
Steinegger et al. BMC Bioinformatics (2019) 20:473
https://doi.org/10.1186/s12859-019-3019-7

SOFTWARE Open Access

HH-suite3 for fast remote homology
detection and deep protein annotation
Martin Steinegger1,2, Markus Meier1, Milot Mirdita1, Harald Vöhringer1,3, Stephan J. Haunsberger4

and Johannes Söding1*

Abstract

Background: HH-suite is a widely used open source software suite for sensitive sequence similarity searches and
protein fold recognition. It is based on pairwise alignment of profile Hidden Markov models (HMMs), which represent
multiple sequence alignments of homologous proteins.

Results: We developed a single-instruction multiple-data (SIMD) vectorized implementation of the Viterbi algorithm
for profile HMM alignment and introduced various other speed-ups. These accelerated the search methods HHsearch
by a factor 4 and HHblits by a factor 2 over the previous version 2.0.16. HHblits3 is ∼10× faster than PSI-BLAST and
∼20× faster than HMMER3. Jobs to perform HHsearch and HHblits searches with many query profile HMMs can be
parallelized over cores and over cluster servers using OpenMP and message passing interface (MPI). The free,
open-source, GPLv3-licensed software is available at https://github.com/soedinglab/hh-suite.

Conclusion: The added functionalities and increased speed of HHsearch and HHblits should facilitate their use in
large-scale protein structure and function prediction, e.g. in metagenomics and genomics projects.

Keywords: Homology detection, Sequence search, Protein alignment, Algorithm, Profile HMM, SIMD, Functional
annotation

Introduction
A sizeable fraction of proteins in genomics and metage-
nomics projects remain without annotation due to the
lack of an identifiable, annotated homologous protein
[1]. A high sensitivity in sequence similarity searches
increases the chance of finding a homologous protein
with an annotated function or a known structure from
which the function or structure of the query protein
can be inferred [2]. Therefore, to find template pro-
teins for comparative protein structure modeling and for
deep functional annotation, the most sensitive search
tools such as HMMER [3, 4] and HHblits [5] are often
used [6–9]. These tools can improve homology detec-
tion by aligning not only single sequences against other
sequences, but using more information in form of multi-
ple sequence alignments (MSAs) containing many homol-
ogous sequences. From the frequencies of amino acids in

*Correspondence: soeding@mpibpc.mpg.de
1Quantitative and Computational Biology Group, Max-Planck Institute for
Biophysical Chemistry, Am Fassberg 11, 81379 Munich, Germany
Full list of author information is available at the end of the article

each column of the MSA, they calculate a 20 × length
matrix of position-specific amino acid substitution scores,
termed “sequence profile”.
A profile Hidden Markov Model (HMM) extends

sequence profiles by augmenting the position-specific
amino acid substitution scores with position-specific
penalties for insertions and deletions. These can be esti-
mated from the frequencies of insertions and deletions
in the MSA. The added information improves the sen-
sitivity of profile HMM-based methods like HHblits or
HMMER3 over ones based on sequence profiles, such as
PSI-BLAST [10].
Only few search tools represent both the query and

the target proteins as sequence profiles built from MSAs
of homologous proteins [11–14]. In contrast, HHblits /
HHsearch represent both the query and the target pro-
teins as profile HMMs. This makes them among the most
sensitive tools for sequence similarity search and remote
homology detection [5, 15].
In recent years, various sequence search tools have

been developed that are up to four orders of magni-

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3019-7&domain=pdf
http://orcid.org/0000-0001-9642-8244
https://github.com/soedinglab/hh-suite
mailto: soeding@mpibpc.mpg.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 2 of 15

tude faster than BLAST [16–19]. This speed-up addresses
the need to search massive amounts of environmental
next-generation sequencing data against the ever-growing
databases of annotated sequences. However, no homol-
ogy can be found for many of these sequences even with
sensitive methods, such as BLAST or MMseqs2 [19].
Genomics and metagenomics projects could annotate

more sequence by adding HHblits searches through the
PDB, Pfam and other profile databases to their pipelines
[8]. Additional computation costs would be marginal,
since the version of HHblits presented in this work runs
20 times faster than HMMER, the standard tool for Pfam
[20] and InterPro [21] annotations.
In this work, our goal was to accelerate and parallelize

various HH-suite algorithms with a focus on the most
time-critical tools, HHblits and HHsearch. We applied
data level parallelization using Advanced Vector Exten-
sion 2 (AVX2) or Streaming SIMD Extension 2 (SSE2)
instructions, thread level parallelization using OpenMP,
and parallelization across computers using MPI. Most
important was the ample use of parallelization through
SIMD arithmetic units present in all modern Intel, AMD
and IBM CPUs, with which we achieved speed-ups per
CPU core of a factor 2 to 4.

Methods
Overview of HH-suite
The software HH-suite contains the search tools
HHsearch [15] and HHblits [5], and various utilities to
build databases of MSAs or profile HMMs, to convert
MSA formats, etc.
HHsearch aligns a profile HMM against a database of

target profile HMMs. The search first aligns the query
HMM with each of the target HMMs using the Viterbi
dynamic programming algorithm, which finds the align-
ment with the maximum score. The E-value for the target
HMM is calculated from the Viterbi score [5]. Target
HMMs that reach sufficient significance to be reported
are realigned using the Maximum Accuracy algorithm
(MAC) [22]. This algorithm maximizes the expected
number of correctly aligned pairs of residues minus a
penalty between 0 and 1 (parameter -mact). Values near
0 produce greedy, long, nearly global alignments, values
above 0.3 result in shorter, local alignments.
HHblits is an accelerated version of HHsearch that is

fast enough to perform iterative searches through mil-
lions of profile HMMs, e.g. through the Uniclust profile
HMM databases, generated by clustering the UniProt
database into clusters of globally alignable sequences [23].
Analogously to PSI-BLAST and HMMER3, such iterative
searches can be used to build MSAs by starting from a
single query sequence. Sequences from matches to pro-
file HMMs below some E-value threshold (e.g. 10−3) are
added to the query MSA for the next search iteration.

HHblits has a two-stage prefilter that reduces the num-
ber of database HMMs to be aligned with the slow
Viterbi HMM-HMM alignment andMAC algorithms. For
maximum speed, the target HMMs are represented in
the prefilter as discretized sequences over a 219-letter
alphabet in which each letter represents one of 219
archetypical profile columns. The two prefilter stages thus
perform a profile-to-sequence alignment, first ungapped
then gapped, using dynamic programming. Each stage
filters away 95 to 99% of target HMMs.

Overview of changes from HH-suite version 2.0.16 to 3
Vectorized viterbi HMM-HMMalignment
Most of the speed-up was achieved by developing effi-
cient SIMD code and removing branches in the pairwise
Viterbi HMMalignment algorithm. The new implementa-
tion aligns 4 (using SSE2) or 8 (using AVX2) target HMMs
in parallel to one query HMM.

Fast MACHMM-HMMalignment
We accelerated the Forward-Backward algorithm that
computes posterior probabilities for all residue pairs (i, j)
to be aligned with each other. These probabilities are
needed by the MAC alignment algorithm. We improved
the speed of the Forward-Backward and MAC algorithms
by removing branches at the innermost loops and opti-
mizing the order of indices, which reduced the frequency
of cache misses.

Memory reduction
We reduced the memory required during Viterbi HMM-
HMM alignment by a factor of 1.5 for SSE2 and imple-
mented AVX2 with only a 1.3 times increase, despite the
need to keep scores for 4 (SSE2) or 8 (AVX2) target pro-
file HMMs in memory instead of just one. This was done
by keeping only the current row of the 5 scoring matrices
in memory during the dynamic programming (“Memory
reduction for backtracing and cell-off matrices” section),
and by storing the 5 backtrace matrices, which previously
required one byte per matrix cell, in a single backtrace
matrix with one byte per cell (“From quadratic to linear
memory for scoring matrices” section). We also reduced
the memory consumption of the Forward-Backward and
MAC alignment algorithms by a factor of two, by
moving from storing posterior probabilities with type
double to storing their logarithms using type float.
In total, we reduced the required memory by roughly
a factor 1.75 (when using SSE2) or 1.16 (when using
AVX2).

Accelerating sequence filtering and profile computation
For maximum sensitivity, HHblits and HHsearch need to
reduce the redundancy within the input MSA by remov-
ing sequences that have a sequence identity to another

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 3 of 15

sequence in theMSA larger than a specified cutoff (90% by
default) [15]. The redundancy filtering takes timeO(NL2),
whereN is the number of MSA sequences and L the num-
ber of columns. It can be a runtime bottleneck for large
MSAs, for example during iterative searches with HHblits.
A more detailed explanation is given in “SIMD-based
MSA redundancy filter” section.
Additionally, the calculation of the amino acid prob-

abilities in the profile HMM columns from an MSA
can become time-limiting. Its run time scales as O(NL2)
because for each column it takes a time ∼O(NL) to com-
pute column-specific sequence weights based on the sub-
alignment containing only the sequences that have no gap
in that column.
We redesigned these two algorithms to use SIMD

instructions and optimized memory access through
reordering of nested loops and array indices.

Secondary structure scoring
Search sensitivity could be slightly improved for remote
homologs by modifying the weighting of the sec-
ondary structure alignment score with respect to pro-
file column similarity score. In HH-suite3, the sec-
ondary structure score can contribute more than 20% of
the total score. This increased the sensitivity to detect
remote homologs slightly without negative impact on the
high-precision.

New features, code refactoring, and bug fixes
HH-suite3 allows users to search a large number of query
sequences by parallelizing HHblits/HHsearch searches
over queries using OpenMP and MPI (hhblits_omp,
hhblits_mpi,hhsearch_omp,hhsearch_mpi).We
removed the limit on the maximum number of sequences
in the MSAs (parameter -maxseqs < max>). We
ported scripts in HH-suite from Perl to Python and
added support for the new PDB format mmCIF, which
we use to provide precomputed profile HMM and
MSA databases for the protein data bank (PDB) [24],
Pfam [20], SCOP [25], and clustered UniProt databases
(Uniclust) [23].
We adopted a new format for HHblits databases in

which the column state sequences used for prefiltering
(former *.cs219 files) are stored in the FFindex for-
mat. The FFindex format was already used in version
2.0.16 for the a3m MSA files and the hhm profile HMM
files. This resulted in a ∼4 s saving for reading the pre-
filter database and improved scaling of HHblits with the
number of cores. We also integrated our discriminative,
sequence context-sensitive method to calculate pseudo-
counts for the profile HMMs, which slightly improves
sensitivities for fold-level homologies [26].
To keep HH-suite sustainable and expandable in the

longer term, we extensively refactored code by improving

code reuse with the help of new classes with inheritance,
replacing POSIX threads (pthreads) with OpenMP par-
allelization, removing global variables, moving from make
to cmake, and moving the HH-suite project to GitHub
(https://github.com/soedinglab/hh-suite). We fixed vari-
ous bugs such as memory leaks and segmentation faults
occurring with newer compilers.

Supported platforms and hardware
HHblits is developed under Linux, tested under Linux and
macOS, and should run under any Unix-like operating
systems. Intel and AMD CPUs that offer AVX2 or at least
SSE2 instruction sets are supported (Intel CPUs: since
2006, AMD: since 2011). PowerPC CPUs with AltiVec
vector extensions are also supported.
Because we were unable to obtain funding for continued

support of HH-suite, user support is unfortunately limited
to bug fixes for the time being.

Parallelization by vectorization using SIMD instructions
All modern CPUs possess SIMD units, usually one per
core, for performing arithmetic, logical and other opera-
tions on several data elements in parallel. In SSE2, four
floating point operations are processed in a single clock
cycle in dedicated 128-bit wide registers. Since 2012, the
AVX standard allows to process eight floating point oper-
ations per clock cycle in parallel, held in 256 bit AVX
registers. With the AVX2 extension came support for
byte-, word- and integer-level operations, e.g. 32 single-
byte numbers can be added or multiplied in parallel (32×
1 byte = 256 bits). Intel has supported AVX2 since 2013,
AMD since 2015.
HHblits 2.0.16 already used SSE2 in its prefilter

for gapless and gapped profile-to-sequence alignment
processing 16 dynamic programming cells in parallel,
but it did not support HMM-HMM alignment using
vectorized code.

Abstraction layer for SIMD-based vector programming
Intrinsic functions allow to write SIMD parallelized algo-
rithms without using assembly instructions. However,
they are tied to one specific variant of SIMD instruction
set (such as AVX2), which makes them neither down-
wards compatible nor future-proof. To be able to compile
our algorithms with different SIMD instruction set vari-
ants, we implemented an abstraction layer, simd.h. In
this layer, the intrinsic functions are wrapped by prepro-
cessor macros. Porting our code to a new SIMD standard
therefore merely requires us to extend the abstraction
layer to that new standard, whereas the algorithm remains
unchanged.
The simd.h header supports SSE2, AVX2 and AVX-

512 instruction sets. David Miller has graciously extended
the simd.h abstraction layer to support the AltiVec

https://github.com/soedinglab/hh-suite

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 4 of 15

vector extension of PowerPC CPUs. Algorithm 1 shows
a function that computes the scalar product of two
vectors.

Vectorized viterbi HMM-HMM alignments
The viterbi algorithm for aligning profile hMMs
The Viterbi algorithm, when applied to profile HMMs,
is formally equivalent to global sequence alignment with
position-specific gap penalties [27]. We had previously
introduced a modification of the Viterbi algorithm that
is formally equivalent to Smith-Waterman local sequence
alignment [15]. In HH-suite we use it to compute the
best-scoring local alignment between two profile HMMs.
HH-suite models MSA columns with < 50% gaps

(default value) by match states and all other columns as
insertion states. By traversing through the states of a pro-
file HMM, the HMM can “emit” sequences. A match state
(M) emits amino acids according to the 20 probabilities
of amino acids estimated from their fraction in the MSA
column, plus some pseudocounts. Insert states (I) emit
amino acids according to a standard amino acid back-
ground distribution, while delete states (D) do not emit
any amino acids.
The alignment score between two HMMs in HH-suite

is the sum over all co-emitted sequences of the log odds
scores for the probability for the two aligned HMMs to
co-emit this sequence divided by the probability of the
sequence under the background model. Since M and I
states emit amino acids andD states do not,M and I in one
HMM can only be aligned with M or I states in the other
HMM. Conversely, a D state can only be aligned with a
D state or with a Gap G (Fig. 1). The co-emission score

Fig. 1 HMM-HMM alignment of query and target. The alignment is represented as red path through both HMMs. The corresponding pair state
sequence is MM, MM, MI, MM, MM, DG, MM

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 5 of 15

can be written as the sum of the similarity scores of the
aligned profile columns, in other words the match-match
(MM) pair states, minus the position-specific penalties
for indels: delete-open, delete-extend, insert-open and
insert-extend.

We denote the alignment pair states as MM, MI, IM,
II, DD, DG, and GD. Figure 1 shows an example of two
aligned profile HMMs. In the third column HMM q emits
a residue from its M state and HMM p emits a residue
from the I state. The pair state for this alignment column
is MI. In column six of the alignment HMM q does not

emit anything since it passes through the D state. HMM
p does not emit anything either since it has a gap in the
alignment. The corresponding pair state is DG. To speed
up the alignment, we exclude pair states II and DD, and
we only allow transitions between a pair state and itself
and between pair state MM and pair states MI, IM, DG,
or GD.

To calculate the local alignment score, we need five
dynamic programming matrices SXY, one for each pair
state XY ∈ {MM, MI, IM, DG, GD}. They contain the

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 6 of 15

score of the best partial alignment which ends in column i
of q and column j of p in pair state XY. These five matrices
are calculated recursively.

SMM
(
i, j

) = Saa
(
qpi , t

p
j

)
+ Sss

(
qssi , tssj

)
+ (1)

max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 (for local alignment)
SMM(i−1, j−1) + log

(
qi−1(M,M) tj−1(M,M

)
)

SMI(i−1, j−1) + log
(
qi−1(M,M) tj−1(I,M)

)

SII(i−1, j−1) + log
(
qi−1(I,M) tj−1(M,M)

)

SDG(i−1, j−1) + log
(
qi−1(D,M) tj−1(M,M)

)

SGD(i−1, j−1) + log
(
qi−1 (M,M) tj−1(D,M)

)

SMI
(
i, j

) = max
{
SMM(i−1, j) + log

(
qi−1(M,M) tj(D,D)

)

SMI(i−1, j) + log
(
qi−1(M,M) tj(I,I)

)

(2)

SDG
(
i, j

) = max
{
SMM(i−1, j) + log (qi−1(D,M))

SDG(i−1, j) + log (qi−1(D,D))
(3)

Saa
(
qpi , t

p
j

)
= log

20∑

a=1

qpi (a) t
p
j (a)

fa
(4)

Vector qpi contains the 20 amino acid probabilities of
q at position i, tpj are the amino acid probabilities t at j,
and fa denotes the background frequency of amino acid a.
The score Saa measures the similarity of amino acid dis-
tributions in the two columns i and j. Sss can optionally
be added to Saa. It measures the similarity of the sec-
ondary structure states of query and target HMM at i and
j [15].

Vectorizations of smith-Waterman sequence alignment
Much effort has gone into accelerating the dynamic
programming based Smith-Waterman algorithm (at an
unchanged time complexity of O(LqLt)). While substan-
tial accelerations using general purpose graphics pro-
cessing units (GPGPUs) and field programmable gated
arrays (FPGAs) were demonstrated [28–31], the need for
a powerful GPGPU and the lack of of a single standard
(e.g. Nvidia’s proprietary CUDA versus the OpenCL stan-
dard) have been impediments. SIMD implementations
using the SSE2 and AVX2 standards with on-CPU SIMD
vector units have demonstrated similar speed-ups as
GPGPU implementations and have become widely used
[3, 4, 32–35].
To speed up the dynamic programming (DP) using

SIMD, multiple cells in the DP matrix are processed

jointly. However the value in cell (i, j) depends on those in
the preceding cells (i − 1, j − 1), (i − 1, j), and (i, j − 1).
This data dependencymakes acceleration of the algorithm
challenging.
Four main approaches have been developed to

address this challenge: (1) parallelizing over anti-
diagonal stretches of cells in the DP matrices
((i, j), (i + 1, j − 1), . . . (i + 15, j − 15), assuming
16 cells fit into one SIMD register) [32], (2) paralleli-
zing over vertical or horizontal segments of the DP
matrices (e.g. (i, j), (i + 1, j), . . . (i + 15, j)) [33], (3)
parallelizing over stripes of the DP matrices
((i, j), (i + 1 × D, j), . . . (i + 15 × D, j) where
D := ceil(query_length/16)) [34] and (4) where
16 cells (i, j) of 16 target sequences are processed in
parallel [35].

The last option is the fastest method for sequence-
sequence alignments, because it avoids data dependen-
cies. Here we present an implementation of this option
that can align one query profile HMM to 4 (SSE2) or 8
(AVX2) target profile HMMs in parallel.

Vectorized viterbi algorithm for aligning profile HMMs
Algorithm 2 shows the scalar version of the Viterbi algo-
rithm for pairwise profile HMM alignment based on
the iterative update Eqs. (1)–(3). Algorithm 3 presents
our vectorized and branch-less version (Fig. 2). It aligns
batches of 4 or 8 target HMMs together, depending on
howmany scores of type float fit into one SIMD register
(4 for SSE2, 8 for AVX).
The vectorized algorithm needs to access the state tran-

sition and amino acid emission probabilities for these
4 or 8 targets at the same time. The memory is laid
out (Fig. 3), such that the emission and transition prob-
abilities of 4 or 8 targets are stored consecutively in
memory. In this way, one set of 4 or 8 transition prob-
abilities (for example MM) of the 4 or 8 target HMMs
being aligned can be loaded jointly into one SIMD
register.
The scalar versions of the functions MAX6, MAX2 con-

tain branches. Branched code can considerably slow down
code execution due to the high cost of branch mispre-
dictions, when the partially executed instruction pipeline
has to be discarded to resume execution of the correct
branch.
The functions MAX6 and MAX2 find the maxi-

mum score out of two or six input scores and
also return the pair transition state that contributed
the highest score. This state is stored in the back-
trace matrix, which is needed to reconstruct the best-
scoring alignment once all five DP matrices have been
computed.

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 7 of 15

Fig. 2 SIMD parallelization over target profile HMMs. Batches of 4 or 8 database profile HMMs are aligned together by the vectorized Viterbi
algorithm. Each cell (i, j) in the dynamic programming matrix is processed in parallel for 4 or 8 target HMMs

To remove the five if-statement branches in MAX6, we
implemented a macro VMAX6 that implements one if-
statement at a time. VMAX6 needs to be called 5 times,
instead of just once as MAX6, and each call compares
the current best score with the next of the 6 scores and
updates the state of the best score so far by maximization.
At each VMAX6 call, the current best state is overwritten
by the new state if it has a better score.

We call the function VMAX2 four times to update the
four states GD, IM, DG and MI. The first line in VMAX2
compares the 4 or 8 values in SIMD register sMM with
the corresponding values in register sXY and sets all bits
of the four values in SIMD register res_gt_vec to
1 if the value in sMM is greater than the one in sXY
and to 0 otherwise. The second line computes a bit-wise
AND between the four values in res_gt_vec (either
0x00000000 or 0xFFFFFFFF) and the value for state MM.
For those of the 4 or 8 sMM values that were greater
than the corresponding sXY value, we obtain state MM in
index_vec, for the others we get zero, which represents
staying in the same state. The backtrace vector can then
be combined using an XOR instruction.
In order to calculate suboptimal, alternative alignments,

we forbid the suboptimal alignment to pass through any
cell (i, j) that is within 40 cells from any of the cells of
the better-scoring alignments. These forbidden cells are
stored in a matrix cell_off[i][j] in the scalar ver-
sion of the Viterbi algorithm. The first if-statement in
Algorithm 2 ensures that these cells obtain a score of −∞.
To reduce memory requirements in the vectorized ver-

sion, the cell-off flag is stored in the most significant bit
of the backtracing matrix (Fig. 5) (see “Memory reduc-
tion for backtracing and cell-off matrices” section). In the
SIMD Viterbi algorithm, we shift the backtracing matrix
cell-off bit to the right by one and load four 32bit
(SSE2) or eight 64bit (AVX2) values into a SIMD reg-
ister (line 23). We extract only the cell-off bits (line 24)

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 8 of 15

Fig. 3 The layout of the log transition probabilities (top) and emission probabilities (bottom) in memory for single-instruction single data (SISD) and
SIMD algorithms. For the SIMD algorithm, 4 (using SSE2) or 8 (using AVX 2) target profile HMMs (t1 – t4) are stored together in interleaved fashion:
the 4 or 8 transition or emission values at position i in these HMMs are stored consecutively (indicated by the same color). In this way, a single cache
line read of 64 bytes can fill four SSE2 or two AVX2 SIMD registers with 4 or 8 values each

by computing an AND between the co_mask and the
cell_off register. We set elements in the register with
cell_off bit to 0 and without to 0xFFFFFFFF by com-
paring if cell_mask is greater than cell_off (line 25).
On line 26, we set the 4 or 8 values in the SIMD reg-
ister cell_off to −∞ if their cell-off bit was set and
otherwise to 0. After this we add the generated vector to
all five scores (MM, MI, IM, DG and GD).

A small improvement in runtime was achieved
by compiling both versions of the Viterbi method,
one with and one without cell-off logic. For the
first, optimal alignment, we call the version com-
piled without the cell off logic and for the alternative
alignments the version with cell-off logic enabled.
In C/C++, this can be done with preprocessor
macros.

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 9 of 15

Fig. 4 Two approaches to reduce the memory requirement for the DP score matrices from O(LqLt) to O(Lt), where Lq and Lt are lengths of the query
and target profile, respectively. (Top) One vector holds the scores of the previous row, SXY(i − 1, ·), for pair state XY ∈{MM, MI, IM, GD and DG}, and
the other holds the scores of the current row, SXY(i, ·) for pair state XY ∈{MM, MI, IM, GD and DG}. Vector pointers are swapped after each row has
been processed. (Bottom) A single vector per pair state XY holds the scores of the current row up to j − 1 and of the previous row for j to Lt . The
second approach is somewhat faster and was chosen for HH-suite3

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 10 of 15

Shorter profile HMMs are padded with probabilities of
zero up to the length of the longest profile HMM in the
batch (Fig. 2). Therefore, the database needs to be sorted
by decreasing profile HMM length. Sorting also improves
IO performance due to linear access to the target HMMs
for the Viterbi alignment, since the list of target HMMs
that passed the prefilter is automatically sorted by length.

Vectorized column similarity score
The sum in the profile column similarity score Saa in
the first line in Algorithm 4 is is computed as the scalar
product between the precomputed 20-dimensional vector
qpi (a)/fa and tpj (a). The SIMD code takes 39 instructions
to compute the scores for 4 or 8 target columns, whereas
the scalar version needed 39 instructions for a single
target column.

From quadratic to linear memory for scoring matrices
Most of the memory in Algorithm 2 is needed for the five
score matrices for pair states MM, MI, IM, GD and DG.
For a protein of 15 000 residues, the five matrices need
15 000× 15 000× 4byte× 5 matrices = 4.5GB of memory
per thread.
In a naive implementation, the vectorized algorithm

would need a factor of 4 or 8 more memory than that,
since it would need to store the scores of 4 or 8 target pro-
file HMMs in the scorematrices. This would require 36GB
of memory per thread, or 576GB for commonly used 16
core servers.
However, we do not require the entire scoring matrices

to reside in memory. We only need the backtracing matri-
ces and the position (ibest, jbest) of the highest scoring cell
to reconstruct the alignment.
We implemented two approaches. The first uses two

vectors per pair state (Fig. 4 top). One holds the scores
of the current row i, where (i, j) are the positions of the
cell whose scores are to be computed, and the other vec-
tor holds the scores of the previous row i − 1. After all
the scores of a row i have been calculated, the pointers to
the vectors are swapped and the former row becomes the
current one.
The second approach uses only a single vector (Fig. 4

bottom). Its elements from 1 to j − 1 hold the scores of
the current row that have already been computed. Its ele-
ments from j to the last position Lt hold the scores from
the previous row i − 1.
The second variant turned out to be faster, even though

it executes more instructions in each iteration. However,
profiling showed that this is more than compensated by
fewer cache misses, probably owed to the factor two lower
memory required.
We save a lot of memory by storing the currently needed

scores of the target in a linear ring buffer of size O(Lt).
However, we still need to keep the backtracing matrix (see

next subsection), of quadratic size O(LqLt) in memory.
Therefore the memory complexity remains unaffected.

Memory reduction for backtracing and cell-off matrices
To compute an alignment by backtracing from the cell
(ibest, jbest) with maximum score, we need to store for
each cell (i, j) and every pair state (MM,GD,MI,DG, IM)

the previous cell and pair state the alignment would pass
through, that is, which cell contributed the maximum
score in (i, j). For that purpose it obviously suffices to only
store the previous pair state.
HHblits 2.0.16 uses five different matrices of type char,

one for each pair state, and one char matrix to hold
the cell-off values (in total 6 bytes). The longest known
protein Titin has about 33 000 amino acids. To keep a
33 000 × 33 000 × 6byte matrix in memory, we would
need 6GB of memory. Since only a fraction of ∼10−5

sequences are sequences longer than 15 000 residues in
the UniProt database, we restrict the default maximum
sequence length to 15 000. This limit can be increased
with the parameter -maxres.
But we would still need about 1.35GB to hold the back-

trace and cell-off matrices. A naive SSE2 implementation
would therefore need 5.4GB, and 10.8GB with AVX2.
Because every thread needs its own backtracing and cell-
off matrices, this can be a severe restriction.

We reduce the memory requirements by storing all
backtracing information and the cell-off flag in a single
byte per cell (i, j). The preceding state for the IM, MI,
GD, DG states can be held as single bit, with a 1 signi-
fying that the preceding pair state was the same as the
current one and 0 signifying it was MM. The preceding
state for MM can be any of STOP, MM, IM, MI, GD, and
DG. STOP represents the start of the alignment, which
corresponds to the 0 in (eq. 1) contributing the largest of
the 6 scores. We need three bits to store these six possi-
ble predecessor pair states. The backtracing information
can, thus, be held in ‘4 + 3’ bits, which leaves one bit for
the cell-off flag (Fig. 5). Due to the reduction to one byte
per cell we need only 0.9GB (with SSE2) or 1.8GB (with
AVX2) per thread to hold the backtracing and cell-off
information.

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 11 of 15

Fig. 5 Predecessor pair states for backtracing the Viterbi alignments are stored in a single byte of the backtrace matrix in HH-suite3 to reduce
memory requirements. The bits 0 to 2 (blue) are used to store the predecessor state to the MM state, bits 3 to 6 store the predecessor of GD, IM, DG
and MI pair states. The last bit denotes cells that are not allowed to be part of the suboptimal alignment because they are near to a cell that was part
of a better-scoring alignment

Viterbi early termination criterion
For some query HMMs, a lot of non-homologous tar-
get HMMs pass the prefiltering stage, for example when
they contain one of the very frequent coiled coil regions.
To avoid having to align thousands of non-homologous
target HMMs with the costly Viterbi algorithm, we intro-
duced an early termination criterion in HHblits 2.0.16.
We averaged 1/(1 + E-value) over the last 200 pro-
cessed Viterbi alignments and skipped all further database
HMMs when this average dropped below 0.01, indicating
that the last 200 target HMMs produced very few Viterbi
E-values below 1.
This criterion requires the targets to be processed by

decreasing prefilter score, while our vectorized version
of the Viterbi algorithm requires the database profile
HMMs to be ordered by decreasing length. We solved this
dilemma by sorting the list of target HMMs by decreasing
prefilter score, splitting it into equal chunks (default size
2 000) with decreasing scores, and sorting target HMMs
within each chunk by their lengths. After each chunk has
been processed by the Viterbi algorithm, we compute the
average of 1/(1 + E-value) for the chunk and terminate
early when this number drops below 0.01.

SIMD-based MSA redundancy filter
To build a profile HMM from an MSA, HH-suite reduces
the redundancy by filtering out sequences that have more
than a fraction seqid_max of identical residues with
another sequence in the MSA. The scalar version of the

function (Algorithm 5) returns 1 if two sequences x and
y have a sequence identity above seqid_min and 0 oth-
erwise. The SIMD version (Algorithm 6) has no branches
and processes the amino acids in chunks of 16 (SSE2) or
32 (AVX2). It is about ∼11 times faster than the scalar
version.

Results
Speed benchmarks
Speed of HHsearch 2.0.16 versus HHsearch 3
Typically more than 90% of the run time of HHsearch is
spent in the Viterbi algorithm, while only a fraction of
the time is spent in the maximum accuracy alignment.
Only a small number of alignments reach an E-value low
enough in the Viterbi algorithm to be processed further.

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 12 of 15

A B

Fig. 6 Speed comparisons. a runtime versus query profile length for 1644 searches with profile HMMs randomly sampled from UniProt. These
queries were searched against the PDB70 database containing 35 000 profile HMMs of average length 234. The average speedup over HHsearch
2.0.16 is 3.2-fold for SSE2- vectorized HHsearch and 4.2-fold for AVX2-vectorized HHsearch. b Box plot for the distribution of total runtimes (in
logarithmic scale) for one, two, or three search iterations using the 1644 profile HMMs as queries. PSI-BLAST and HHMER3 searches were done
against the UniProt database (version 2015_06) containing 49 293 307 sequences. HHblits searches against the uniprot20 database, a clustered
version of UniProt containing profile HMMs for each of its 7 313 957 sequence clusters. Colored numbers: speed-up factors relative to HMMER3

HHsearch therefore profits considerably from the SIMD
vectorization of the Viterbi algorithm.
To compare the speed of the HHsearch versions, we

randomly selected 1 644 sequences from Uniprot (release
2015_06), built profile HMMs, and measured the total
run time for searching with the 1644 query HMMs
through the PDB70 database (version 05Sep15). The
PDB70 contains profile HMMs for a representative set
of sequences from the PDB [24], filtered with a max-
imum pairwise sequence identity of 70%. It contained
35 000 profile HMMs with an average length of 234
match states.
HHsearch with SSE2 is 3.2 times faster and HHsearch

with AVX2 vectorization is 4.2 times faster than
HHsearch 2.0.16, averaged over all 1644 searches (Fig. 6a).
For proteins longer than 1000, the speed-up factors are 5.0
and 7.4, respectively. Due to a runtime overhead of ∼20 s
that is independent of the query HMM length (e.g. for
reading in the profile HMMs), the speed-up shrinks for
shorter queries. Most of this speed-up is owed to the vec-
torization of the Viterbi algorithm: The SSE2-vectorized
Viterbi code ran 4.2 times faster than the scalar version.
In HHblits, only part of the runtime is spent in the

Viterbi algorithm, while the larger fraction is used by the
prefilter, which was already SSE2-vectorized in HHblits
2.0.16. Hence we expected only a modest speed-up
between HHblits 2.0.16 and SSE2-vectorized HHblits 3.
Indeed, we observed an average speed-up of 1.2, 1.3, and
1.4 for 1, 2 and 3 search iterations, respectively (Fig. 6b),
whereas AVX2-vectorized version is 1.9, 2.1, and 2.3 times
faster than HHblits 2.0.16, respectively. AVX2-vectorized

HHblits is 14, 20, and 29 times faster than HMMER3
[4] (version 3.1b2) and 9, 10, and 11 times faster than
PSI-BLAST [10] (blastpgp 2.2.31) for 1, 2, and 3 search
iterations.
All runtime measurements were performed using the

Unix tool time on a single core of a computer with two
Intel Xeon E5-2640v3 CPUs with 128GB RAM.

Sensitivity benchmark
To measure the sensitivity of search tools to detect
remotely homologous protein sequences, we used
a benchmarking procedure very similar to the one
described in [5]. To annotate the uniprot20 (version
2015_06) with SCOP domains, we first generated a
SCOP20 sequence set by redundancy-filtering the
sequences in SCOP 1.75 [25] to 20% maximum pair-
wise sequence identity using pdbfilter.pl with
minimum coverage of 90% from HH-suite, resulting in
6616 SCOP domain sequences. We annotated a sub-
set of uniprot20 sequences by the presence of SCOP
domains by searching with each sequence in the SCOP20
set with blastpgp through the consensus sequences
of the uniprot20 database and annotated the best
matching sequence that covered ≥ 90% of the SCOP
sequence and that had a minimum sequence identity of at
least 30%.
We searched with PSI-BLAST (2.2.31) and HMMER3

(v3.1b2) with three iterations, using the 6616 sequences in
the SCOP20 set as queries, against a database made up of
the UniProt plus the SCOP20 sequence set. We searched
with HHblits versions 2.0.16 and 3 with three iterations

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 13 of 15

BA

Fig. 7 Sensitivity of sequence search tools. aWe searched with 6616 SCOP20 domain sequences through the UniProt plus SCOP20 database using
one to three search iterations. The sensitivity to detect homologous sequences is measured by cumulative distribution of the Area Under the Curve
1 (AUC1), the fraction of true positives ranked better than the first false positive match. True positive matches are defined as being from the same
SCOP superfamily [25], false positives have different SCOP folds, excepting known cases of inter-fold homologies. b Sensitivity of HHsearch with and
without scoring secondary structure similarity, measured by the cumulative distribution of AUC1 for a comparison of 6616 profile HMMs built from
SCOP20 domain sequences. Query HMMs include predicted secondary structure, target HMMs include actual secondary structure annotated by
DSSP. True and false positives are defined as in A

through a database consisting of the uniprot20 HMMs
plus the 6616 UniProt profile HMMs annotated by SCOP
domains.
We defined a sequence match as true positive if query

and matched sequence were from the same SCOP super-
family and as false positive if they were from different
SCOP folds and ignore all others. We excluded the self-
matches as well as matches between Rossman-like folds
(c.2-c.5, c.27 and 28, c.30 and 31) and between the four-
to eight-bladed β-propellers (b.66-b.70), because they are
probably true homologs [2]. HMMER3 reported more
than one false positive hit just in one out of three queries,
despite setting the maximum E-value to 100 000, and we
therefore measured the sensitivity up to the first false pos-
itive (AUC1) instead of the AUC5 we had used in earlier
publications.
We ran HHblits using hhblits -min_prefilter_

hits 100 -n 1 -cpu $NCORES -ssm 0 -v 0 -wg
and wrote checkpoint files after each iteration
to restart the next iteration. We ran HMMER3
(v3.1b2) using hmmsearch -chkhmm -E 100000
and PSI-BLAST (2.2.31) using -evalue 10000
-num_descriptions 250000.
The cumulative distribution over the 6616 queries of

the sensitivity at the first false positive (AUC1) in Fig. 7a
shows that HHblits 3 is as sensitive as HHblits 2.0.16
for 1, 2, and 3 search iterations. Consistent with earlier
results [5, 26], HHblits is considerably more sensitive than
HMMER3 and PSI-BLAST.

We also compared the sensitivity of HHsearch 3
with and without scoring secondary structure similarity,
because we slightly changed the weighting of the sec-
ondary structure score (Methods). We generated a pro-
file HMM for each SCOP20 sequence using three search
iterations with HHblits searches against the uniprot20
database of HMMs. We created the query set of pro-
file HMMs by adding PSIPRED-based secondary struc-
ture predictions using the HH-suite script addss.pl,
and we added structurally defined secondary structure
states from DSSP [36] using addss.pl to the target
profile HMMs. We then searched with all 6616 query
HMMs through the database of 6616 target HMMs.
True positive and false positive matches were defined as
before.
Figure 7b shows that HHsearch 2.0.16 and 3 have

the same sensitivity when secondary structure scoring is
turned off. When turned on, HHsearch 3 has a slightly
higher sensitivity due to the better weighting.

Conclusions
We have accelerated the algorithms most critical for run-
time used in the HH-suite, most importantly the Viterbi
algorithm for local and global alignments, using SIMD
vector instructions. We have also added thread paral-
lelization with OpenMP and parallelization across servers
with Message Passing Interface (MPI). These extensions
make the HH-suite well suited for large-scale deep protein
annotation of metagenomics and genomics datasets.

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 14 of 15

Availability and requirements
• Project name: HH-suite
• Project page: https://github.com/soedinglab/hh-suite
• Operating systems: Linux, macOS
• Programming languages: C++, Python utilities
• Other requirements: support for SSE2 or higher
• License: GPLv3

Abbreviations
AVX2: advanced vector extension (SIMD instruction set standards); HMM:
hidden Markov model; MSA: multiple sequence alignment; SIMD:
single-instruction multiple-data; SSE2: streaming SIMD extensions 2

Acknowledgements
We thank the HH-suite community for their contributions and bug reports. We
want to especially thank Lim Heo (Michigan State University) for fixing a bug in
the Viterbi global alignment mode and David Miller for adding PowerPC
support to the HH-suite.

Authors’ contributions
MS & JS designed research, MS developed vectorized code and performed
analyses, M. Meier refactored code, added features, fixed bugs and performed
benchmarks, M. Mirdita added features, fixed bugs and maintains databases,
HV implemented mmCIF support, SH optimized the MAC algorithm memory
usage, MS and JS wrote the manuscript. All authors read and approved the
final manuscript.

Funding
This work was supported by the European Research Council’s Horizon 2020
Framework Programme for Research and Innovation (“Virus-X”, project no.
685778).

Availability of data andmaterials
The datasets used and/or analysed during the current study are available from
the corresponding author on request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Quantitative and Computational Biology Group, Max-Planck Institute for
Biophysical Chemistry, Am Fassberg 11, 81379 Munich, Germany. 2Center for
Computational Biology, McKusick-Nathans Institute of Genetic Medicine,
Johns Hopkins School of Medicine, Baltimore, MD, USA. 3European
Bioinformatics Institute, CB10 1SD Cambridge, United Kingdom. 4Royal
College of Surgeons, D02 YN77 Dublin, Ireland.

Received: 19 February 2019 Accepted: 2 August 2019

References
1. Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT.

Tackling soil diversity with the assembly of large, complex metagenomes.
Proc Natl Acad Sci USA. 2014;111(13):4904–4909. https://doi.org/10.1073/
pnas.1402564111.

2. Söding J, Remmert M. Protein sequence comparison and fold
recognition: progress and good-practice benchmarking. Curr Opin Struct
Biol. 2011;21(3):404–11. https://doi.org/10.1016/j.sbi.2011.03.005.

3. Eddy SR. A new generation of homology search tools based on
probabilistic inference. Genome Inform. 2009;23(1):205–11.

4. Eddy SR. Accelerated Profile HMM Searches. PLOS Comput Biol.
2011;7(10):1002195. https://doi.org/10.1371/journal.pcbi.1002195.

5. Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast
iterative protein sequence searching by HMM-HMM alignment. Nat
Methods. 2012;9(2):173–5. https://doi.org/10.1038/nmeth.1818.

6. Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science.
2012;338(6110):1042–6. https://doi.org/10.1126/science.121902.

7. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T,
Kiefer F, Cassarino TG, Bertoni M, Bordoli L, et al. SWISS-MODEL:
modelling protein tertiary and quaternary structure using evolutionary
information. Nucleic Acids Res. 2014;42(W1):252–8. https://doi.org/10.
1093/nar/gku340.

8. Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J,
Levine TP. Using HHsearch to tackle proteins of unknown function: A pilot
study with PH domains. Traffic. 2016;17(11):1214–26. https://doi.org/10.
1111/tra.12432.

9. Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas
BC, Doudna JA, Banfield JF. New CRISPR-Cas systems from uncultivated
microbes. Nature. 2016;542:237. https://doi.org/10.1038/nature21059.

10. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
https://doi.org/10.1093/nar/25.17.3389.

11. Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence
profiles. Strategies for structural predictions using sequence information.
Protein Sci. 2000;9(2):232–41. https://doi.org/10.1110/ps.9.2.232.

12. Sadreyev R, Grishin N. COMPASS: a tool for comparison of multiple
protein alignments with assessment of statistical significance. J Mol Biol.
2003;326(1):317–36. https://doi.org/10.1016/S0022-2836(02)01371-2.

13. Zhang W, Liu S, Zhou Y. SP5: Improving Protein Fold Recognition by
Using Torsion Angle Profiles and Profile-Based Gap Penalty Model. PloS
One. 2008;3(6):2325. https://doi.org/10.1371/journal.pone.0002325.

14. Margelevičius M, Venclovas Č. Detection of distant evolutionary
relationships between protein families using theory of sequence
profile-profile comparison. BMC Bioinform. 2010;11(1):89. https://doi.org/
10.1186/1471-2105-11-89.

15. Söding J. Protein homology detection by HMM-HMM comparison.
Bioinformatics. 2005;21(7):951–60. https://doi.org/10.1093/
bioinformatics/bti125.

16. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/
bioinformatics/btq461.

17. Kielbasa SM, Wan R, Sato K, Horton P, Frith M. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21(3):487–93. https://
doi.org/10.1101/gr.113985.110.

18. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2014;12(1):59–60. https://doi.org/10.1038/
nmeth.3176.

19. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat Biotechnol.
2017;35(11):1026–8. https://doi.org/10.1038/nbt.3988.

20. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi
M, Richardson LJ, Salazar GA, Smart A, et al. The Pfam protein families
database in 2019. Nucleic Acids Res. 2018;47(D1):427–32. https://doi.org/
10.1093/nar/gky995.

21. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown
SD, Chang H.-Y., El-Gebali S, Fraser MI, et al. Interpro in 2019: improving
coverage, classification and access to protein sequence annotations.
Nucleic Acids Res. 2018;47(D1):351–60.

22. Biegert A, Söding J. De novo identification of highly diverged protein
repeats by probabilistic consistency. Bioinformatics. 2008;24(6):807–14.
https://doi.org/10.1093/bioinformatics/btn039.

23. Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger
M. Uniclust databases of clustered and deeply annotated protein
sequences and alignments. Nucleic Acids Res. 2016;45(D1):170–6. https://
doi.org/10.1093/nar/gkw1081.

24. Gilliland G, Berman HM, Weissig H, Shindyalov IN, Westbrook J, Bourne
PE, Bhat TN, Feng Z. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):
235–42. https://doi.org/10.1093/nar/28.1.235.

25. Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJ,
Chothia C, Murzin AG. Data growth and its impact on the SCOP database:

https://github.com/soedinglab/hh-suite
https://doi.org/10.1073/pnas.1402564111
https://doi.org/10.1073/pnas.1402564111
https://doi.org/10.1016/j.sbi.2011.03.005
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1126/science.121902
https://doi.org/10.1093/nar/gku340
https://doi.org/10.1093/nar/gku340
https://doi.org/10.1111/tra.12432
https://doi.org/10.1111/tra.12432
https://doi.org/10.1038/nature21059
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1110/ps.9.2.232
https://doi.org/10.1016/S0022-2836(02)01371-2
https://doi.org/10.1371/journal.pone.0002325
https://doi.org/10.1186/1471-2105-11-89
https://doi.org/10.1186/1471-2105-11-89
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1101/gr.113985.110
https://doi.org/10.1101/gr.113985.110
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/nar/gky995
https://doi.org/10.1093/bioinformatics/btn039
https://doi.org/10.1093/nar/gkw1081
https://doi.org/10.1093/nar/gkw1081
https://doi.org/10.1093/nar/28.1.235

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 15 of 15

new developments. Nucleic Acids Res. 2007;36(Database issue):419–25.
https://doi.org/10.1093/nar/gkm993.

26. Angermüller C, Biegert A, Söding J. Discriminative modelling of
context-specific amino acid substitution probabilities. Bioinformatics.
2012;28(24):3240–7. https://doi.org/10.1093/bioinformatics/bts622.

27. Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14(9):
755–63. https://doi.org/10.1093/bioinformatics/14.9.755.

28. Li ITS, ShumW, Truong K. 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinform.
2007;8(1):185. https://doi.org/10.1186/1471-2105-8-185.

29. Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinform.
2008;9 Suppl 2(Suppl 2):10. https://doi.org/10.1186/1471-2105-9-S2-S10.

30. Szalkowski A, Ledergerber C, Krähenbühl P, Dessimoz C. SWPS3 - fast
multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and
x86/SSE2. BMC Res Notes. 2008;1(1):107. https://doi.org/10.1186/1756-
0500-1-107.

31. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units.
BMC Res Notes. 2009;2(1):73. https://doi.org/10.1186/1756-0500-2-73.

32. Wozniak A. Using video-oriented instructions to speed up sequence
comparison. Bioinformatics. 1997;13(2):145–50. https://doi.org/10.1093/
bioinformatics/13.2.145.

33. Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common
microprocessors. Bioinformatics. 2000;16(8):699–706. https://doi.org/10.
1093/bioinformatics/16.8.699.

34. Farrar M. Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics. 2007;23(2):156–61.
https://doi.org/10.1093/bioinformatics/btl582.

35. Rognes T. Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation. BMC Bioinform. 2011;12(1):221. https://doi.org/10.
1186/1471-2105-12-221.

36. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers.
1983;22(12):2577–637. https://doi.org/10.1002/bip.360221211.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1093/nar/gkm993
https://doi.org/10.1093/bioinformatics/bts622
https://doi.org/10.1093/bioinformatics/14.9.755
https://doi.org/10.1186/1471-2105-8-185
https://doi.org/10.1186/1471-2105-9-S2-S10
https://doi.org/10.1186/1756-0500-1-107
https://doi.org/10.1186/1756-0500-1-107
https://doi.org/10.1186/1756-0500-2-73
https://doi.org/10.1093/bioinformatics/13.2.145
https://doi.org/10.1093/bioinformatics/13.2.145
https://doi.org/10.1093/bioinformatics/16.8.699
https://doi.org/10.1093/bioinformatics/16.8.699
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1186/1471-2105-12-221
https://doi.org/10.1186/1471-2105-12-221
https://doi.org/10.1002/bip.360221211

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Introduction
	Methods
	Overview of HH-suite
	Overview of changes from HH-suite version 2.0.16 to 3
	Vectorized viterbi HMM-HMM alignment
	Fast MAC HMM-HMM alignment
	Memory reduction
	Accelerating sequence filtering and profile computation
	Secondary structure scoring
	New features, code refactoring, and bug fixes

	Supported platforms and hardware
	Parallelization by vectorization using SIMD instructions
	Abstraction layer for SIMD-based vector programming

	Vectorized viterbi HMM-HMM alignments
	The viterbi algorithm for aligning profile hMMs
	Vectorizations of smith-Waterman sequence alignment
	Vectorized viterbi algorithm for aligning profile HMMs
	Vectorized column similarity score

	From quadratic to linear memory for scoring matrices
	Memory reduction for backtracing and cell-off matrices
	Viterbi early termination criterion
	SIMD-based MSA redundancy filter

	Results
	Speed benchmarks
	Speed of HHsearch 2.0.16 versus HHsearch 3

	Sensitivity benchmark

	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

