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Abstract

therapeutic peptide design.

Background In the search for therapeutic peptides for disease treatments, many efforts have been made to identify
various functional peptides from large numbers of peptide sequence databases. In this paper, we propose an effective
computational model that uses deep learning and word2vec to predict therapeutic peptides (PTPD).

Results Representation vectors of all k-mers were obtained through word2vec based on k-mer co-existence
information. The original peptide sequences were then divided into k-mers using the windowing method. The
peptide sequences were mapped to the input layer by the embedding vector obtained by word2vec. Three types of
filters in the convolutional layers, as well as dropout and max-pooling operations, were applied to construct feature
maps. These feature maps were concatenated into a fully connected dense layer, and rectified linear units (ReLU) and
dropout operations were included to avoid over-fitting of PTPD. The classification probabilities were generated by a
sigmoid function. PTPD was then validated using two datasets: an independent anticancer peptide dataset and a
virulent protein dataset, on which it achieved accuracies of 96% and 949%, respectively.

Conclusions PTPD identified novel therapeutic peptides efficiently, and it is suitable for application as a useful tool in

Keywords: Therapeutic peptide, Deep learning, Word2vec

Background

Cancer continues to a burden worldwide and its fre-
quency is expected to double in the coming decades
[1]. Available treatment regimens include radiation ther-
apy, targeted therapy, and chemotherapy, all of which
are often accompanied by harmful side effects and result
in high financial costs for both individuals and society
[2, 3]. Anticancer peptides (ACPs) provide a new cost-
efficient approach to cancer treatment, have minimal
side effects, and have been shown to be promising in
the treatment of various tumours by targeting mito-
chondria or membranolytic mechanisms [4]. Although
progress has been made in preclinical applications of
peptide-based methods against cancer cells, the mech-
anism behind the success of ACP treatments are still
elusive. It is therefore highly important to be able to effi-
ciently identify ACPs in both cancer research and drug
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development purposes. Due to the high costs and lengthy
process of identifying ACP experimentally, various com-
putational models have been developed to identify
ACPs from peptide sequences. These advances include
iACP development by g-gap dipeptide component (DPC)
optimization [5, 6], and SAP peptide identification by
400-dimensional features with g-gap dipeptide pruned by
the maximum relevance-maximum distance method [7].
In addition, various types of amino acid compositions
(AACs) of peptide sequences have been introduced
to develop prediction models such as Chou’s pseudo
amino acid composition (PseAAC) [8], combinations of
AACs, average chemical shifts (acACS) and reduced AAC
(RAAC) [6], pseudo g-Gap DPC, amphiphilic PseAAC,
and reduced amino acid alphabet (RAAAC) [9]. Other
methods include computational tools developed based on
the q-Wiener graph indices for ACP predication [10]. In
addition, machine learning methods were adopted to pro-
mote model efficiency [6, 9, 11]. Several models have
utilized support vector machine (SVM) and random for-
est (RF) machine learning methods [11, 12], combinations
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of the quantitative outcomes of individual classifiers (RF,
K-nearest neighbor, SVM, generalized neural network and
probabilistic neural network) [9], or a pool of SVM-based
models trained by sequence-based features [13].

Novel computational models based on machine learn-
ing have also been applied to identify virulent proteins
in infection pathophysiology. Virulent proteins consist
of a diverse set of proteins and are important for host
invasion and pathogenesis. Drug resistance to bacterial
pathogens has created an urgent need to identify novel vir-
ulent proteins that may facilitate drug target and vaccine
developments. Several computational models have been
developed to identify virulent proteins. The first methods
were developed based on similarity search methods such
as the Basic Local Alignment Search Tool (BLAST) [14]
and Position-specific Iterated BLAST (PSI-BLAST) [15].
Machine learning algorithms for predicting virulent proteins
have also been reported that apply SVM-based models
based on AAC and DPC [16], an ensemble of SVM-
based models trained with features extracted directly from
amino acid sequences [17], a bi-layer cascade SVM model
[18], and a model based on an SVM and a variant of input
decimated ensembles and their random subspace [19].
Studies have also focused on conducting feature extrac-
tion of sequences such as protein presentations, by using
amino acid sequence features and evolutionary informa-
tion of a given protein [19]. Moreover, a computational
tool based on the q-Wiener graph indices was also pro-
posed to effectively predict virulent proteins [10]. Despite
substantial progress, identifying specific peptides from
massive protein databases remains challenging.
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To date, deep learning applications have been successful
in numerous fields other than medicine, including image
classification and recognition [20-22], object detection
[23, 24], scene recognition [25], character recognition
[26], sentence classification [27], chromatin accessibility
prediction [28] and so on. Inspired by these successful
deep learning applications, we propose a novel computa-
tional model called PTPD, which is based on deep learn-
ing, to identify ACPs and virulent proteins from peptide
sequences (Fig. 1). To verify the efficiency of our approach,
we also performed ACP and virulent protein prediction on
publicly available datasets [12, 18, 29]. Our results show
that PTPD is able to identify ACPs and virulent proteins
with high efficiency.

Methods

Datasets

The ACP datasets were extracted from publicly avail-
able resources [12, 29]. A total of 225 validated ACPs
from the AMPs dataset and the database of Anuran
defence peptides (DADP) [30] were used as positive sam-
ples, while 2,250 randomly selected proteins from the
SwissProt protein database were used as negative samples.
This dataset was used to build the model. An alterna-
tive dataset and two balanced datasets were employed
to evaluate the model. To compare our methods with
other existing methods, we also obtained an indepen-
dent dataset (i.e. Hajisharifi-Chen (HC)) from a previous
study [12]. The HC dataset, which contains 138 ACPs and
206 non-ACPs, was also employed to develop prediction
models in [31, 32].

Representation of k-mers by
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Fig. 1 Flowchart of PTPD
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The virulent protein datasets were obtained from
VirulentPred [18] and NTX-pred method [16]. We
adopted the SPAAN adhesins dataset, which contains 469
adhesion and 703 non-adhesion proteins, to build the
PTPD model for virulent protein prediction. The neuro-
toxin dataset was applied as an independent dataset to
evaluate the model. It contains 50 neurotoxins (positive
samples) and 50 non-virulent proteins (negative samples)
obtained by the NTX-pred method [16].

Representation of k-mers by word2vec

Each peptide sequence was divided into k-mers by win-
dowing method as previously described in [33, 34]. To rep-
resent the k-mers, we used the publicly available word2vec
tool, which creates high-quality word embedding vectors
according to a large number of k-mers.

The word2vec tool computes vector representations
of words and has been widely applied in many natural
language processing tasks as well as other research appli-
cations [35-38]. Two learning algorithms are available
in word2vec: continuous bag-of-words and continuous
skip-gram. These algorithms learn word representations
to help to predict other words in the sentence. The skip-
gram model in word2vec trains the word vectors of each
word based on the given corpus. Given a word (W (¢)) in a
sentence, skip-gram can predict the probabilities P(W (£ +
i)|W(¢)) of nearby words W;(t — k < i <t + k) based on
the probability of the current word W (¢). Each word vec-
tor reflects the positions of the nearby words, as illustrated
in Fig. 2. The goal of the skip-gram model is to maximize
the following value:

= X

t=1 \ —k<i<k,i#0

log,P(W(t+DIW@®) |, (1)

Input Project Output
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> W(tte)

Fig. 2 Skip-gram model structure
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where k denotes the size of the window, and W (¢ +
i)(—k < i < k) denotes k words near the current word
W (t), and n denotes the number of words.

Because word2vec can reflect the positional relation-
ships of words in a sequence and preserve structural
information, we treated the k-mers as the words. Using
word2vec, the word embedding vector of each k-mer with
100 dimensions was obtained.

Input layer

After constructing the word representation of all the
k-mers, we mapped the peptide sequence to numeric
vectors. First, we used stride st to divide a peptide
sequence S with length Ly into k-mers of length k. The
number of k-mers and the subsequent number of vectors
varied because the peptide sequences (S) had different
original lengths (Lo). The vectors for one peptide were set
to be the same length L-the length of the longest vector
for those peptide sequences. Vectors with lengths shorter
than L zero-padded at the end as in the natural language
process. Finally, the peptide sequence was converted to a
vector S by the word vectors with dimensions L x 100.

Six100 = padding(fuay(k_mer(Sp,))). 2)

To prevent over-fitting and to improve model general-
ization, dropout was applied to a fraction of the inputs
(i.e., a portion of the inputs was randomly set to zero).

Feature map

To extract features, a set of one-dimensional convolu-
tion filters was adopted to process the vectors of peptide
sequences. The convolution kernel was a shape kernel
with a size of (¢ x 100). We used three types of convolution
filters with sizes of three, four, and five. All the kernels per-
formed convolutions on the entire representation vector.
For example, using one convolution kernel with a size of
(¢ x 100), the feature map was constructed as follows:

Fc = [f(m)](L—c+1)><1’ (3)

f(m) =g(W ®S,, +b)
¢ 100 (4)
= ReLU() Y " w(i,j) x 5(m +i,j) + b),

i=0 j=0

where f(m) denotes the mth element of the feature map,
ReLU denotes the rectified linear unit (ReLU) activation
function, w(i, j) denotes the weight of the convolution ker-
nel compiled by training, ¢ denotes the size of filter, and
S, denotes the mth block of the representation vector of
the peptide sequence. ReLU [39] was used to set the neg-
ative results of the convolution calculation to zero, and is
defined as follows:
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0,ifa <0,
ReLU(a) = max(0,a) = ) (5)
a, otherwise.

Multiple filters were used for each filter type. Let nc be
the number of convolution filters, we applied

T 1 2
Fc:[Fc:Fc-~~’FZIC](L7c+1)><nc‘ (6)

To reduce the spatial dimensions of the feature maps,
max pooling was adopted following a convolution operation.
A max pooling layer with a pooling window of size 2 x 1
and a stride of 2 was defined by the function

Z. = (z;j) = pool(F,)
, max F.(;, nc)],

(7)

:[maxﬁc(:, 1),... ,maxf—}(:,j), ..

where

max F.(i,j) = max_F.(i,)). ®)
i’ €[i,i+2]

The results were finally merged concatenated as follows:
FAy, :[ch; Z2, ZCB] ’ (9)

where c1=3, c2=4, and ¢3=5 denote the three filter sizes we
used. Then FA,, was processed by a fully connected hid-
den layer to produce FM = ReLU(FA;, W), where ReLU
represents a rectified linear activation unit, and Wy is the
weight matrix of the fully-connected layer.

Classification

The last layer of PTPD adopted a fully-connected layer to
obtain a single output. A sigmoid activation function was
set to generate the output probability between zero and
one, which was defined as

(10)

Sigmoid(x) = =t
Loss function and optimizer
A binary cross entropy loss function was used to train the
model. The model was trained with the RMSprop optimizer.
The binary cross entropy loss function between the pre-
dictions and targets was defined as

Ly, 5:) = yilog(3:) + (1 — y)log(1 — ¥y). (11)
The total cost of the two classes was
2
L=7Y Lo (12)
i=1

Model evaluation

The performance of PTPD was evaluated by various
metrics, including the sensitivity (Sn), specificity (Sp),
prediction accuracy (Acc), Matthew’s correlation coeffi-
cient (MCC), and the area under the curve (AUC) of
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Table 1 Performance of PTPD on the ACP dataset
Dataset Sn(%) Sp(%) Acc(%) MCC AUC
ACP main dataset 99.90 86.60 98.50 0.92 0.99
ACP alternative dataset 96.20 86.70 94.80 0.80 0.97
ACP balanced dataset 1 100 86.20 93.10 0.87 0.99
ACP balanced dataset 2 94.20 86.20 90.20 0.81 0.97
HC dataset 100 83.00 94.00 0.87 0.99

the receiver-operating characteristic (ROC) curve. These
metrics were defined as follows:

Sn = P

TRFFN
SP = TN+FP (13)
Ace — TP+TN ,

TP+ TN+ EPLEN
MCC (TPx TN)—(EPxEN)

= /(TP+EP)(TP+EN)(IN+EP)(IN+EN)

where TP denotes true positives, TN denotes true nega-
tives, FP denotes false positives, FN denotes false negatives.

Results

Model performance

To verify the proposed method, we executed the pro-
posed model on ACPs and virulent protein datasets. Each
dataset was randomly divided into three groups. The first
group, which consisted of 75% of the complete dataset,
was used to train the model. The second group of data,
15% of the entire dataset, was used to minimize over-
fitting. The third group, 10% of the entire dataset, was
used to evaluate the performance of the trained PTPD
model. For ACP identification, the performance of PTPD
was first measured using the test data from the main
dataset, and then further tested on an alternative dataset.
Furthermore, we also evaluated the performance of PTPD
on two types of balanced datasets (Table 1).

PTPD achieved high performance scores of Sn = 94.2%,
Sp = 86.2%, Acc = 90.2%, Mcc = 0.8, and AUC = 0.97,
respectively. Moreover, to evaluate the generalizability or
robustness of the prediction model, we executed PTPD
on the independent HC dataset, as shown in Table 1. The
AUC:s of the five data sets were all higher than 0.97. Thus,
PTPD offers stable performance even on unbalanced data
sets (Table 1).

To evaluate the performance of PTPD, we conducted
an evaluation on the test data of the SPAAN adhesins
dataset. We also tested the performance of PTPD on an
independent Neurotoxins dataset (Table 2).

Table 2 Performance of PTPD on the virulent protein dataset

Dataset Sn(%) Sp(%) Acc(%) MCC AUC
SPAAN adhesins dataset 95.60 733 88.2 0.70 0.94
Neurotoxins dataset 98.00 94.00 96.00 092 0.93
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Table 3 Comparison of PTPD with state-of-the-art methods on
the HC dataset
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Table 4 Comparison of PTPD with state-of-the-art methods on
the Neurotoxins dataset

Method Sn(%) Sp(%) Acc(%) MCC  AUC Method Sn(%) Sp(%) Acc(%) MCC AUC
PTPD 100 83.00 94.00 0.87 0.99 PTPD 98.00 94.00 96.00 0.92 0.93
mACPpred [40] 97.00 77.00 85.00 0.72 0.96 g-FP [10] 99.03 98.00 98.40 0.94 1
MLACP (SVM)[12] 85.00 91.00 90.00 0.73 0.95 VirulentPred [18] 96.00 16.00 56.00 - -
MLACP (RF)[12] 98.00 98.00 98.00 0.95 1.00 NTX-pred(FNN) [16] 89.65 7878 84.19 0.69 -
AntiCP (Model 1)[29] 98.00 5.00 40.00 0.06 0.75 NTX-pred(RNN) [16] 89.12 96.35 92.75 0.86 -
AntiCP (Model 2)[29] 82.00 90.00 87.00 0.72 0.95 NTX-pred(SVM) [16] 96.32 97.22 97.72 0.94 -

AS [41] 92.00 1.00 96.00 0.92 0.99

2Gram [41] 1.00 90.91 95.00 0.91 1

The five performance metrics (Sn, Sp, Acc, MCC, and
AUC) achieved by PTPD on the virulent protein dataset
are higher than 95.6%, 73.3%, 88.2%, 0.7, and 0.93, respec-
tively, which confirms the good performance of PTPD.
Sp on the SPAAN adhesins dataset had a relatively lower
value (Table 2).

Comparison with the state-of-the-art methods

For verification purposes, we compared the proposed
method with other state-of-the-art methods on the identi-
fication of ACPs and virulent proteins on two independent
datasets.

Comparison performed on independent aCP dataset

To further evaluate the performance of PTPD to pre-
dict ACPs, we compared its performance with those of
some state-of-the-art methods (i.e., AntiCP [29], MLACP
[12], and mACPpred [40]) on an independent HC dataset
(Table 3 and Fig. 3). PTPD performed equally as well as
MLACP (RF) on the HC dataset. The proposed PTPD

has the highest sensitivity, relatively higher AUC, ACC,
and MCC, and intermediate specificity. Thus, PTPD offers
relatively better generalizability on independent datasets
than do the other tested state-of-the-art methods for
identifying ACPs.

Comparison performed on an independent virulent protein
dataset

We also compared the performance of PTPD with that
of g-FP [10], AS and 2Gram [41], VirulentPred [18], and
NTX-pred [16] on a bacterial neurotoxins dataset (Table 4
and Fig. 4).

Again, the overall performance of PTPD was relatively
better than those of other methods. Thus, we can con-
clude that PTPD is able to predict potential virulent
proteins with high accuracy.

[ISn Omcc
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[JAcc
80.00— .80
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Q 2
= E]
< <
> =
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PTPD  mACPpred I‘EISL\/,\I\%P M(LRAF?P (Qggeclpl) (Q';gecll;) (SVM)  (RF) (Model 1) (Model 2)
Method Method
(a) (b)
Fig. 3 Comparison of different methods on the HC dataset. a Sn, Sp and Acc of different methods. b MCC and AUC of different methods. Sn: the
sensitivity; Sp: the specificity; Acc: the prediction accuracy; MCC: Matthew's correlation coefficient; AUC: the area under the curve of the
receiver-operating characteristic curve
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Parameter settings

Because model convergence is related to the learning rate,
we set the learning rate variously to 0.5, 0.1, 0.05, 0.01,
0.005, 0.001, 0.0005, 0.0001, 0.00005, and 0.00001 for ACP
training. The accuracy and loss values under the different
learning rates are shown in Fig. 5.

The model achieved its highest accuracy (98.5%) and the
lowest loss (0.03) when the learning rate was set to 0.0001,
which was subsequently selected for model training. The
detailed parameter settings are shown in Table 5.

Discussion

The model performance presented in this study suggests
that PTPD possesses good generalizability and robustness.
The comparison between PTPD and other methods
showed that PTPD outperformed the other tested state-
of-the-art methods for independent data analysis.

The performance of PTPD benefits from several major
factors: (1) word2vec was applied to extract representa-
tion vectors of k-mers to consider the co-existence infor-
mation of k-mers in peptide sequences. (2) For the feature

1.00
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Fig. 5 Performances under different learning rates: a accuracy under different learning rates; b loss under different learning rates
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Table 5 Parameter setting

Parameters Value
Number of kernels 150,150,150
Filter size 34,5

k-mer dimensions 100

Batch size 100

Epoch 20
Learning rate 0.0001

map, a convolution neural network (CNN) architecture
was used to automatically extract features without domain
experts. (3) Dropout and max-pooling operations were
adopted to avoid over-fitting.

Conclusions

Identifying new ACPs and virulent proteins is an
extremely labour-intensive and time-consuming process.
In this paper, we proposed a computational model based
on deep learning that predicts therapeutic peptides with
in a highly efficient manner. We then present a new
deep learning-based prediction model that achieves bet-
ter recognition performances compared to those of other
state-of-the-art methods. We first trained a model to
extract feature vectors of all k-mers using word2vec.
Next, the peptide sequences were converted into k-mers,
and each peptide sequence was represented by the vec-
tors compiled by word2vec. The CNN then automati-
cally extracted features without expert assistance, which
decreases the reliance on domain experts for feature con-
struction. The CNN was configured with three types of
filters, and dropout and max-pooling operations were
applied to avoid over-fitting. After fusing the features,
ReLU activation was used to replace any negative values
in the output of the CNN layer with zeros. Finally, the
sigmoid function was used to classify the peptide.

The performance and generalizability of PTPD were
verified on two independent datasets. The trained model
achieved AUCs of 0.99 and 0.93, respectively, which con-
firmed that the proposed model can effectively identify
ACPs and virulent proteins.

In summary, the PTPD model presented in this paper
outperformed other tested methods. Nevertheless, the
approach still suffers because the inability to assign values
regarding which features are most important for identi-
fying favourable bioactivity. In future studies on poten-
tial structures and feature selection methods, we may
consider other available network architectures such as
generative adversarial networks. Some new methods that
have been successfully applied to natural language pro-
cesses might also facilitate further research. Our study
confirmed that PTPD is an effective means for iden-
tifying and designing novel therapeutic peptides. Our
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approach might be extensible to other peptide sequence-
based predictions, including antihypertensive [42, 43],
cell-penetrating [44], and proinflammatory [45].
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