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Abstract

Background: The analysis of health and medical data is crucial for improving the diagnosis precision, treatments
and prevention. In this field, machine learning techniques play a key role. However, the amount of health data
acquired from digital machines has high dimensionality and not all data acquired from digital machines are relevant
for a particular disease. Primary Progressive Aphasia (PPA) is a neurodegenerative syndrome including several specific
diseases, and it is a good model to implement machine learning analyses. In this work, we applied five feature
selection algorithms to identify the set of relevant features from 18F-fluorodeoxyglucose positron emission
tomography images of the main areas affected by PPA from patient records. On the other hand, we carried out
classification and clustering algorithms before and after the feature selection process to contrast both results with
those obtained in a previous work. We aimed to find the best classifier and the more relevant features from the WEKA
tool to propose further a framework for automatic help on diagnosis. Dataset contains data from 150 FDG-PET
imaging studies of 91 patients with a clinic prognosis of PPA, which were examined twice, and 28 controls. Our
method comprises six different stages: (i) feature extraction, (ii) expertise knowledge supervision (iii) classification
process, (iv) comparing classification results for feature selection, (v) clustering process after feature selection, and (vi)
comparing clustering results with those obtained in a previous work.

Results: Experimental tests confirmed clustering results from a previous work. Although classification results for
some algorithms are not decisive for reducing features precisely, Principal Components Analisys (PCA) results
exhibited similar or even better performances when compared to those obtained with all features.

Conclusions: Although reducing the dimensionality does not means a general improvement, the set of features is
almost halved and results are better or quite similar. Finally, it is interesting how these results expose a finer grain
classification of patients according to the neuroanatomy of their disease.
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Background
Learning from data is one of the most successful fields
applicable to many heterogeneous areas and disciplines
like statistics, artificial intelligence, engineering, health,
etc. Digital machines such as Magnetic Resonance Imag-
ing (MRI), Mass Spectrometry (MS) or Positron Emission
Tomography (PET), among others, and new generation
sensors, have found their way in biomedical systems. In
the recent decades, a plethora of advances in biotech-
nology have increased the diagnosis precision and the
efficiency with tailored treatments. Furthermore, these
machines generate wealth of data, whichmust be analyzed
to extract the valuable knowledge that they contain. Data
mining and machine learning techniques [1] are crucial to
explore, extract and interpret the generated data. Bioinfor-
matics as a multidisciplinary area includes the application
of computational tools to biological, medical or health
data acquired [2]. During the last decade, the amount of
data has exponential growth, and the need to extract new
knowledge for tackling diseases places bioinformatics as
a priority research area. In this regard, machine learn-
ing and big data methods have been applied to better
understand and fight many diseases [3–6].
The results of data analysis allow to identify patterns and

develop predictive models to determine future behaviors
in a particular context. In a biomedical scenario, machine
learning techniques will provide an informed decision
making, which will also have positive consequences for
the health of patients. It is possible to implement a predic-
tive model from a set of heterogeneous data acquired from
diverse patients, which can be used to predict accurately
the outcome for a new set of instances.
A major concern from a health and economic point of

view is the impact of the aging population in the health-
care system, which is being studied and documented in all
countries. Neurodegenerative diseases affect a large per-
centage of the old population and, to date, there is no
cure for these diseases. Researchers focus on discover-
ing new treatments for slowing down their progress and
improve the quality of life of the patients. However, the
success of clinical trials is hampered by a wide heterogene-
ity in clinical, genetic and pathological characteristics of
neurodegenerative disorders [7].
Machine learning and data mining techniques can help

to know the disease evolution and personalize treatments
according to the needs and outcome of each patient. Per-
sonalized treatments rely on a proper diagnosis, where
a specific subtype of the disease can be determined by
subtle details in the imaging tools, and rule the prog-
nosis. In this area, identifying the best classifier and
clustering method will be the first step. However, tak-
ing a decision about the best classifier or clustering
method to be used for reaching the most accurate results
is a complex task. On the other hand, not all features are

equally relevant in order to identify a disease or the stage
of its evolution.
In this paper, we focus on Primary Progressive Apha-

sia (PPA). PPA is a clinical syndrome characterized by the
neurodegeneration of language brain networks [8]. Gen-
erally, PPA is the clinical onset of specific and frequent
neurodegenerative diseases such as Alzheimer’s disease,
tauopathies, or TDP-43 proteinopathies, which repre-
sent the main pathological subtypes of neurodegenerative
disorders. Intriguingly, three clinical variants have been
described in PPA (ie. nonfluent, semantic, and logopenic
PPA), and each variant impairs certain brain regions and
is more or less suggestive of a pathological subtype [9]. In
this regard, non-fluent or agrammatic variant is associated
to left frontal lobe damage and is suggestive of tauopathies
or less frequently TDP-43 proteinopathies; semantic vari-
ant is characterized by anterior temporal lobe impairment
and is highly suggestive of TDP-43 type C pathology; and
in logopenic variant, left parieto-temporal lobe is involved
and it often precedes Alzheimer’s disease [10, 11]. This
heterogeneity regarding the underlying pathology and dif-
ferent clinical courses [12] in patients with a similar clin-
ical presentation (ie. aphasia) makes PPA a good model
among neurodegenerative disorders to apply the machine
learning techniques. Indeed, we recently have introduced
the possibility of the existence of some additional subtypes
within non-fluent and logopenic variants, with a better
prediction of outcome using clustering analysis [13]
Diagnosis of neurodegenerative disorders and, in par-

ticular PPA, has been improved with the use of
advanced neuroimaging techniques [14]. Among them,
PET with 18F-fluorodeoxyglucose (FDG-PET) is a marker
of synaptic dysfunction and reflects the brain topogra-
phy of neurodegeneration with the measurement of brain
metabolism [15]. As a consequence, it is considered a use-
ful, early and reliable tool in the diagnostic assessment of
cognitive disorders and PPA, because each neurodegener-
ative disease trends to impair specific brain regions [16].
However, the assessment of brain metabolism requires
experience. Inter-rater agreement for visual analysis of
PET imaging is usually moderate, but it could be improved
with the use of some semiautomatic and statistical tech-
niques [11, 17].
The purpose of our work is to propose a machine-

learning based framework suitable for the analysis of
FDG-PET images of PPA patients, in order to solve two
critical questions: i) to help on the automatic diagnosis of
this disease; ii) to identify subtypes of the illness that have
correlations with the anatomy of the damaged brain.
In [18], the authors applied Hierarchical clustering

according to the clinical language deficit to classify
patients. As a result, two groups were identified corre-
sponding to nonfluent aphasia and semantic dementia.
[19] studied the association between the PPA severity
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and the disease duration, and disease duration and tem-
poroparietal athophy on patients diagnosed of logopenic
variant of primary progressive aphasia (lvPPA). They iden-
tified three variants of lvPPA using Hierarchical clustering
on language, and neurocognitive test scores.
To perform this work, we used two data sets from

150 FDG-PET brain images, which comprised 116 brain
attributes belonging to the normalized metabolism of
brain regions and three more attributes, which are sex, age
and clinical prognosis. Characteristics of participants and
data acquisition methodology are explained as follows.

Participants
This study involved 150 FDG-PET imaging studies
belonging to 91 patients with PPA (31 of them were exam-
ined twice in two different moments of the disease) and 28
healthy controls.
PPA is a rare neurodegenerative syndrome and thus, 91

patients in PPA is considered a large sample, even more
considering that all patients were studied with a com-
prehensive protocol including FDG-PET. Regarding this,
in the recent joint effort of the European Association of
Nuclear Medicine and the European Academy of Neurol-
ogy [20] to address the utility of FDG-PET in the assess-
ment of primary progressive aphasia, four articles with
PPA and FDG-PETwere selected. The sample size of these
works was in all cases < 55. Although PPA is a rare dis-
ease, we chose to study this disorder because it is a good
model of brain-behaviour relationships, and it may be the
onset of different clinical-pathological neurodegenerative
entities.
PET imaging was performed in single-center between

November 2011 and May 2017. All PPA patients met the
current consensus criteria [21] and were classified into the
three clinical variants taking into account the diagnostic
criteria and follow-up. Further details about clinical and
neuropsychological assessments are shown in a previous
work [13].
The Institutional Research Ethics Committee fromHos-

pital Clinico San Carlos approved the research protocol.

FDG-PET imaging acquisition and preprocessing
PET images were acquired following European guide-
lines [22]. All images were obtained in the same scanner,
which is a Siemens Biograph True Point PET-CT that inte-
grates a 6-detector CT with a late-generation PET using
lutetium oxyorthosilicate crystals. A mean dose of 185
MBq was administered 30 minutes before the acquisi-
tion of the images and after at least 6 hours of fasting.
Patients remained at sensory rest prior to the acquisition.
CT scan parameters were: kVp/effective mAs/rotation:
130/40/1; slice thickness: 3 mm; reconstruction inter-
val: 1.5 mm; and pitch: 0.75. Acquisition time was
10 min.

Statistical Parametric Mapping software was used
for imaging preprocessing (http://www.fil.ion.ucl.ac.uk).
Images were realigned and normalized to the Montreal
Neurological Institute standard space using a specifically
developed brain FDG-PET template for dementia [23].
Global mean normalization was performed individually
for intensity scaling. Marsbar software was used to per-
form a region of interest analysis, calculating the mean
uptake value of each participant for the 116 brain areas of
the Automatic Anatomical Labeling atlas belonging to the
whole brain.
The rest of this paper is organized as follows. Experi-

mental results are analyzed in “Results” section. Results
discussion is presented in “Discussion” section and con-
clusions are drawn bellow. “Methods” section describes
the methodology applied in this work.

Results
The software toolkit WEKA was used in our experimen-
tal approach.WEKA is available in http://www.cs.waikato.
ac.nz/ml/weka as a complete industrial-strength software
formachine learning. Analyzed data come from FDG-PET
images of each obtained cluster and were compared to an
additional control group of 32 healthy subjects. Previously
to be entered in the statistical analysis, images had been
spatially normalized and smoothed at 12 mm full-width at
half maximum. Statistical Parametric Mapping version 8
was used for preprocessing and analysis. A two-sample T
test was conducted to compare between groups, using age
and gender as covariates. Statistical significance was set
at p < 0.05 using family-wise error correction at cluster
level.
For exploring the dataset, K-Fold Cross Validation was

used as testing methodology. K-fold cross validation
avoids overlapping by splitting data into k subsets and
makes K iterations. For each iteration, a different sub-
set was chosen for testing and the remainder for training.
We picked k = 10 because this value is considered
appropriate to obtain an accurate estimation.
Our first experimental work, which corresponds to the

phase 1 in the flow chart in Fig. 1, compared a set of
supervised learning algorithms in order to find the
best classifier. In this step, we considered the fully set
of brain attributes. Figure 2a shows the classification
results obtained for each evaluated classifier. Figure 2b
shows the True Positive rate and the Receiver Oper-
ating Characteristics metric (ROC) for each algorithm.
ROC is an independent measure to evaluate the per-
formance of a prediction model, that relates the True
Positive Rate (TPR) against to the False Positive Rate
(FPR). The optimal prediction model will have a ROC
value of 1. Data were sorted by the number of
instances correctly and incorrectly classified and the
True Positive rate (TP rate), respectively. According

http://www.fil.ion.ucl.ac.uk
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
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Fig. 1Methodology flow chart. Methodology applied divided into 6 different phases. Feature selection, classification, expertise knowledge,
clustering and results comparison

to these results, SMO algorithm presents the best
performance with 127 instances correctly classified and 23
incorrectly classified (with respect to the clinical diagno-
sis criteria). SMO is followed by IBK algorithm with 114
instances correctly classified and 36 instances incorrectly
classified.
Looking at PART and Bayesian Naives classifiers,

PART obtained similar results to IBK with 113 and
37 instances correctly and incorrectly classified, respec-
tively. Naives is the third best classifier, with 111
and 39 instances correctly and incorrectly classified,
respectively.
Regarding the ROC metric, SMO, BayesNet and Naives

presented the best performance with a ROC value of 0.9,
followed closely by Kstar with 0.89, the closest values to 1,
the optimal value. A good performance was obtained by
IBK and PART with 0.83.
According to these results, we selected SMO as the

best among those evaluated and IBK as the second one.
However, as aforementioned, this approach used all the
attributes for classification, while not all of them have the
same weight neither provide relevant information for PPA
diagnosis. Therefore, it is interesting to analyze which fea-
tures are most important and provide more information
for an accurate diagnosis. For that purpose, we developed
a feature selection process by evaluating the algorithms
presented in next section.

Feature selection results
The feature selection process, identified as the phase 2
in the flow chart, was launched and for each feature

selection algorithm a new dataset was obtained that
comprises only the features considered as most relevant
by every algorithm. In the particular case of PCA, we
tested different number of PCs in order to achieve accu-
rate results. ChiSquaredAttributeEval and ClassifierAt-
tributeEval generate a ranked dataset, where each feature
is ranked by their merit value. We picked those with a
merit greater than 0 for generating the new subset. The
two other algorithms return directly a dataset with the
subset of most relevant features according to the specific
implementation.
Algorithms CfsSubsetEval and WrapperSubsetEval

apply Best First as the search method and return the
number of subsets evaluated and an internal metric used
by both algorithms to choose the best subset. 3314 and
1258 subsets were evaluated, until the best one was found,
in the case of the CfsSubsetEval and WrapperSubsetEval,
respectively.
At this step, we incorporate the expert knowledge and

the subsets of features selected by the algorithms are pre-
sented to an experienced neurologist who is required to
apply his criteria. This step is represented in the flow
chart as the phase 3. The neurologist is able to eval-
uate the coherency of the features returned by each
algorithm with respect to the neuroanatomy of the dis-
ease. Although this step can be easily automatized by a
set of rules that categorize the brain regions that can
be damaged by APP variants, we decided to present a
clear a meaningful organization of selected features to the
neurologist in order to acquire their knowledge without
further noise.
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In our case, the neurologist examined the results
obtained for each algorithm. For the CfsSubsetEval algo-
rithm, he considered the use of right angular as jus-
tifiable, however the algorithm immediately selected
the cerebellum cruss and posterior cingulum, which
is directly associated to logopenic variant. Moreover,
cuneus is too posterior for three standard variants and
next selected features get into the frontals. Hence he ruled
out CfsSubsetEval as the most promising for the next
phase.
With respect to WrapperSubsetEval, he considered that

starting with the left calcarine is not a good option. This
area is too posterior and it is not associated to language
regions. Then, it follows in a right way, but it also uses
the occipital area, which is also found very posterior and
more linked to visual function. The expert dismissed the
dataset resulting for this algorithm.
ChiSquaredAttributeEval and ClassifierAttirbuteEval

were presented as two really reasonable proposals and
the datasets could be used for the next phase. They have
lots of similarities. However, ChiSquaredAttributeEval
included many temporal areas before other regions were
included. Moreover, the occipital regions were included
before the frontal regions. Hence, it was finally dismissed.
The neurologist considered the features selected by the

ClassifierAttributeEval algorithm, shown in Table 1, as the
most suitable option. The main reason was the high ratio
of attributes selected between the different lobes. Thus,
the dataset resulting from this algorithm will be used in
the following classification and clustering phases.
Principal Components (PC) as a result of PCA is a differ-

ent mater. Each PC is an uncorrelated variable consisting
on a number of probably correlated variables and it covers
a part of the data variance.Table 2 shows the PCs with an
eigenvalue higher than 1, placed in the second column, the
third column corresponds to the proportion in the total,
the cumulative value is displayed in the fourth column,

and finally the features included. Features chosen belong
to different PCs in order to launch the classification pro-
cess again and analyse its results. Repeated features trough
different PCs were selected only once.
These results are analysed by the expert neurologist,

which presented as the most relevant the principal com-
ponents ranging between 1 to 8, and 10 to 15. These are
chosen for the next phase.

Classification after feature selection
Data subset obtained in the feature selection process and
chosen by the neurologist has been provided as input to
the classification process under the same conditions as
the first experimental work. Figure 3a shows for the fea-
ture selection algorithm chosen in the previous phase,
and classifiers addressed, the number of instances cor-
rectly and incorrectly classified. Figure 3b represents the
evolution of the True Positive rate and the ROCmetric for
each feature selection algorithm and classifiers.
We analyzed these new results and compared them to

those with all features. Regarding results after feature
selection, the SMO algorithm is presented as the best
classifier with 126 instances correctly classified, only one
less than with all features. Naives ranks second behind
SMOwith 116 instances correctly classified, and Bayesnet,
Kstar and IBK classified correctly 115 instances.
Comparing classification before and after feature selec-

tion, 6 out of 13 analyzed classifiers improved their results
(IBK, Naives, BayesNet, Kstar, DecisionTable, LWL), 2
obtained identical results (DecisionStump and OneR),
while results for 5 algorithms got worse (SMO, Part, J48
(prunned), J48 (unprunned) and RepTree). From the per-
formance perspective of the classification model using the
ROC metric, BayesNet improved with a value of 0.92, the
best one, followed closely by SMO and Kstar with 0.9 and
0.89, respectively. PART and IBK presented good perfor-
mance with 0.84 and 0.83, improved and sustained their

Table 1 Features for ClassifierAttributeEval algorithm sorted by relevance

ClassifierAttributeEval

% Feature % Feature % Feature % Feature % Feature

0.144 TemporalPole Mid L 0.087 Parahippocamp L 0.055 Occipital Mid R 0.031 Supramarginal R 0.015 Paracentrallobule LM

0.137 SMA L 0.080 Occipital Mid L 0.051 Frontal Sup Medial L 0.031 Precuneus L 0.015 Precentral R

0.135 TemporalInf L 0.077 CingulumPost L 0.050 Cerebellum 8 L 0.030 Cerebellum 9 L 0.010 Rolandic Oper R

0.133 Fusiform L 0.077 TemporalSup L 0.049 Frontal Sup R 0.029 Insula R 0.010 Cerebellum 8 R

0.123 SMA R 0.075 Cerebellum 6 R 0.049 CingulumAnt R 0.027 ParietalInf L 0.010 Olfactory R

0.117 Occipital Inf L 0.072 Cuneus L 0.047 Frontal Inf Tri L 0.024 Insula L 0.010 ParietalSup L

0.110 CingulumAnt L 0.067 Frontal Sup L 0.041 TemporalMid R 0.023 Occipital Sup L 0.007 Paracentrallobule R

0.100 Angular R 0.064 Vermis 8 0.037 Supramarginal L 0.021 Frontal Mid R 0.003 Poscentral L

0.097 TemporalMid L 0.059 Frontal Inf Oper L 0.037 Hippocampus L 0.019 Thalamus L 0.001 Frontal Inf Orb L

0.093 Angular L 0.057 Precentral L 0.037 TemporalInf R 0.019 Heschl L 0.000 Sexo
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Table 2 Principal components of PCA with eigenvalue higher than 1

Principal components analyses

PC EigenValue Proportion Cumulative F1 F2 F3 F4 F5

1 29.385 0.249 0.249 Frontal Mid Orb L Frontal Inf Orb L CingulumAnt L Frontal Inf Tri L Frontal Sup Orb L

2 19.402 0.164 0.413 Occipital Mid L Frontal Inf Orb R TemporalMid L Fusiform L Occipital Inf L

3 13.378 0.113 0.527 Precentral R Frontal Mid R ParietalInf R Poscentral L Poscentral R

4 7.585 0.064 0.591 TemporalPole Sup R Parahippocamp R Hippocampus R TemporalPole Mid R Precentral L

5 6.411 0.054 0.645 Thalamus R Heschl L Calcarine L Heschl R Cerebellum Crus1 L

6 4.807 0.041 0.686 TemporalInf R TemporalMid R EdadPET Rectus R Frontal Sup Orb R

7 3.946 0.033 0.720 Rolandic Oper L Thalamus R CingulumPost R Poscentral L TemporalPole Mid L

8 3.318 0.028 0.748 Pallidum L Thalamus L Vermis 10 Pallidum R Putamen L

9 2.845 0.024 0.772 Sexo Rolandic Oper L Rolandic Oper R Heschl R Paracentrallobule R

10 2.314 0.020 0.791 CingulumPost R CingulumPost L Vermis 10 Caudate R Cerebellum 9 R

11 2.279 0.019 0.811 Vermis 10 SMA L Cerebellum Crus1 R Rectus R Pallidum L

12 1.779 0.015 0.826 Amygdala R TemporalPole Mid R Amygdala L Sexo=2 Vermis 9

13 1.674 0.014 0.840 Vermis 1 2 ParietalSup L Calcarine L ParietalInf R Cerebellum 3 L

14 1.460 0.012 0.852 Cerebellum 10 R Cerebellum 10 L Amygdala L Cerebellum 3 R Amygdala R

15 1.156 0.010 0.862 Olfactory R Olfactory L TemporalPole Sup R TemporalPole Sup L Sexo

16 1.122 0.010 0.872 Putamen R Putamen L Cerebellum Crus2 R Parahippocamp R Frontal Inf Oper R

17 1.066 0.009 0.881 Amygdala R Cerebellum 10 R Amygdala L Cerebellum 10 L TemporalInf R

previous performance values. However, Naives obtained a
poor value 0.68 compared to the previous one 0.9.
After this analysis, we cannot conclude that feature

selection improves the number of instances correctly
classified because the improvement percentage is not
meaningful, although results are promising regarding the
performance reached by some classifiers.
Regarding PCA results obtained in the classification

process and shown in Fig. 4, it is difficult to generalize
that PCA improves classification. However, experimen-
tal results demonstrated that some classification algo-
rithms are able to improve or at least equal the number
of instances correctly classified with a less number of
features. Therefore, BayesNet obtains an improvement

of 6 instances. Naives and Part equal previous results.
Kstar classifies correctly 5 more than original tests,
while LWL, DecisionStump and J48 improves previous
results in 3 instances. This is an interesting result as
we can achieve similar classification performance from a
reduced number of features, hence simplifying the selec-
tion criteria by a set of rules that relate brain anatomy
and PPA.
Finally, SMO, IBK, DecisionTable, OneR and RepTree

obtain worse results.Moreover, these results were reached
with less than half of the features 55 out 119. How-
ever, SMO obtained the best result with 120 instances
correctly classified. Moreover, SMO, BayesNet, Naives
obtained ROC values close to the optimal 1, 0.89, 0.9, 0.9,

a b

Fig. 2 Classification with all features. a represents the number of instances correctly and incorrectly classified for each evaluated algorithm. b graphs
the True Positive rate and the ROC metric for each evaluated algorithm
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a b

Fig. 3 Classification after feature selection except PCA. a represents the number of instances correctly and incorrectly classified for each
classification algorithm and the set of features selected above. b graphs the True Positive Rate and the ROC metric for each classification algorithm
and the set of features selected above

respectively. Kstar obtained good performance with 0.88,
PART improved with 0.84 and IBK got a little worse from
0.83 to 0.82.
Nevertheless and once the feature selection algorithm

was chosen and the best set of features were selected from
PCA, we explored in the following section unsupervised
learning process to compare with previous experiments
carried out in [13].

Clustering results after feature selection
In a previous work [13], we applied Agglomerative Hier-
archical Clustering (AHC) as unsupervised learning algo-
rithm [24], particularly the Ward Linkage [25] algorithm,
to evaluate how patients were split into subgroups taking
into account clusters from 4 to 8. According to the exper-
imental results, the distribution of patients in 8 clusters
led 6 different subtypes of PPA, what reinforces the latest
clinical studies [26–28]. These experiments were carried
out considering all attributes for classification. Figure 5
shows the distribution of patients within each cluster for
4 and 8 cluster, before and after the feature selection pro-
cess. The X-axis is the number of clusters and Y-axis the
number of patients belonged to each cluster. Figure 5a
and c represent results obtained in the previous work,
without feature selection. Figure 5b and d correspond to

results obtained after the feature selection process. Differ-
ent colors in bars represent the three subtypes currently
recommended in consensus PPA criteria. Dark blue is not-
fluent/agrammatic, light blue represents semantic, green
corresponds to logopenic and controls are represented by
the yellow color. Particularly, instances assigned for each
cluster are shown in Table 3.
After the feature selection phase, the expert neurolo-

gist evaluated four feature selection algorithms and he
selected the ClassifierAttributeEval algorithm as themost
suitable, hence the subset of features provided by this
algorithm are considered as the most relevant. Therefore,
we launched a new set of experiments to compare these
results with those from the previous study.
We analyzed the Linkage clustering algorithm, and

compared results before and after feature selection. Clus-
tering results after the feature selection process for the
Linkage clustering algorithm are outlined in Fig. 5b and d,
where X-axis represents the number of clusters evaluated
and Y-axis corresponds to the number of patients assigned
to each cluster. The clinical PPA diagnosis for each patient
is represented by a different color within the cluster. We
provide a more detailed information of the distribution of
patients per cluster in Table 3 b and d.

a b

Fig. 4 Classification after PCA analyses. Graphs detail the results obtained for PCs ranges 1-8 and 10-15. Figure 4a details the number of instances
correctly and incorrectly classified vs. classification results with all features. Figure 4b compares both true positive rates and ROC metric
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a

c d

b

Fig. 5 Clustering before/after feature selection except PCA. Distribution of patients within each cluster. X-axis represents the number of clusters,
while in the Y-axis we show the number of patients assigned to each cluster. The different colors of the bars indicate the clinical PPA diagnosis for
each patient within the cluster (1 nonfluent/agrammatic (dark blue), 2 semantic (light blue), 3 logopenic (green)) and healthy controls (yellow)

We compared the classification results for 4 and 8 clus-
ters after feature selection with those obtained in our pre-
vious study. Regarding 4 clusters, the group k1 contains
in both cases all no-fluent and semantic PPA patients,
either after the classification performed with all attributes,
and after feature selection. However, a logopenic patient
is moved to k3 group, and two patients previously

belonging to the healthy control are moved to k4 and k2,
respectively.
With respect to 8 clusters, the first group k1 remains

unchanged and it contains the same patients than k1
group with all attributes. It comprises 16 patients with
non-fluent and 1 patient with logopenic variants. K2
group includes same patients as the former k2 group

Table 3 Distribution of patients per cluster and clinical PPA diagnosis for Linkage and 4 and 8 cluster

Parts labeled as a and c correspond to results before the feature selection process, whereas b and d represent results with the set features selected above. Number of patients
assigned to each cluster are shown, and their previous clinical PPA diagnosis is represented by the column labeled PPA. Values 1, 2 and 3 in the first column correspond to
nonfluent/agrammatic, semantic and logopenic PPA, respectively, whereas HC represents healthy controls. Kn specifies the number of clusters, where n = 0, 1, ..,N and N is a
value between 4 and 8
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and one healthy control. This healthy control is the only
difference between both results.
The former k3 group included 24 patients with non-

fluent and 2 controls. After feature selection, k3 is subdi-
vided into two subgroups k3 (n=10) and k4 (n=20).
Patients diagnosed with semantic PPA are identified in

both experiments in a single group, k4 in the former study
and k5 after feature selection. The k5 group after feature
selection includes all patients, which were in the k5 group
in the previous work. Moreover, one patient is moved to
k5 when it belonged to the former k6. Finally, healthy con-
trols were also subdivided in two subgroups k7 and k8.
K7 comprises 14 patients all of then women, and k8 13
men patients. The only difference is given in the k8 group
with a new patient moved from k3 in the previous study,
where patients were mostly diagnosed with logopenic
variants. As we previously mentioned, the subdivision of
healthy controls in two groups probably reflects gender
differences in regional brain metabolism, because 100% of
cases in k7 and k8 were women andmen, respectively [29].
Our results expose a finer grain classification of patients

according to the neuroanatomy of their disease, and give
a step further in the field of PPA diagnosis. However, with
respect to the previous work the clustering analysis after
feature selection had not profound improvements and we
addressed the Principal Component Analysis (PCA)[30].

Clustering after the principal components analysis
After PCs with higher coverage of the variance were cho-
sen, we launched the clustering analyses with those that

reached better results in the classification process. More-
over, we tried to cover as many possibilities as possible,
thus we tested different sets of PCs to indentify those fea-
tures which better fit to the problem at hand. Results were
compared with those from our previous study. Figure 6
displays the distribution of patients within each cluster,
where X-axis represents the number of cluster and the
Y-axis the number of patients assigned to each one. Col-
ors corresponds to the clinical PPA diagnosis for patients
within the cluster (1 nonfluent/agrammatic (dark blue),
2 semantic (light blue), 3 logopenic (green)) and healthy
controls (yellow). More detailed information for 4 clusters
is given at Table 4. Results from the study previously men-
tioned, labeled as (a), are detailed on the left (highlighted
in bold). Next column, labeled as (b), represents the distri-
bution of instances for the PCs selected. Clustering results
for 4 and 8 clusters are drawn in Figures (a) and (b), and
(c) and (d), respectively.
Regarding the column labeled as (b), which corre-

sponds to experimental tests 1-8, 10-15 and 1-14 No
Sex, we observed that all except one instances are
identified according to the standard PPA types. The
group k1 contains all patients diagnosis as no-fluent
and one instance with a prognosis as logopenic PPA.
The remaining groups correspond to patients diagnosed
with semantic and logopenic PPA, and controls, respec-
tively. These results demonstrated that with a less number
of features obtained from PCA, the most of instances
are almost perfectly assigned according to the clinical
diagnosis.

a b

dc

Fig. 6 Clustering after PCA analyses. Distribution of patients within each cluster for Principal Components 1-8, 10-15. X-axis represents the number
of clusters, while in the Y-axis we show the number of patients assigned to each cluster. The different colors of the bars indicate the clinical PPA
diagnosis for each patient within the cluster (1 nonfluent/agrammatic (dark blue), 2 semantic (light blue), 3 logopenic (green)) and healthy controls
(yellow). Clustering results for 4 and 8 clusters are drawn Fig. 6 in (a,b), and (c,d), respectively
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Table 4 Distribution of patients per cluster and clinical PPA diagnosis for Linkage and 4 and 8 clusters

Parts labeled as a and c correspond to results before the feature selection process, whereas b and d represent results with the set features selected above. Number of patients
assigned to each cluster are shown, and their previous clinical PPA diagnosis is represented by the column labeled PPA. Values 1, 2 and 3 in the first column correspond to
nonfluent/agrammatic, semantic and logopenic PPA, respectively, whereas HC represents healthy controls. Kn specifies the number of clusters, where n = 0, 1, ..,N and N is 4

We focus on the clustering analyses for 8 clusters.
Figure 6 shows the distribution of patients within clusters.
We extended information in Table 4(b) and we compared
results of the columns namely as (b) with the column
labeled as (a).
Bellow is the analyses for 1-8,10-15 PCs (b). In this

case the group k6 and k4 in (a) are identical to k1 and
k6, respectively in (b). 6 instances from k5 and 12 from
k2 in (a) are placed in the group k5 in (b). K1 and
k3 in (a) distributed its patients between k3 and k4 in
(b). Healthy controls were assigned to the only group
k7 in (b).

Discussion
Our study addresses the improvement of the PPA diag-
nosis from FDG-PET images applying machine learning
techniques. Using results obtained in a previous work
as a reference, we extend the study to identify the best
classifier algorithm and the best set of features to sim-
plify the PPA diagnosis. According to the classification
results obtained with all features in phase 1, SMO fol-
lowed by IBK are the best algorithms among those evalu-
ated. Although twelve classifiers algorithms were selected,
other algorithms can be evaluated in order to obtain the
most precise results. Phase 2 was in charge to analyse
the performance of four feature selection algorithms and
PCA to identify the best set of features. This phase also
considered the expert neurologist supervision and com-
pared the results with those obtained in the phase 1.
After this analysis, we cannot conclude that feature selec-
tion improves the number of instances correctly classified
because the improvement percentage is not meaningful,
although results are promising regarding the performance
reached by some classifiers. Analysing a wider set of

feature selection algorithms should allow not only to con-
firm these results but also reassert that other alternatives
have to be explored.
According to the classification results obtained with the

features extracted with PCA, we cannot generalize that
PCA improves classification. There is no doubt that some
classification algorithms equal or even improve the num-
ber of instances correctly classified with a less number of
features.
Once the ClassifierAttributeEval algorithm selected the

best set of features, we explored unsupervised learning
with Hierarchical Clustering to compare with previous
experiments carried out in [13]. Considering the set of
features provided by the ClassifierAttributeEval algo-
rithm, our results adjust the classification of patients
according to the neuroanatomy of their disease, as we
previously mentioned. Regarding the set of features from
PCA, our results reinforce our previous outcomes with
a less number of features. Most of the instances are
almost perfectly assigned according to the clinical diagno-
sis. However, other machine learning branches can help to
identify the best reduced set of relevant features and make
easier the automation of the diagnosis of PPA.

Conclusions
In this work, we have exploited machine learning tech-
niques to improve the PPA diagnosis from FDG-PET
images. This study confirms and reinforces the results
obtained in a previous clinical work, where we explored
the automatic classification of PPA patients and found out
new subtypes of this disease that correlate with the clin-
ical findings and better predict the clinical course. Here,
we have proposed a machine learning approach that, on
one hand, validate the clinical findings and, on the other
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hand, offers a practical and automatic tool to help on the
diagnosis of PPA variants in order to improve the manage-
ment of these patients. The data acquired from FDG-PET
images are characterized by a high dimensionality, hence
the application of the feature selection process is consid-
ered as a key proposal to reduce the dimensionality in
order to improve the automatic classification. As part of
the feature selection step, the expert knowledge has been
included in a simplified and natural way for the clinical
assessing, and could be automatized in the future by a
set of rules. As a result, the number of patients correctly
classified is increased after the most relevant features are
identified, particularly after PCA analyses. As a conclu-
sion, a fine grain classification has been obtained based
on the neuroanatomy of the disease, which improves pre-
vious results for the PPA diagnosis. Overall, our study
suggests the role of machine learning techniques applied
to neuroimaging analysis in order to improve the classifi-
cation of neurodegenerative diseases, and closes the gap
between image processing and automatic diagnosis tools
that help on the clinical practice.

Methods
As aforementioned, our goal is to advance on the devel-
opment of an automatic diagnosis tool based on machine
learning approaches. For that purpose, we aim to improve
the classification process carried out in [13] that brought
the finding of new PPA variants. In the previously men-
tioned work, we used Hierarchical clustering as unsu-
pervised learning algorithm [24], particularly the Ward
Linkage [25] algorithm with all attributes present in the
dataset. We concluded that unsupervised clustering anal-
ysis of FDG-PET data favored, based on the Davies-
Bouldin index, the classification of PPA into six variants
rather than three subtypes as currently recommended in
consensus PPA criteria. However, input data are multidi-
mensional; we have 150 instances and 119 attributes for
each one and some attributes may introduce noise, which
affects the classification process.
In this light, we considered necessary to identify the

most relevant attributes, reducing the multidimensional-
ity and improving the classification process, accurately.
Figure 1 shows the flow chart proposed as methodology,
which will be detailed below.
The first phase, identified as 1 in the flow chart,

provides the dataset with all features to the classifi-
cation phase, identified as 4, where for each classifier
algorithm the process is launched. The set of selected
classifiers was BayesNet, NaivesBayes, SMO, IBK, Kstar,
LWL, DecisionTable, OneR, PART, J48, DecisionStump
and RepTree from the machine learning software WEKA
(Waikato Environment for Knowledge Analysis) [31] in
order to evaluate which classifiers perform better for
the problem of improving the diagnosis of PPA from

FDG-PET images. As a result, we obtained the classifi-
cation with all features. Phase labeled as 2 is in charge
of the feature selection phase and consists in pinpointing
those attributes considered more relevant to the prob-
lem at hand (this is to improve the classification of
patients according to more accurate subtypes of PPA).
For this phase, we selected four typical feature selec-
tion algorithms:CfsSubsetEval, ChiSquardAttributeEval,
ClassifierAttributeEval and WrapperSubsetEval, and we
applied the Principal Components Analysis (PCA) algo-
rithm [30], although they are not comparable. PCA is a
powerful mathematical algorithm for analysing data and
reducing high dimensionality, preserving its variability as
much as possible, and at the same time improving the data
interpretability. PCA explores a dataset represented by a
matrix X, where each row is one entity n and each column
identifies a numerical variable p. The algorithm search the
linear combination of the columns, which maximizes the
variance. This algorithm is able to identify patterns in data
and discover their differences and similarities to find the
more relevant features. We applied PCA on the dataset
previously mentioned. When the process is completed, a
set of principal components is obtained. Next step, we
decided to ignore the principal components of lesser sig-
nificance in order to preserve as much information as
possible.
Datasets obtained from the selected algorithms contain

the most relevant features according to each algorithm.
These datasets are used as input in the following phases,
classification and clustering phases, labeled as 4 and 6,
respectively.
The next phase corresponds to the clustering phase,

identified as 6, where clustering analysis [32] is performed.
In this phase, Hierarchical clustering [24] parameterized
to Ward’s Linkage is launched. Instances are classified in
different groups. The result of this process is compared
against the clusters found in our previous work, 8 clus-
ters, and also against the clusters described in the classical
medical literature, 4 clusters.
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