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Abstract

Background: Stable isotope tracing can follow individual atoms through metabolic transformations through the
detection of the incorporation of stable isotope within metabolites. This resulting data can be interpreted in terms
related to metabolic flux. However, detection of a stable isotope in metabolites by mass spectrometry produces a
profile of isotopologue peaks that requires deconvolution to ascertain the localization of isotope incorporation.

Results: To aid the interpretation of the mass spectroscopy isotopologue profile, we have developed a moiety
modeling framework for deconvoluting metabolite isotopologue profiles involving single and multiple isotope
tracers. This moiety modeling framework provides facilities for moiety model representation, moiety model
optimization, and moiety model selection. The moiety_modeling package was developed from the idea of
metabolite decomposition into moiety units based on metabolic transformations, i.e. a moiety model. The SAGA-
optimize package, solving a boundary-value inverse problem through a combined simulated annealing and genetic
algorithm, was developed for model optimization. Additional optimization methods from the Python scipy library
are utilized as well. Several forms of the Akaike information criterion and Bayesian information criterion are provided
for selecting between moiety models. Moiety models and associated isotopologue data are defined in a JSONized
format.
By testing the moiety modeling framework on the timecourses of 13C isotopologue data for uridine
diphosphate N-acetyl-D-glucosamine (UDP-GlcNAc) in human prostate cancer LnCaP-LN3 cells, we were able
to confirm its robust performance in isotopologue deconvolution and moiety model selection.

Conclusions: SAGA-optimize is a useful Python package for solving boundary-value inverse problems, and the
moiety_modeling package is an easy-to-use tool for mass spectroscopy isotopologue profile deconvolution
involving single and multiple isotope tracers. Both packages are freely available on GitHub and via the Python
Package Index.
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Background
Recent work indicates that many human diseases involve
metabolic reprogramming that disturbs normal physiology
and causes serious tissue dysfunction [1]. Advances in
analytical technologies, especially mass spectroscopy (MS)
and nuclear magnetic resonance (NMR), have made
metabolic analysis of human diseases a reality [2]. Stable

isotope tracing is a powerful technique that enables the
tracing of individual atoms through metabolic pathways.
Stable isotope-resolved metabolomics (SIRM) uses
advanced MS and NMR instrumentation to analyze
the fate of stable isotopes traced from enriched
precursors to metabolites, providing richer metabolo-
mics datasets for metabolic flux analyses. NMR can
measure isotopomer-specific metabolite data, but is
typically limited by sensitivity. Often a single piece
of NMR data only provides information on the pres-
ence of stable isotopes in just a part of a metabolite,
which represents a partial isotopomer. In some cases,
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multiple partial isotopomer information can be inter-
preted in terms of a full isotopomer. MS can measure
isotopologue-specific data; however, an isotopologue rep-
resents a set of mass-equivalent isotopomers. Comprehen-
sive metabolic analysis often relies on MS metabolic
datasets or a combination of MS and NMR metabolic
datasets. Even though large amounts of metabolomics
datasets have been generated recently, it is still a big chal-
lenge to acquire meaningful biological interpretation from
MS raw data, especially for complex metabolites com-
posed of multiple subunits or moieties.
To better interpret complex isotopologue profiles of

large composite metabolites, both quantitative analysis
as well as detailed modeling are required. Several methods
have been developed for quantitative flux analysis of speci-
fied pathways based on the stable isotope incorporated
data, like the elementary metabolite units (EMU) frame-
work [3]. These methods rely heavily on well-curated
metabolic networks to accomplish the metabolic flux
analysis. However, models of cellular metabolism, even for
human, are far from complete.
To deconvolute the relative isotope incorporation fluxes

of complex metabolites, first a plausible model of isotope
incorporation should be built based on a relevant meta-
bolic network, which is often incomplete. For example,
the complex metabolite uridine diphosphose N-acetyl-D-
glucosamine (UDP-GlcNAc), illustrated in Fig. 1a, has
four distinct moieties in which 13C isotopes incorporate
through a metabolic network from an isotope labeling
source like 13C-labeled glucose. Based on the well-studied
metabolic pathways that trace from glucose to UDP-
GlcNAc in human metabolism, the expected (expert-de-
rived) moiety model of 13C isotope incorporation from
13C-labeled glucose is illustrated in Fig. 1b, which includes
13C incorporation states for each moiety. For example, the
g6 state represents the incorporation of 13C6 into the glu-
cose moiety. Furthermore, the sum of moiety states for a
given moiety is equal to 1. With this moiety model, a
UDP-GlcNAc isotopologue profile can be deconvoluted
into relative 13C isotope incorporation into each UDP-
GlcNAc moiety: glucose, ribose, uracil, and acetyl. The
deconvolution occurs by minimizing an objective function
that compares calculated isotopologues based on moiety
isotope incorporation (enrichment) state parameters from
the model to the directly observed, experimentally-derived
isotopologues. From a mathematics perspective, the
minimization represents a highly non-linear inverse
problem, since the experimental intensities are com-
pared to calculated values from nonlinear equations
that use model parameters being optimized (Fig. 1b).
With a time-series of isotopologue profiles, relative isotope
fluxes for each moiety can be derived and used for the
interpretation of isotope flux through specific metabolic
pathways associated with each moiety. However, when

multiple models are plausible, development of a robust
model selection method is essential for successful isotopo-
logue deconvolution, especially for non-model organisms.
This basic approach to isotopologue deconvolution was
demonstrated in a prototype Perl program called GAIMS
for the metabolite UDP-GlcNAc using a MS isotopologue
profile derived from a prostate cancer cell line [4, 5]. This
demonstration derived relative 13C isotope fluxes for several
converging biosynthetic pathways of UDP-GlcNAc under
non-steady-state conditions. This demonstration also in-
spired the development of MAIMS, a software tool for
metabolic tracer analysis [6], which further validates the
robustness of the moiety model deconvolution method.
However, the MAIMS software handles only 13C single
isotope tracer data and does not address model selection,
which is crucial for addressing incomplete knowledge of
cellular metabolic networks.
In addition, the simultaneous use of multiple stable

isotopes in SIRM experiments can provide much more
data than a single tracer. However, incorporation of
multiple stable isotopes also complicates the analysis of
metabolite isotopologue profiles, which limits most of
the current isotope tracer experiments to a single tracer.
The lack of data analysis tools greatly impedes the applica-
tion of the multiple-labeled SIRM experiments. Therefore,
we have developed a new moiety modeling framework for
deconvoluting MS isotopologue profiles for both single
and multiple-labeled SIRM MS datasets. This moiety
modeling framework not only solves the non-linear
deconvolution problem, but also facilitates selection of the
optimal model describing the relative isotope fluxes for a
specific metabolite(s) from a set of plausible models.

Implementation
Overview of the moiety modeling framework
The workflow of the moiety modeling framework is com-
posed of four major steps, model and data representation,
model (parameter) optimization, analysis of optimization
results, and model selection (Fig. 2). For the model and data
representation step, the moiety_modeling package creates
an internal representation of a moiety model from a given
JSONized moiety model description (see Additional file 1).
In this representation illustrated by a unified modeling
language (UML) class diagram in Fig. 3, the package first
dissembles a complex metabolite into a list of moieties, i.e.
metabolic subunits. Each moiety may contain different
number of labeling isotopes, representing the flow of iso-
tope from the labeling source to the moiety. A moiety with
a specific number of labeled isotopes is represented as an
isotope enrichment state of the moiety (i.e. moiety state).
As specified in the JSONized model description, non-
default mathematical relationships may exist between moi-
ety states, even from different moieties and/or molecules.
Molecules, their moieties, the possible moiety states, and
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Fig. 1 Example complex metabolite UDP-GlcNAc and associated expert-derived moiety model. a Major human metabolic pathways leading from
glucose to the four moieties of UDP-GlcNAc. b The representative moiety model is based on the expected metabolic tracing from 13C-labeled
glucose to UDP-GlcNAc, with the exception of one carbon in the uracil moiety that traces from carbon dioxide. The moiety states variables are
identified by a lowercase moiety letter followed by a number representing the 13C isotope content. The moiety state variables (model
parameters) are used to calculate specific components of the relative isotopologue intensity

Fig. 2 Workflow of the moiety modeling framework

Jin and Moseley BMC Bioinformatics          (2019) 20:524 Page 3 of 12



relationships between moiety states work together to repre-
sent a particular moiety model, and the proportion for each
possible moiety state is an optimizable parameter of the
model. Each mass spectrum’s worth of isotopologue data is
represented as a separate dataset, which holds the set of
isotopologues associated with each molecule. Typically,
multiple mass spectra are included. Often each mass
spectrum represents a single time point in a time series
experiment.
The next major step, moiety model (parameter)

optimization, involves deriving an optimal set of model
parameters, i.e. moiety state fractional abundances (moi-
ety _ statej, i for moiety j and state i) that are used to
calculate relative isotopologue abundances (Ix,calc from
Eq. 1) that best match experimental isotopologue pro-
files (Ix,obs) as compared by an objective function (see
Table 1). In Eq. 1, ica is a component of the isotopologue
intensity with an isotope content x. Figure 1b lists these
isotopologue components for each isotopologue based
on the expert-derived moiety model.

Ix;calc ¼
X

ica∈ICx

ica; ICx

¼ icvjisotope content icvð Þ ¼ xf g; icv
¼

Y
j
moiety state j;v j ð1Þ

The moiety_modeling package implements several
optimization methods, including a combined simulated
annealing and genetic algorithm (SAGA) based on the
‘Genetic Algorithm for Isotopologues in Metabolic Systems’

(GAIMS) Perl implementation [4, 5], a truncated Newton
algorithm (TNC) [7], a SLSQP algorithm using Sequential
Least Squares Programming [8], and a L-BFGS-B algorithm
[9]. For the latter three algorithms ‘TNC’, ‘SLSQP’, and ‘L-
BFGS-B’, the moiety_modeling package uses the implemen-
tation from the scipy.optimize Python module. In addition,
we have the option to optimize the datasets together or
separately.
The third major step involves the analysis of the

results from the model optimization. The moiety_model-
ing package provides facilities for generating summative
statistics and graphical visualizations for a set of optimi-
zations performed on one or more moiety models. The
final major step, model selection, tries to find the model
that best fits the experimental isotopologue profiles from
a set of provided moiety models that have been opti-
mized in step two. Several forms of the Akaike information
criterion (AIC) [10] and Bayesian information criterion
(BIC) [11] are used as the estimator of the relative quality
of moiety models for the set of isotopologue data.

The moiety_modeling python package implementation
As shown in Fig. 4, the moiety_modeling Python package
consists of several modules: ‘model.py’, ‘modeling.py’, ‘ana-
lysis.py’, and ‘cli.py’. The ‘model.py’ module contains class
definitions for the basic elements in the moiety model. It
is composed of ‘Moiety’, ‘Relationship’, ‘Molecule’ and
‘Model’ classes. The ‘Moiety’ object represents a specific
moiety, the labeling isotopes present in the moiety, and
their corresponding states within the moiety. The ‘Rela-
tionship’ class describes the non-default mathematical
dependencies between moiety states, where the default
dependency for a given moiety is that the sum of its states
is equal to 1 (see Fig. 1b for example default relationships).
A ‘Molecule’ object represents an individual metabolite
made up of a list of ‘Moiety’ objects. The ‘Model’ class
simulates the flow of isotope from labeling sources into
each moiety of specific metabolites, which is initialized by

Fig. 3 A unified modeling language (UML) class diagram of a Moiety Model

Table 1 Different forms of objective function

Loss function Equation

Absolute difference Σ|Ix,obs – Ix,calc|

Log difference Σ|log (Ix,obs) – log (Ix,calc)|

Square difference Σ (Ix,obs – Ix,calc)
2
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lists of ‘Moiety’ objects, ‘Molecule’ objects, and ‘Relation-
ship’ objects. A moiety model is generated and stored in a
JSONized representation using the jsonpickle Python pack-
age [12]. This JSONized representation (see Additional file 2),
stored in a file, is then used as the input file for later model
optimizations. The ‘modeling.py’ module is responsible for
model optimization. It is composed of the ‘Dataset’ class,
several model optimization classes, and the ‘Optimization-
Manager’ class. The ‘Dataset’ class organizes a single MS
isotopologue profile dataset into a dictionary-based data
structure. ‘Dataset’ objects are stored in a JSONized repre-
sentation (see Additional file 3) and used as the input for
later model optimizations. Currently, no relationship be-
tween Dataset objects like a time-dependence is captured. In
the abstract ModelOptimization class, we included several
different objective functions (see Table 1). In addition, there
are four specific model optimization classes in the ‘modeling’
module that utilize different optimization methods and

approaches for combining datasets. The ‘SAGAoptimization’
and ‘SAGAseparateOptimization’ classes use the SAGA-
optimize Python package described in the next section for
either combined optimization of model parameters across
all datasets or separate optimizations of model parameters
for each dataset. ‘ScipyOptimization’ and ‘ScipySeparateOp-
timization’ classes make use of optimization methods
(‘TNC’, ‘SLSQP’, and ‘L-BFGS-B’) in the scipy.optimize
module to conduct optimizations in either a combined or
separate manner. The ‘OptimizationManager’ class is re-
sponsible for the management of the optimization process
based on the input optimization parameters. The results for
a model optimization are stored in a JSONized representa-
tion (see Additional file 4) for further analysis. A text file is
used to store the filepaths to all of the optimized models
with certain optimization parameters. The filepath file is
then used as the input for the ‘analysis.py’ module. The
‘analysis.py’ module has five classes: ‘ResultsAnalysis’,

Fig. 4 Organization of the moiety_modeling package represented with UML diagrams: a UML package diagram of the moiety_modeling Python
library; b Subpackage dependencies diagram; c UML class diagram of the ‘modeling.py’ module with dependency relationships; d UML class
diagram of the ‘analysis.py’ module, which contains a set of classes with no relationships
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‘ModelRank’, ‘ComparisonTable’, ‘PlotMoietyDistribution’
and ‘PlotIsotopologueIntensity’. The ‘ResultsAnalysis’ class is
responsible for generating standard statistics from the results
for a set of optimizations for a given model. The mean,
standard deviation, minimum, and maximum value of each
model parameter are calculated from a set of model optimi-
zations performed on the same model. The calculated isoto-
pologue intensities and their statistics based on the sets of
optimized parameters are also generated. Furthermore,
several quality estimators of each model, including different
forms of the ‘AIC’ (Table 2), are computed for model selec-
tion. The AIC tends to select the model that has too many
parameters when the sample size is small, leading to overfit-
ting. The sample size corrected AIC (AICc) was developed
to address this overfitting problem [13]. The Bayesian infor-
mation criterion (BIC) is another commonly used criterion
for model selection [14]. The ‘ResultsAnalysis’ objects with
results for each model are stored in a JSONize representa-
tion (see Additional file 5) for further analysis, along with a
text report for readability. Also, an analysis filepath file con-
taining the filepaths to the analysis JSON files of all models
with the same optimization parameters is created. Next, the
‘ModelRank’ class object uses this analysis filepath file to
compare and select the model that best reflects the observed
isotopologue profile. The ‘ComparisonTable’ class compares
the model selection results with different optimization

parameters. The ‘PlotMoietyDistribution’ class and ‘PlotIso-
topologueIntensity’ class are responsible for the visualization
of the optimization results for a set of optimizations per-
formed on a single model. The ‘cli.py’ module provides the
command-line interface to perform model optimization,
model optimization analysis, and model selection, which is
implemented with the ‘docopt’ Python library [15].

SAGA-optimize python package implementation
The SAGA-optimize Python package is a novel type of
combined simulated annealing and genetic algorithm [4]
used to find the optimal solutions to a set of parameters
based on the minimization of a given energy (objective)
function calculated using the set of parameters. In this
context, the energy function represents a comparison of
calculated and experimentally-observed isotopologue
relative intensities, with the calculated intensities based
on the moiety model parameters being optimized. As
shown in Fig. 5, it is composed of ‘ElementDescription’,
‘Guess’, ‘Population’ and ‘SAGA’ classes. An ‘ElementDe-
scription’ object describes an individual parameter of the
moiety model. In the expert derived moiety model (Fig. 1b),
the g6 model parameter would be represented by a single
‘ElementDescription’ object. The ‘ElementDescription’ ob-
ject is bound by a range and several mutation methods are
available to change the value of the ‘ElementDescription’
object. A ‘Guess’ object contains lists of all the parameters
(‘ElementDescription’ objects) and their corresponding
values for a particular moiety model. In addition, it also
stores the energy calculated based on this set of parameters.
A ‘Population’ object contains information of a list of
‘ElementDescription’ objects, a list of ‘Guess’ objects, the
range of each ‘ElementDescription’ among all the ‘Guess’
objects, the highest and lowest energy for the list of ‘Guess’
objects, and the best ‘Guess’ object. The

Table 2 Different forms of a model selection estimator

Selection Criterion Equation

Akaike Information Criterion (AIC) 2k + nln(RSS/n)

Sample size corrected AIC (AICc) AIC + (2k2 + 2k)/(n − k − 1)

Bayesian Information Criterion (BIC) nln(RSS/n) + kln(n)

k is the number of parameters
n is the number of data points
RSS is the residual sum of squares: RSS =

Pn
i¼1 ðIobs−IcalcÞ2

Fig. 5 ‘SAGA-optimize’ package represented with a UML class diagram with dependencies
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‘ElementDescription’, ‘Guess’ and ‘Population’ classes are
the building blocks of the ‘SAGA’ class, which is the main
class that provides the interface for optimization. Further-
more, several distinct crossover functions are available for
creating new Guess objects from the cross-over of two
other Guess objects.

Results
The package interface
The moiety_modeling package can be used in two main
ways: (i) as a library within Python scripts for accessing
and manipulating moiety models and isotopologue data-
sets stored in JSON files, or (ii) as a command-line tool
to perform model optimization, model analysis, and
model selection.
To use the moiety_modeling package as a library within

Python scripts, it should be imported with a Python pro-
gram or an interactive interpreter interface. Next, ‘Moiety’,
‘Relationship’ and ‘Molecule’ objects can be created to
construct a moiety model. ‘Dataset’ objects are also built
with the moiety_modeling package. Table 3 summarizes
common patterns for using moiety_modeling package as a
library in construction of a moiety model and related
datasets.
The moiety_modeling package also provides a sim-

ple command-line interface to perform model
optimization, selection, and visualization. Add-
itional file 6 shows version 1.0 of the command-line
interface, and Table 4 summarizes common pattern
for using moiety_modeling as a command-line tool. The
common patterns for using SAGA-optimize as a library
are shown in Additional file 7.

Dataset and model
We used the timecourse (34 h, 48 h, and 72 h) of 13C
isotopologue data for UDP-GlcNAc generated from
[U-13C]-glucose in human prostate cancer LnCaP-LN3
cells to evaluate the robustness of the moiety modeling
framework. An expert-derived moiety model of UDP-
GlcNAc (6_G1R1A1U3) was created based on known
human biochemical pathways (Fig. 1a) and corroborated
by NMR data. Also, 40 hypothetical moiety models of
the isotopic flow into UDP-GlcNAc were crafted as sim-
ple perturbations of the original expert-derived model.
These perturbations include the inclusion of different
and/or additional moiety states and non-default moiety
state relationships (e.g. g6 = r5). For example, model 7_
G2R1A1U3_g5 includes an extra 13C5 g5 glucose moiety
state for a total of 7 independent model parameters, 2
for glucose, 1 for ribose, 1 for acetyl, and 3 for uracil.
We tested whether the expert-derived moiety model
could be selected from all the other models.

Model optimization and selection
The incorporation of 13C from [U-13C]-glucose into
UDP-GlcNAc leads to a total of 17 isotopologues plus
one due to 13C natural abundance from carbon dioxide
(I0, …, I17). We applied the moiety modeling framework
to the observed UDP-GlcNAc isotopologue data with
each built model to test whether the expert-derived
moiety model could be selected above the other models.
We used the SAGA optimization method with a log differ-
ence objective function (see Table 1). The optimization
was repeated 100 times for each model. These analyses
were performed on a desktop computer with i7-6850K
CPU (6 core with HT), 64GB RAM and 512GB SSD. On

Table 3 Common creation patterns for the moiety_modeling library

Entity Example

Moiety glucose = moiety_modeling.Moiety(‘glucose’, {‘13C’: 6}, isotopeStates = {‘13C’: [1, 3, 5]}, nickname = ‘g’)
acetyl = moiety_modeling.Moiety(‘acetyl’, {‘13C’: 2}, isotopeStates = {‘13C’: [0, 1, 2]}, nickname = ‘a’)
uracil = moiety_modeling.Moiety(‘uracil’, {‘13C’: 4}, isotopeStates = {‘13C’: [1, 2, 4]}, nickname = ‘u’)
ribose = moiety_modeling.Moiety(‘ribose’, {‘13C’: 5}, isotopeStates = {‘13C’: [0, 3, 5]}, nickname = ‘r’)

Relationship relationship =moiety_modeling.Relationship (glucose, ‘13C0’, acetyl, ‘13C2’, ‘*’, 2)

Molecule UDP-GlcNAc =moiety_modeling.Molecule(‘UDP-GlcNAc’, [glucose, uracil, acetyl, ribose])

Model model1 =moiety_modeling.Model(‘model1’, [glucose, uracil, acetyl, ribose], [UDP_GlcNAc], [relationship])

Dataset dataset = moiety_modeling.Dataset(‘12 h’, ‘UDP_GlcNAc’: [{‘labelingIsotopes’:‘13C_0’, ‘height’: 0.0175, ‘heightSE’: 0}, {‘labelingIsotopes’:
‘13C_1’, ‘height’: 0.0075, ‘heightSE’: 0}, …])

Table 4 Common patters for using the moiety_modeling as a command-line tool

Command Description Example

modeling Perform model optimization % python3 –m moiety_modeling modeling --models = models.json --datasets = dataset.json
--optimizations = optimization_settings.json

analyze Analyze the optimization results % python3 –m moiety_modeling analyze optimizations --a optimizationPaths.txt

plot Plot the distribution of calculated moiety
modeling parameters.

% python3 –m moiety_modeling plot moiety analysisResults.json
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this hardware, the analyses for all 40 models took roughly
3 h of total execution time. The results are listed in
Table 5. From these results, we can see that the expert-
derived moiety model can be selected successfully among
all the moiety models using the AICc (see Table 2), which
demonstrates the robustness of the moiety modeling
framework. Model selection criteria like the AICc help to
address model overfitting; however, the use of a log differ-
ence objective function with multiple time points of data
in the form of separate sets of observed isotopologues
makes the model selection very robust against most of the
model overfitting [4, 5].
We also compared the optimization results generated

by the moiety-modeling package to results generated by
GAIMS (see Additional files 9, 10, 11). For this compari-
son, an absolute difference objective function was used
with the moiety-modeling package to match the object-
ive function available in the GAIMS software. Also, there
are some small differences in the implementation of
optimization method between the two software pack-
ages. The SAGA-optimize package implements a true
simulated annealing, while GAIMS implements a modi-
fied annealing with steepest decent qualities. Also, both
optimization methods are stochastic as demonstrated by
replicate moiety-modeling analyses shown in Add-
itional file 12. Therefore, the results are not identical;
however, they are reasonably comparable. But neither
method is able to select the expert-derived model with
an AICc model selection method, due to issues of over-
fitting with the absolute difference objective function.

Table 5 Model selection results of UDP-GlcNAc isotopologue
data
Modela Estimator (AICc)

6_G1R1A1U3 (expert-derived model) − 229.2918

6_G1R1A1U3_r4 − 227.5208

6_G1R1A1U3_u4 − 225.0006

6_G0R2A1U3_g3r2r3_g6r5 − 223.1633

6_G1R1A1U3_g5 − 215.9565

7_G1R2A1U3_r1 − 212.4727

7_G2R1A1U3_g1 −212.1217

7_G1R2A1U3_r3 −210.9640

7_G1R1A2U3 −210.0952

7_G2R1A1U3_g5 −208.1346

7_G1R2A1U3_g3r2r3 − 207.6523

7_G1R2A1U3_r2 −207.4187

7_G2R1A1U3_g4 − 206.6430

7_G2R1A1U3_g2 −206.5609

7_G0R2A2U3_g3r2r3_g6r5 − 205.0569

7_G2R1A1U3_g3 − 204.8797

7_G0R3A1U3_g3r2r3_g6r5_g5r4 −204.2729

7_G1R1A1U4 − 203.3710

7_G1R2A1U3_r4 − 202.6782

6_G1R1A1U3_a1 −199.5560

8_G2R1A2U3_g1 − 195.9713

7_G1R1A1U3C1 − 195.5788

8_G1R2A2U3_r1 −195.4893

7_G0R3A1U3_g3r2r3_g6r5_r4 −192.4980

8_G1R2A2U3_r2r3 −187.3342

8_G1R2A2U3_r3 −186.8810

8_G2R1A2U3_g5 −186.2693

8_G1R2A2U3_r2 −186.2562

8_G2R1A2U3_g2 − 185.6112

8_G2R1A2U3_g4 − 184.9444

8_G1R2A2U3_g3r2r3 −184.2929

8_G1R2A2U3_g3r2r3_g6r5_g5 − 183.2154

8_G2R1A2U3_g3 −183.1467

8_G1R2A2U3_r4 − 182.1334

8_G1R1A2U3C1 − 177.5013

9_G2R2A2U3_r2r3_g1 − 170.3323

9_G2R2A2U3_r2r3_g2 − 161.5770

9_G2R2A2U3_r2r3_g3 − 160.7823

9_G2R2A2U3_r2r3_g6r5_g3_g5 −160.6917

9_G2R2A2U3_r2r3_g4 −160.4500

9_G2R2A2U3_r2r3_g5 − 158.8733

Optimization settings: method = ‘SAGA’, SAGA_parameters = {‘stepNumber’:
100000, ‘temperatureStepSize’: 100, ‘alpha’: 1, ‘crossoverRate’: 0.05,
‘mutationRate’: 3, ‘populationSize’: 20, ‘startTemperature’: 0.5}, repetition = 100,
split, objective function = log difference
aThe first number in the model name is the total number of free model
parameters followed by the number of free parameters for each moiety and
perturbations from the expert-derived model

Table 6 Single-tracer 13C moiety states and values for UDP-
GlcNAc biosynthesis

Moiety states Moiety value Moiety states Moiety value

glucose[13C_0] 0.1 ribose[13C_5] 0.9

glucose[13C_6] 0.9 uracil[13C_0] 0.2

acetyl[13C_0] 0.7 uracil[13C_1] 0.2

acetyl[13C_2] 0.3 uracil[13C_2] 0.5

ribose[13C_0] 0.1 uracil[13C_3] 0.1

Table 7 Multi-tracer 13C/18O moiety states and values for UDP-
GlcNAc biosynthesis

Moiety states Moiety value Moiety states Moiety value

glucose[13C_0.18O_0] 0.1 uracil[13C_0.18O_0] 0.2

glucose[13C_6.18O_5] 0.9 uracil[13C_1.18O_0] 0.2

acetyl[13C_0.18O_0] 0.7 uracil[13C_2.18O_0] 0.25

acetyl[13C_2.18O_1] 0.3 uracil[13C_2.18O_1] 0.25

ribose[13C_0.18O_0] 0.1 uracil[13C_3.18O_0] 0.05

ribose[13C_5.18O_4] 0.9 uracil[13C_3.18O_1] 0.05
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Generation of simulated single-tracer and multi-tracer
datasets
In addition, we generated simulated single tracer and
multi-tracer datasets to test, compare, and evaluate multi-
tracer optimization functionality. First, we created a set of
rounded moiety state values for the single-tracer expert
derived model roughly based on the optimized model
state values derived from the experimental UDP-GlcNAc
48 h dataset (Table 6).
We then used 13C and 18O labeled glucose (13C6H12

18O6)
as a hypothetical isotope labeling source for UDP-GlcNAc
biosynthesis. Following the expert derived model and with
the aid of atom-mapping information of relevant human
biochemical reactions from MetaCyc [15], we traced the
incorporation of oxygen and carbon atoms from glucose to
each moiety to derived a multi-tracer model. For glucose,
acetyl and ribose, oxygen atoms incorporated into the
moiety with their directly bonded carbon atom. However,
during the biosynthesis of uracil, some 18O-13C bonds are
sometimes broken, creating a more varied set of moiety
states. Next, we derived rounded multi-tracer moiety state

values that are equivalent to the rounded single-tracer
values (Table 7).
Next, we generated the base single-tracer and multi-

tracer simulated datasets by calculating the set of relative
isotopologue intensity values using Eq. 1 with the re-
spective moiety state values. Finally, we created simu-
lated datasets with added normally distributed error that
is subsequently thresholded to zero based on a mini-
mum hypothetical detection limit (0.005) and then
renormalized to a sum of 1. We generated three sets of
100 simulated datasets for both single and multi-tracer
models by adding error from a normal distribution with
increasing standard deviations of 0.001, 0.01 and 0.1. We
then estimated the effects of error propagation by calcu-
lating the average sum of isotopologues across 100 simu-
lated datasets after error addition and thresholding, but
before renormalization (Table 8).
Based on this calculation, the single-tracer datasets

and the multi-tracer datasets have comparable levels of
propagated error when normal error with a 0.001σ is
added. However, this quickly deviates with larger amounts
of additive error as shown by single-tracer datasets with a
0.1σ added normal error having slightly less propagated
error than the multi-tracer datasets with a 0.01σ added
normal error. The multi-tracer datasets with a σ = 0.1
added normal error are practically useless due to the level
of propagated error being roughly nine (i.e. 9.97–1.00 =
8.97 ≈ 9) times the original signal on average. Using histo-
grams of simulated intensities for the largest respective
isotopologue in both the single-tracer and multi-tracer

Table 8 Average sum of simulated isotopologues before
renormalization

σ of
Added
Error

Average Sum of Isotopologues

Single-tracer Multi-tracer

0.1 1.50 9.97

0.01 1.02 1.73

0.001 0.99 0.98

Fig. 6 Histograms of simulated intensities for the largest representative isotopologue
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simulated datasets, Fig. 6 illustrates these error propaga-
tion effects due to thresholding and renormalization. It is
clear from this figure the loss of intensity information in
the multi-tracer simulated dataset with σ = 0.1 added
normal error.

Model optimization of simulated multi-tracer and single-
tracer datasets and comparison of results
For each simulated dataset consisting of a single time
point, the respective model was optimized 100 times (i.e.
in 100 separate repetitions), each using 5000 steps of
SAGA with an absolute objective function. This generated
10,000 separate optimizations for each set of simulated
datasets at a given added level of error. Using histograms,
Fig. 7 visualizes the distribution for the acetyl and uracil
moiety state values for the multi-tracer dataset with 0.01σ
added normal error and for the single-tracer datasets with
σ = 0.1 and σ = 0.01 added normal error. The full set of
histograms are in Additional file 13 for the multi-tracer
results and Additional file 14 for the single tracer results.
When comparing multi-tracer and single-tracer experi-
ments with equivalent added normal error (σ = 0.01), the
propagated error leads to wider variances in the multi-
tracer moiety state values and some additional skewness
of their distributions. However, some of the single-tracer
moiety state value distributions are bimodal. When com-
paring multi-tracer and single-tracer experiments with
comparable propagated error levels, the multimodality in
the single-tracer distributions become very pronounced,
especially in the acetyl moiety states.

Discussion
Advantage of JSONized representation for MS
isotopologue data and analysis results
JavaScript object notation (JSON) [16] is an open-
standard file format using human-readable text to collect
data in pair-value and array structures, widely used by
different programming language. Complex Python ob-
jects, like ‘Moiety’ and ‘Molecule’ objects mentioned
above, can be serialized to JSON format with the json-
pickle Python library. The moiety model and dataset
constructed with moiety_modeling package as well as
optimization parameters are the input files for the moi-
ety modeling, all of which are saved in JSON format
using jsonpickle (see Additional files 2, 3, and 8). The
use of JSON format makes the moiety modeling frame-
work easily accessible to other programming languages
and naturally extendible. In addition, the optimization
and analysis results are also stored in a JSON file (see
Additional files 4 and 5).

Advantages and limitations of the SAGA-optimize and
moiety-modeling packages
The SAGA-optimize package provides certain advan-
tages to the model optimization versus the other
optimization methods from scipy and even a similar
implementation in GAIMS. The level and steepness
of optimization can be precisely tuned with the spe-
cification of the annealing length and schedule. Also,
this novel implementation of a combined simulated
annealing and genetic algorithm incorporates the an-
nealing processing directly into the mutation step

Fig. 7 Histograms of the acetyl and uracil optimized moiety state values derived from simulated datasets
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itself, attenuating the level of mutation as the annealing
temperature drops. The moiety-modeling package pro-
vides a range of objective functions and can split each in-
dependent set of isotopologues into individual moiety
model optimizations, which neither the GAIMS nor
MAIMS packages can do. Moreover, both the SAGA-
optimize and moiety-modeling packages have multipro-
cessing facilities that enable an efficient utilization of all
CPU cores. As demonstrated in the Table 5 results, the
combination of advantages allows the moiety-modeling
package to optimize and accurately select the expert-
derived model in roughly one tenth of the execution time
of the original GAIMS package, i.e. with 100,000 steps of
optimization in moiety-modeling versus 1,000,000 steps in
GAIMS. Also, both the SAGA-optimize and moiety-
modeling packages contain over 2200 lines of code imple-
mented in major version 3 of the Python language with a
fully object-oriented design and Pythonic style. Every
module, class, method, and function have documentation
strings (docstrings) written in the reStructuredText
markup language. Variables, data members, methods,
functions, and classes have descriptive names as demon-
strated in Figs. 3, 4, and 5. Documentation is automatically
generated using the Sphinx Python Document Generator
and made available on ReadTheDocs. This documentation
includes a user guide, installation instructions, tutorial,
and application programming interface (API) reference.
Both packages are available on GitHub, utilize Travis CI
for continuous integration, and are distributed via the Py-
thon Package Index. Code coverage from unit testing is
above 65% for moiety-modeling and above 73% for
SAGA-optimize. These packages enable researchers to
perform moiety model isotopologue deconvolution using
JSON representations of moiety models, datasets, and
optimization method selection and settings provided by
the user. At this time, the moiety-modeling package has
no facilities for automatic moiety model generation.

Difficulty in generating simulated datasets and
comparing multi-tracer to single-tracer moiety modeling
results
The generation of realistic simulated biophysical datasets
is always a non-trivial task [16]. Even the addition of
normal additive error can create non-intuitive propaga-
tion of error, especially through inverse problems [17].
This is illustrated in Table 8 and Fig. 6, where threshold-
ing creates a positive bias in accumulated error and the
renormalization creates a proportional-like error component
from this positive accumulated error. The thresholding is
required to keep the simulated data within the physical
boundaries of the analytical detection, i.e. all non-negative
values. The renormalization keeps the simulated data within
mathematical boundaries, i.e. the sum of the isotopologue
values is equal to 1. Neither step can be avoided with the

inclusion of normal additive error. This created error propa-
gation problem is quite dramatic for the simulated multi-
tracer datasets, because there are 324 possible isotopologues
in the multi-tracer datasets as compared to only 18 isotopo-
logues in the single-tracer datasets. This problem simply
increases in magnitude with the number of isotopologues
present in a dataset. With a σ= 0.1 added normal error, the
isotopologue intensity information is effectively lost for the
multi-tracer datasets (see Fig. 6) and these datasets become
effectively unusable (see Additional file 13). However, the
lower additive error datasets are usable and illustrate the
power of multi-tracer datasets to reduce multimodality in
optimized moiety state values as compared to the single-
tracer datasets.

Conclusions
Here, we present a moiety modeling framework for the
deconvolution of metabolite isotopologue profiles using
moiety models along with the analysis and selection of
the best moiety model(s) based on the experimental
data. This framework can analyze datasets involving
single and multiple isotope tracers as demonstrated on
simulated datasets for multiple tracer models and both
simulated and experimental datasets on single tracer
models. With a 13C-labeled UDP-GlcNAc isotopologue
dataset, we further demonstrate the robust performance
of the moiety modeling framework for model selection
on real experimental datasets. The selection of correct
moiety models is required for generating deconvolution
results that can be accurately interpreted in terms of
relative metabolic flux. Furthermore, the JSON formats
of moiety model, isotopologue data, and optimization
results facilitate the inclusion of these tools in data ana-
lysis pipelines. Future work will explore the data quality
requirements of model selection and validation of mul-
tiple isotope tracing model optimization and selection.
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