabeled as transcriptomic.

We compared VARUS to a selection procedure in
which a person browses the SRA archive and selects and
chooses sequencing runs for download. We refer to this
as the manual selection method. Afterwards the align-
ment against the genome is performed in the same way
as in VARUS. Sequencing runs that appeared to be of low
alignability were discarded and not counted towards the
number of downloaded reads. This is to the benefit of
the manual method as all downloaded reads are counted
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in the VARUS analysis. The manual selection gave pref-
erence to long paired reads from the Illumina platform
(e.g. 2 x 150 bp) that were from different experiments
and different tissues. The interpretation of the natural lan-
guage description of the experiment in the meta data can
be difficult and a manual classification to tissue or con-
dition would not be highly repeatable. In Fig. 2 we show
as an example, a visualization of expression diversity with
a tissue subset (Drosophila gut) highlighted. A systematic
approach to select maximally complementary sets of tis-
sue types or conditions from meta data alone does not
seem possible. Rather the data itself needs to be examined.

Accuracy

To evaluate and compare the performance of the read
selection methods, we measured the accuracy with which
the introns of a reference annotation (see Additional file 1:
Table S2, reference annotations were pre-processed with
GenomeTools [10]) are found with spliced alignments of
the selected reads. This intron accuracy measure is a
proxy to the relative performances that could be achieved
when using the alignments for genome annotation. The
intron accuracy measure does not depend on any genome
annotation method that ought to be evaluated and is
therefore a more direct performance measure. As a ref-
erence, we take for each genome the set of introns in
the protein-coding regions of genes. The annotation of
such ‘coding’ introns is usually more reliable than that of

Drosophila melanogaster
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Fig. 2 Expression diversity. Multidimensional scaling plot of the
expression profiles of 1000 runs sampled from Drosophila
melanogaster from SRA. The red dots mark those runs, whose meta
data description included the search string “gut”. The plot was
created with edgeR [5]
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introns in untranslated regions or non-coding genes. As a
prediction, we take the set of introns induced by the spliced
alignments of the selected reads. In this context an intron
is a pair of genome coordinates and each intron is counted
only once, i.e. the sets are defined in the usual mathe-
matical sense. The sensitivity and specificity are defined
as usual in the genome annotation context: The (intron)
sensitivity is the percentage of reference introns that were
also predicted. The (intron) specificity is the percentage of
predicted introns that were also in the reference set.

Figure 3 shows for the examples of Drosophila
melanogaster and Fragaria vesca how the sensitivity
grows and the specificity changes as the number of reads
or read pairs (spots in the language of SRA) grows. A
relatively ’small’ number of spots, 3 million, is in all
twelve species sufficient to cover with VARUS at least
half of the introns (data not shown). For both species,
VARUS achieves the same sensitivity as the manual
selection with fewer spots, in the case of strawberry
even with a small fraction of the spot number. Further,
when the sensitivity of VARUS and manual selection are
equal, the specificity of VARUS is much higher than the
specificity of the manual selection. As can be expected,
the intron sensitivity initially grows fast and eventually
saturates. When the number of aligned reads grows,
false positive introns are accumulated at an increas-
ingly higher rate than true positives. They can include
alignment errors and very minor nonfunctional splice
forms and could deteriorate annotation accuracy if left
unfiltered.

Table 2 shows the accuracies and download numbers for
all examined species. The sensitivity and specificity curves
for the remaining species (like in Fig. 3) are included
in the Additional file 1. For all species but Verticillium
dahliae VARUS achieved both a higher sensitivity and
specificity with a lower number of downloaded reads or
read pairs than the manual selection of whole runs. For
Chlamydomonas reinhardtii, Cucumis sativus, Drosophila
melanogaster, Fragaria vesca, Parasteatoda tepidariorum
and Saccharomyces cerevisiae this can be seen directly
from Table 2. For Anopheles gambiae, Bombus terrestris,
Hymenolepis microstoma, Prunus persica VARUS down-
loaded more reads or read pairs than the manual methods,
but the curves of sensitivity and specificity as a func-
tion of cumulatively downloaded reads (Additional file 1:
Figure S1) show that VARUS had a higher specificity and a
lower number of downloaded reads or read pairs when the
sensitivity first surpassed that of the manual method (hor-
izontal dashed line through 'manual sn’). For Verticillium
dahliae the two methods are not objectively compara-
ble unless one weights computational resources against
accuracy. When the sensitivities of the two methods were
equal (66.2%), VARUS’ specificity was slightly lower than
that of the manual selection (31.5% versus 33.6%), but it
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Fig. 3 Intron Accuracy. VARUS' sensitivity (green curve) and specificity (red curve) as a function of the downloaded number of spots (= reads or read
pairs), in order of download. The manual selection method (green and red dot) has a fixed number of reads and horizontal dashed lines at manual
sensitivity and specificity are drawn to facilitate comparisons

Table 2 Intron accuracy

Intron #spots # seq.
sn sp [M] runs

Anopheles gambiae VARUS .805 0.23 50 566

manual 269 179 18.4 5
Bombus VARUS 918 365 50 357
terrestris manual 666 .623 29.1 3
Chlamydomonas VARUS .687 37 50 618
reinhardtii manual 68 26 88 5
Cucumis VARUS .96 414 50 643
sativus manual 91 262 126.6 7
Drosophila VARUS 935 .359 50 758
melanogaster manual 896 264 58.5 5
Fragaria VARUS 915 475 50 170
vesca manual 823 322 71.9 7
Hymenolepis VARUS .886 237 50 31
microstoma manual 778 391 15.7 2
Medicago VARUS 717 .386 50 403
truncatula manual 723 21 2149 6
Parasteatoda VARUS .869 469 50 80
tepidariorum manual 83 352 719 6
Prunus VARUS 945 .188 400 266
persica manual 942 138 328.8 6
Saccharomyces VARUS .864 .004 50 983
cerevisiae manual 85 002 99.8 5
Verticillium VARUS 681 222 50 30
dahliae manual 662 .336 819 3

The sensitivity (sn) and specificity (sp) with which VARUS and the manual method
find introns in the reference genome annotation. The last two columns shows the
number of reads or read pairs (spots) in millions that have been downloaded from
SRA and from how many different runs they stem. Better values are typeset in
boldface

had downloaded less than one third of the number of spots
(25.5 million versus 81.9 million).

Whole-Genome annotation
We used the selected RNA reads for genome annotation
and examined their relative influence on accuracy. For this
we used the fully automatic genome annotation pipeline
BRAKER [11]. BRAKER obtained as input only the intron
candidates derived from the spliced alignments of the
reads against the genome as ’hints’ and the repeat-masked
genome. No other input or previous parameters are used
by BRAKER. The BRAKER pipeline uses the hints to
compile a training set of gene structures with GeneMark-
ET [12] and then AUGUSTUS [13, 14] to structurally
annotate the whole genome using again the intron hints.
Figure 4 shows a comparison between the gene pre-
diction accuracies of BRAKER (obtained with Eval [15])
when either the manually selected runs were used or the
reads selected by VARUS. On average, VARUS down-
loaded fewer reads (Fig. 4, left) than were downloaded
manually. Yet, with VARUS the whole-genome annotation
accuracy tends to be rather higher than with the man-
ual selection. As can be seen at the right side of Fig. 4, in
8 of the species, the results with VARUS are better than
with the manual selection, in the remaining 4 species the
manual selection is better. However, the clear advantage
of VARUS in terms of intron accuracy does not carry over
to a clear annotation accuracy advantage with BRAKER.
This suggests that BRAKER may not be fully exploiting
the additional accuracy or that most of the additional true
positive introns would have been found anyway and that
most of the false positive introns would have been filtered
out anyway. We conclude that VARUS automatizes a task
that hitherto needed manual work at even a small average
benefit to the accuracy of genome annotation.
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Fig. 4 Relative Annotation Accuracy. The right side shows the difference in whole-genome annotation accuracy in percent. The F1-measure of
coding exon accuracy (the harmonic mean of sensitivity and specificity) was used, whereby either annotation was compared to the respective
reference annotation (see Supplementary Table 2). The left shows the corresponding input data set sizes. The average and mean number of spots
chosen by the manual method are 100 and 77 million, respectively, and larger than the 50 million spots downloaded by VARUS. Averaging over the
species, the F1 accuracy of BRAKER is 0.62% higher when RNA-Seq is selected by VARUS rather than manual

Discussion

VARUS provides a convenient way to sample RNA-Seq
data from a given species. Even a trivial independent sam-
pling of a random subset of many or all sequencing runs
can be very useful, e.g. to estimate and compare library
qualities on the basis of the actual data. Such a triv-
ial sampling can be done with VARUS with the option
-loadallonce with which a single batch from each run
will be downloaded once. VARUS - even if used in such
a trivial way — can decrease the risk that a manual sample
of a small number of (complete) sequencing runs bears.
It could be an unlucky choice of libraries or conditions or
tissues that leaves a relatively large fraction of transcripts
or major splice forms insufficiently represented.

When more data is available than can be handled rea-
sonably, VARUS allows to achieve a near optimal sensitiv-
ity with a small fraction of data. For example, the align-
ments found by VARUS covered 96.7% of all annotated
Drosophila melanogaster introns with less than 1/2000 of
the total spots available (200 million out of 433 billion
spots).

VARUS makes it possible to annotate a large num-
ber of species on the basis of RNA-Seq in a loop. To
demonstrate this, we used the BRAKER pipeline, that can
be trained and run automatically with RNA-Seq and a
genome only. The annotation loop does not require man-
ual work, except for compiling a list of species names and
genome files as shown in Fig. 1. Nevertheless, the overall
performance of VARUS+BRAKER appears to be on par or
rather better than when reads are selected manually.

We think that VARUS could be useful for transcriptome
assembly as well, whether genome-guided transcriptome
reconstruction or even de novo transcriptome assembly
methods. Like genome annotation, these tasks also seek to
construct a set of transcripts that is as complete as pos-
sible. On the other hand, subsetting the data may be a

necessity and the complementarity of the subset is desir-
able. In addition, Pertea et al. identify large variations in
expression levels as a problem for transcriptome assembly
[16], while the objective (1) of VARUS gives a relative dis-
incentive to collect more data from transcript units that
are already highly represented. For this reason we plan to
allow VARUS to make unspliced alignments as well as a
future development.

Conclusions

We introduced the software VARUS to efficiently and
automatically collect samples from SRA to cover a large
set of transcripts. VARUS makes it easy to repurpose
SRA resources for genome annotation without requiring
that meta data on the experiments is manually read or
automatically mined. We expect that a lot can be gained
by even more automatization towards a more continu-
ous process of genome annotation. Annotations could
be updated when a new assembly or significantly more
RNA-Seq becomes available or when annotation meth-
ods are substantially improved. In this context, it should
be stressed that while most genome annotation pipelines
heavily rely on RNA-Seq data, they often also use other
data, such as protein sequences from related species. It
can therefore be advisable to update an annotation of one
species because of a change in the available data or gene
structures of another species.

At the moment, the methods with which the current
assemblies of eukaryotic genomes were annotated are
quite diverse, e.g. in terms of programs but also in usages
and versions of the same program. Such an inhomogene-
ity can be very relevant for questions of comparative
genomics in which the (often rare) differences between
the genomes are in the focus. Then spurious differences
from inhomogeneous annotation methods can dominate
the reported differences. For such comparative purposes,
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the consistent reannotation of all genomes is desirable but
may only be practically feasible when no manual work is
required for each species.

Availability and requirements

Project name: VARUS

Project home page: https://github.com/Gaius- Augustus/
VARUS

Operating system(s): Linux

Programming language: C++, Perl

Other requirements: samtools [17], fastq-dump, HISAT2
or STAR, filterIntronsFindStrand.pl (BRAKER)

License: GPLv3

No restrictions to use by non-academics

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512859-019-3182-x.

Additional file 1: The supplementary material includes command lines
and additional figures.
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SRA: sequence read archive
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