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on support vector machine
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Abstract

Background: Acetylation on lysine is a widespread post-translational modification which is reversible and plays a
crucial role in some biological activities. To better understand the mechanism, it is necessary to identify acetylation
sites in proteins accurately. Computational methods are popular because they are more convenient and faster than
experimental methods. In this study, we proposed a new computational method to predict acetylation sites in human
by combining sequence features and structural features including physicochemical property (PCP), position specific
score matrix (PSSM), auto covariation (AC), residue composition (RC), secondary structure (SS) and accessible surface
area (ASA), which can well characterize the information of acetylated lysine sites. Besides, a two-step feature selection
was applied, which combined mRMR and IFS. It finally trained a cascade classifier based on SVM, which successfully
solved the imbalance between positive samples and negative samples and covered all negative sample information.

Results: The performance of this method is measured with a specificity of 72.19% and a sensibility of 76.71% on
independent dataset which shows that a cascade SVM classifier outperforms single SVM classifier.

Conclusions: In addition to the analysis of experimental results, we also made a systematic and comprehensive
analysis of the acetylation data.

Keywords: Lysine, Acetylation sites, Human, Support vector machine, Cascade classifier, Sequence features, Structural
feature, Systematic and comprehensive analysis

Key points
1. Specifically predict acetylated lysine sites in human.
2. Combine sequence features and structural features

to translate proteins into numerical vector.
3. Build a cascade classifier based on support vector

machine.
4. Solve the imbalance between positive samples and

negatives, and cover all negative sample information.

Background
Protein acetylation is the process of adding acetyl groups
(CH3CO-) to lysine residues on protein chain. As a
widespread type of protein post-translational modifica-
tions (PTMs), acetylation on lysine plays a significant
role in various organisms. In eukaryotes, the function of

acetylation is mainly focused on the influence of cell
chromosome structure and the activation of nuclear
transcription factors. However, the recent study of the
flux of proteins and the metabolic pathway of different
species revealed that a large number of non-nuclear
proteins were acetylated in the metabolic pathway
which would provide an important basis for the use
of various drugs or vitamins in real life. In prokary-
otes, protein acetylation is mainly manifested in the
following aspects: directly effecting the enzyme activ-
ity, affecting the interaction between proteins, influen-
cing the metabolic flow.
Though acetylation is very common in biological process,

knowledge of lysine acetylation is still quite limited. Since it
is extremely important to understand the molecular
mechanism of acetylation in biological systems by identify-
ing acetylated substrate proteins along with acetylation
sites, more and more focus is put on this field. Compared
with the labor-intensive and time-consuming traditional
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experimental methods, such as liquid chromatography-
mass spectrometry, high performance liquid chromatog-
raphy assays and spectrophotometric assays [1, 2], compu-
tational approaches of acetylation sites are much more
popular because of their convenience and fast speed. Re-
cent years, many computational classifiers have been built
to identify PTM sites through various types of two-class
machine learning algorithms. In 2014, Lu et al. used
MDDlogo to cluster positive samples and built a series
of classifiers using several kinds of sequence features
[3]. Deng et al. proposed a classifier called GPS-PAIL
to predict HAT-specific acetylation sites for up to seven
HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B,
KAT5 and KAT8 [4]. There are at least a dozen of
additional computational programs developed in earlier
studies for the prediction of lysine acetylation sites,
such as AceK, ASEB, BPBPHKA, EnsemblePail, iPTM-
mLys, KAcePred, KA-predictor, LAceP, LysAcet, N-
Ace, PLMLA, PSKAcePred and SSPKA [5–17].
However, these classifiers didn’t give a good solution

of the imbalance between positive and negative samples.
Besides, post-translational modification of proteins is
species-specific, which means that different methods
should be considered for the prediction of PTM sites in
different organisms. Therefore, in this study, we devel-
oped a method specific to human using a cascade classi-
fier of support vector machine to solve the imbalance
problem of positive and negative samples combined with
both sequence and structural feature descriptors. Finally,
we made a systematic and comprehensive analysis of
human acetylation data and the prediction results. The
flow chart of our method is shown in Fig. 1.

Methods
Dataset
In this study, acetylated protein data were derived from
CPLM [18], PLMD [19], PhosphoSitePlus [20], Uni-
protKB/Swiss-prot [21] and RCSB database [22] accord-
ing to following five steps.
Step 1. First of all, we downloaded all the human

acetylated protein sequences from CPLM, PLMD,
PhosphoSitePlus and UniprotKB/Swiss-prot (10,146
proteins).
Step 2. Secondly, we removed proteins using CD-HIT

with identity of 40%. 6834 protein sequences were left
and labeled as D1.
Step 3. Next, all PDB sequences were downloaded

from RCSB database and were labeled as D2.
Step 4. Then, PSI-BLAST was applied to calculate the

similarity between D1 and D2. And each protein se-
quence in D1 only retained one matching result that had
the highest score. Proteins in D1 that have no matching
result were excluded.
Step 5. Finally, PDB files of proteins in D1, that were

validated by X-ray diffraction and resolution less than
2.0 Å, were download from RCSB database.
After these five steps, we obtained 1213 proteins

which have 3D structural information, from which
243 proteins including 451 acetylation sites and 4918
non-acetylation sites were regarded as validation data-
set (used for parameter optimization and feature se-
lection), and the rest 970 proteins including 1956
acetylation sites and 18,061 non-acetylation sites were
regarded as the training dataset. To evaluate the per-
formance of our method, we downloaded acetylated

Fig. 1 The flow chart of this method
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data from HPRD [23] as independent test data, in
which proteins that have greater than 40% identity
with training data are excluded.
Subsequently, similar to the development of other

PTM site predictors [24, 25], the sliding window strategy
was utilized to extract samples. A window size of 19 was
adopted in this paper with 9 residues located upstream
and 9 residues located downstream of the lysine sites in
the protein sequence and ‘X’ was used when the number
of residues downstream or upstream is less than 9.

Features
To develop an accurate tool to predict protein acetylation
sites, it is necessary and important to translate proteins into
numerical vector with comprehensive and proper features.
Diverse kinds of features represent different information of
protein. In this study, we tested variety sequence features
and structural features including physicochemical property
(PCP), position specific score matrices (PSSM), auto covari-
ation (AC), residue composition (RC), secondary structure
(SS) and accessible surface area (ASA).

Physicochemical property (PCP)
AAindex is a database which includes amino acid muta-
tion matrices and amino acid indices [26]. Removing 13
PCPs that include the value “NA”, 531 PCPs are avail-
able. An amino acid index is a set of 20 numerical values
on behalf of the specificity and diversity of structure and
function of amino acids. PCPs have ever been success-
fully used to predict many protein modifications in pre-
vious papers, such as S-glutathionylation and acetylation
[27]. Character ‘X’ was represented by ‘0’ in each kind of
physicochemical property. For each physicochemical
property, we built a classifier based on it, and test its
performance with validation data. Finally, we chose four
kinds of physicochemical properties that have the best
performances (compareing their Matthew’s correlation
coefficient value), activation gibbs energy of unfolding,
pH 7.0 [28], activation gibbs energy of unfolding, pH 9.0
[28], normalized flexibility parameters (B-values) for
each residue surrounded by one rigid neighbours [29],
averaged turn propensities in a transmembrane helix
[30].

Position specific scoring matrices (PSSM)
The evolutionary conservation is one of the most im-
portant aspects in biological analysis, and residues
with stronger conservation may be more important
for protein function. PSI-BLAST [31] is a tool to cal-
culate the conservation state of specific residues. In
this work, we used PSI-BLAST against the swissprot
protein database to calculate position specific scoring
matrices (PSSM), which is a kind of feature that re-
garding the evolutionary conservation of a protein.

PSSM has been widely used in some other prediction
problems [32–35] and obtained satisfactory results. In
PSSM, each residue in peptide had 20 conservative
states against 20 different amino acids, so we can get
380 (=19*20) dimension features.

Auto covariation (AC)
There are many interactions between amino acids in
proteins, and the physicochemical properties of pro-
teins can reflect these interactions. Auto convariation
variable [36, 37] represents the correlation of the
same property between two residues separated by a
fixed value, that we called lag, which means the dis-
tance between two sites. Here, proteins are replaced
by four kind of physicochemical properties which we
mentioned in chapter 2.2.1. The calculation formula
of AC value is as follows.

Xi; j ¼
pi; j−pj

S j
ð1Þ

First, normalize physicochemical properties to zero mean
and unit standard deviation (SD) according to:
in which j means different physicochemical properties,

Pi,j is the j-th descriptor value for i-th amino acid, Pj is
the mean of j-th descriptor over the 20 amino acids and
Sj is the corresponding SD. Then,

AC lg; j ¼ 1
n− lg

Xn− lg

i¼1

Xi; j−
1
n

Xn

i¼1

Xi; j

 !
� X iþ lgð Þ; j−

1
n

Xn

i¼1

Xi; j

 !

ð2Þ
Where i is the position of protein sequence, j is one of

the residues, n is the size of the window, lg is the value
of lag. We have chosen two lag values, 1 and 2.

Residue composition (RC)
Residue composition [38] represents the occurrence
frequencies of different amino acid pairs in one subse-
quence. It is a good representation of the local com-
position of protein sequences. In this work, the
dimension of residue composition is 20. The matrix in-
cludes the frequencies of 20 amino acids (“A”, “C”,
“D”, “E”, “F”, “G”, “H”, “I”, “K”, “L”, “M”, “N”, “P”, “Q”,
“R”, “S”, “T”, “V”, “W”, “Y”).

Secondary structure (SS)
Protein secondary structure reflects the function of
protein and impacts many kind of protein reactions
[39]. Secondary structure includes alpha helix, beta
bridge, strand, helix-3, helix-5, turn and bend. DSSP is
a powerful tool to compute the secondary structure for
each residue. DSSP [40] gives “H”, “B”, “E”, “G”, “I”, “T”
and “S” as output which indicate alpha helix, beta
bridge, strand, helix-3, helix-5, turn and bend. In this
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work, “0000001”, “0000010”, “0000100”, “0001000”,
“0010000”, “0100000”, “1,000,000” stand for “H”, “B”,
“E”, “G”, “I”, “T” and “S”, respectively, and “X” is rep-
resented by “0000000”.

Accessible surface area (ASA)
As a key property of amino acid sites, accessibility sur-
face area plays a crucial part in protein function [41] be-
cause biological reaction always happens on the surface
of proteins. Values of the accessible surface area (ASA)
for residues from PDB were calculated using the sur-
face_racer_5.0 with the 1.4 Å rolling probe.

Performance assessment
Four intuitive evaluation indexes were derived from
Chou’s symbols introduced for studying protein signal

peptides [42], and they have been successfully used in
some papers [43–49]. Thus, we utilized these four in-
dexes to evaluate the proposed predictor: sensitivity
(Sn), specificity (Sp), accuracy (Acc), Matthew’s correl-
ation coefficient (MCC). And the four measurements are
defined as following:

Sn ¼ TP
TP þ FN

ð3Þ

Sn ¼ TP
TP þ FP

ð4Þ

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

ð5Þ

Fig. 2 The process of cascade SVMs. Red dots are positive samples. Orange dots are non-acetylation samples. Purple dots are selected negative
samples. Grey dots are non-acetylation samples that are correctly predicted and deleted
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MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

ð6Þ

where TP and TN mean the number of truely identified
acetylation sites and non-acetylation sites. FN is the
number of the acetylation sites incorrectly predicted
as non-acetylation sites, and FP represents the num-
ber of non-acetylation sites incorrectly predicted as
acetylation sites.

Feature selection scheme
Varied features are often redundant and some features
are noisy and lead to negative impacts, so it is necessary
to remove the irrelevant and redundant features from
original feature set using an efficient feature selection
method. In this study, we performed a two-step feature
selection method to select the optimal feature subsets.
After comparison among different evaluation index, we
find that mRMR (maximum relevance and minimum re-
dundancy) [50] can give the best result for feature

selection. The detailed steps of feature selection method
are as follows:

1) For the first step, mRMR value was calculated to
estimate the relevance and redundancy between
features. Then, we ranked these features based
on mRMR value, and picked out the top 300
features.

2) Secondly, features in ranked list were added one by
one into feature subset, and we built models on
these feature subsets.

3) Then, validation dataset was used to evaluate the
performance of these feature subsets.

4) In the end, the feature subset that has the best
performance was the optimal feature subset.

In this study, we regarded MCC value as the evalu-
ation performance in feature selection because MCC
value is a comprehensive evaluation index for positive
and negative samples.

Cascade classifier
Support vector machine (SVM) is a widely used machine
learning algorithm based on statistical learning theory
[51]. For actual implementation, LIBSVM package (ver-
sion 3.0) [52] with radial basis kernels (RBF) is used,
where the kernel width parameter γ represents how the
samples are transformed to a high dimensional space.

Table 1 Comparison between sequence features and
combination features (sequence and structural features)

Sn(%) Sp(%) Acc(%) MCC

Sequence features (PCP + PSSM+AC + RC) 70.66 62.15 66.41 0.119

Sequence and structural features
(PCP + PSSM+AC + RC + SS + ASA)

76.71 72.19 74.45 0.19

Fig. 3 The average values of four physicochemical properties around the center residue in positive dataset and negative dataset, respectively. (a)
is for activation gibbs energy of unfolding, pH9, (b) is for activation gibbs energy of unfolding, pH7, (c) is for normalized flexibility parameters(B-
values), and (d) is for averaged turn propensities in a transmembrane helix
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However, traditional SVM also suffer from the prob-
lem of imbalance training dataset. If all the non-
acetylation sites are regarded as negative samples, the
prediction results will be biased towards the negative
samples and the accuracy is greatly reduced. Enlightened
by the method proposed in Wei’s work [53], we built a
cascade classifier based on SVM to predict acetylation
sites. Figure 2 shows the process of the cascade SVMs
and following is the step of building this classifier, in
which PD represents positive data, TND represents total
negative data and ND represents subset of negative data
(the same amount of samples as PD).
Step1. Randomly select a subset of ND from TND and

generate a balanced classifier Si with PD and ND.
Step2. Test PD and TND with classifier.

Step3 Sort the decision value of PD from large to small
and the 0.95*Mth decision value of PD is regarded as thresh-
old Ti (M is the number of acetylation samples in PD).
Step4. Non-acetylation samples whose decision value

is lower than Ti are excluded from TND, and (Si, Ti)
form the ith layer of cascade classifier.
Step5. Select non-avetylation sites from TND that have

lower decision value as new ND, and generate a new
classifier Si + 1 with PD and ND.
Step6. Repeat Step2–5 until less than 0.05*18061(the

number of original TND) can be removed from TND.
0.95*Mth decision value of PD as threshold means that

we allow 0.05 times positive samples to be predicted in-
correctly in each round. In this case, if less than 0.05
times negative samples can be correctly predicted, the

Fig. 4 Comparison of conservation in each position between acetylated and non-acetylated peptides by information entropy values

Fig. 5 Two sample logos of the compositional biases around acetylation sites compared to non-acetylation sites. Statistically significant symbols
are plotted using the size of the symbol that is proportional to the difference between the two samples. Residues are separated in two groups: (i)
enriched in the positive sample, and (ii) depleted in the positive sample. Color of symbols depends on the polarity of the side chain groups in
corresponding amino acids
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average value of Sp and Sn will be less than 0.5, then we
should stop.
Finally, we get a cascade classifier containing n SVM

classifiers, {(S1, T1), (S2, T2),..., (Sn, Tn)}. For a query sam-
ple q, it will be predicted from (S1, T1) to (Sn, Tn) or-
derly. If the sample q is predicted as the negative sample
at any layer i, Deciq < Ti, the prediction will terminate,
and q is classified as non-acetylation site, or it is trans-
ferred to i + 1 layer for further prediction. It will be clas-
sified as acetylation site only if all the SVM classifiers
predict it as positive sample.

Results
Comparison based on features
To develop an accurate tool to predict protein acetylation
sites, it is necessary and important to translate protein

with comprehensive and proper features into numerical
vector. Sequence features are commonly used in predic-
tion because protein sequences are easily available. How-
ever, sometimes sequence information is not enough to
describe the characteristic of proteins or amino acids, be-
cause proteins are three-dimensional, not only a chain,
and the 3D structure is closer to the real conformation of
proteins. Structural features are used to depict spatial in-
formation of amino acids.
In this study, we tested several features, including se-

quence features (PCP, PSSM, AC, RC) and structural
features (SS, ASA). To verify the importance of struc-
tural features, we made a comparison between sequence
features and combination features, and the performances
are listed in Table 1. Combination features get a higher
performance on Sn, Sp, Acc and MCC than sequence

Fig. 6 The frequency of different kinds of secondary structure in acetylation site and non-acetylation site

Fig. 7 Comparison of frequency of accessible surface area between acetylation sites and non-acetylation sites
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features, which indicates that structural features is sig-
nificant and useful in prediction.

Analysis of sequence features
We calculate the average values and standard errors of
four physicochemical properties around the center residue
in positive dataset and negative dataset, respectively, and
the results are shown in Fig. 3.
As shown in Fig. 3(a)(b)(c)(d), we can see that posi-

tions close to the center lysine have distinctly different
values of all these four physicochemical properties. Es-
pecially in Fig. 3(a) and (b), positions in the upstream
and close to lysine residues have greater values in
positive dataset than in negative dataset while in the
downstream, positive values are weaker. Figure 3(a)
and (b) represents the activation gibbs energy of
unfolding in pH 7.0 and in pH 9.0, so we can conclude
from the above results that acetylation may change the
direction of the unfolding process from one side to an-
other side.
The evolution history represents important information

of a residue, and evolution information reflects the con-
servation information because a conserved position is
more difficult to be replaced. We calculated the informa-
tion entropy (IE) of positions in acetylated peptides and

non-acetylated peptides, and results are shown in Fig. 4.
Comparison between acetylated and non-acetylated pep-
tides indicates that residues around acetylation sites are
more conservative than those in the flanking position of
non-acetylation sites, especially in the downstream.
Figure 5 shows the distribution of amino acids around

center lysine. Figure 5 shows that the distribution of amino
acid residues between acetylation and non-acetylation
are distinct. In acetylation data, lysine (K) is enriched
around acetylated lysine, especially on position 1.
While in non-acetylation data, serine (S) is enriched,
especially on position 1, 2, 3 and 4. Thus, it is neces-
sary to utilize frequency-dependent feature, RC, and
position-dependent feature, AC, to represent the char-
acteristics of samples.

Analysis of structural features
We evaluate the frequency of different kinds of second-
ary structure in acetylation site and non-acetylation site,
which is defined as:

Fi ¼ Ni

N
; i ¼ H ;B; E;G; I;T ; Sf g ð7Þ

Fig. 8 MCC curve of different number of features in final feature set

Table 2 Comparison of performance between before feature
selection and after feature selection

Sn(%) Sp(%) Acc(%) MCC Dimension

Before feature selection 63.19 52.58 57.88 0.087 632

After feature selection 69.18 53.58 61.38 0.1263 102

Table 3 Performances of cascade classifier and single SVM
classifier

Sn(%) Sp(%) Acc(%) MCC

Single SVM trained on all training dataset 0.91 100 50.45 –

Single SVM trained on balance training
dataset

69.18 53.60 61.39 0.08

Cascade Classifier 76.71 72.19 74.45 0.19
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where Ni is the number of alpha helix, beta bridge,
strand, helix-3, helix-5, turn or bend and N is the num-
ber of acetylation site or non-acetylation. The result is
detailedly shown in Fig. 6.
The frequency of alpha helix on human acetylation

sites is less than that on non-acetylation sites, and the
frequency of strand on acetylation sites is greater than
that on non-acetylation sites, which we can infer that
acetylation is more likely to occur in strand region. In
addition, obviously, some non-acetylation sites are in
beta bridge region while no acetylation sites are beta
bridge structure. Based on this phenomenon, we sur-
mise that maybe it is extremely acetylation to happen
on beta bridge region. These analyses may offer some
new clues for the structural patterns surround the
acetylation sites.
Accessible surface area represents the exposed area in

protein spatial structure, and biological reaction always
happens on the surface of proteins. We statistically cal-
culate the frequency of accessible surface area value in
different numerical range of acetylated peptides and
non-acetylated peptides, respectively, shown in Fig. 7. As

described in Fig. 7, the available surface area values of
acetylation sites are concentrated between 60 and 150,
and most of the frequency values of acetylation sites in
this range are greater than non-acetylation sites. How-
ever, non-acetylation sites have advantage in low access-
ible surface area values, from 0 to 60, especially between
0 to 10. We can explain this appearance by reasonable
conjecture that the larger the area exposed to the sur-
face, the more likely the acetyl enzyme come into con-
tact it, and if a lysine site is buried in a protein, it will
have little chance to take part in the reaction. Therefore,
lysine sites with greater accessible surface area are more
likely to be acetylated.

Optimal feature selection
In this study, we employed a two-step feature selection
scheme. In the first step, we calculate the mRMR of all
features, respectively, and these features are ranked in a
list according to fisher-score. Secondly, the first feature
is regarded as the basic feature subset and we added fea-
tures one by one into feature subset from ranked list. In
the end, the optimal feature set contains 102 features
and the MCC value of different number of features is
shown in Fig. 8. Besides, we make a comparison of per-
formance between before feature selection and after fea-
ture selection, shown in Table 2. Obviously, not only
MCC value, also other performances are improved
after feature selection. Besides, the feature dimension
is greatly reduced (632 dimensions before feature se-
lection and 102 dimensions after feature selection),
which will increase the speed of prediction and save a
lot of computational cost.

Table 4 Comparison between other method and our method
based on independent testing dataset

Sn(%) Sp(%) Acc(%) MCC

ASEB 70.95 22.87 46.91 0.01

GPS-PAIL 16.41 83.12 49.77 −0.003

LAceP 66.67 43.89 55.28 0.037

PLMLA 56.76 47.38 52.07 0.015

Our method 76.71 72.19 74.45 0.19

Fig. 9 Detailed comparison between our method and LAceP based on protein P45880. a is the predicted result of our method and b is the
predicted result of LAceP, c is the predicted result of ASBE, d is the predicted result of GPS-PAIL and e is the predicted result of PLMLA. Green
parts in this figure mean correctly classified lysine sites, and red parts mean uncorrectly classified lysine sites
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Cascade classifier result
In computational methods, most of machine learning algo-
rithms are sensitive to ratio of positive and negative sam-
ples. In this study, there are 18,061 non-acetylation sites
and 1956 acetylation sites in our training dataset, nearly
10:1 for ratio of negative and positive data, so we construct
a cascade classifier based on SVM to solve the imbalance
problem between positive data and negative data.
To verify if cascade classifier effectively improved the

prediction performances, we compare the performances
of cascade classifier and single SVM classifier on inde-
pendent test dataset, and the results are shown in Table 3.
As listed in Table 3, single SVMs always predict a lower
Sn value, Acc value and MCC value no matter trained on
all training data or trained on balance training dataset.
After constructing a cascade classifier based on SVMs,

general performance is obviously increased. Single SVM
trained on balance training dataset gets a Sn value that is
not too bad, but a relatively poor Sp value, which may
because negative samples used for training are only a part
of all negative samples, and contains only partial in-
formation. Though Single SVM trained on all training
dataset utilizes all negative samples, it results in se-
vere sample imbalance, therefore, the Sn value is very
bad. The cascade classifier not only contains almost
all negative sample information, but also effectively
solves the problem of sample imbalance, so it gets
the best results.

Comparison with exiting methods
To further evaluate the performance, we compared our
method with other published acetylation prediction
methods, LAceP [13], PLMLA [9], ASBE [17] and GPS-
PAIL [4]. Initially, we selected 5 exiting methods to make
comparison, but the web server of another method,
PSKAcePred [11], can not be used. We put our inde-
pendent testing dataset on other four methods and
obtained the prediction results, shown in Table 4.
Sn, Sp, Acc and MCC are used to measure the
performance.

Table 5 Comparison of performances between Homo.sapiens,
Mus.musculus and Rattus.norvegicus

Sn(%) Sp(%) Acc(%) MCC

Mus.musculus 45.78 67.91 56.85 0.089

Rattus.norvegicus 57.63 56.82 57.23 0.074

Homo.sapiens 76.71 72.19 74.45 0.19

Fig. 10 Two sample logos of the compositional biases around acetylation sites compared to non-acetylation sites in Homo.sapiens, Mus.musculus
and Rattus.norvegicus
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As we can see from Table 4, LAceP get the best per-
formance (Sn is 66.67%, Sp is 43.89%, Acc is 44.63%
and MCC is 0.037) among ASBE, GPS-PAIL, LAceP
and PLMLA, while our method achieve a Sp of 72.19%,
a Sn of 76.71%, an Acc of 72.35% and a MCC of 0.19,
which were much better than other four methods’
performance.

Then, we make a detailed comparison of the predicted
results on a protein (P45880). Figure 9 describes the
specific predicted results, in which green represents the
correctly classified lysine sites and red represents the in-
correctly classified lysine sites. We can clearly see that
green sites occupy a large proportion and we can cor-
rectly classified many lysine sites that LAcep incorrectly

Fig. 11 The top 10 statistically over-represented terms of biological processes, cell component and molecular functions (p-value< 0.01). X-axis
represents enrichment fold and Y-axis means entries of biological processes, cell component and molecular functions. Different color represents
different p-value
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classified. Besides, our method also has good prediction
accuracy in the helix and sheet structures.
The promising performance and the conclusion from

Fig. 9 demonstrate that our method was particularly useful
for protein acetylation prediction than other methods.

Comparison between different species
Due to the specificity among species, different methods
should be developed for different species to predict
acetylation sites. Our Method is proposed only for
prediction of acetylation sites in human proteins. To
verify whether our method suit for other species, we
selected two mammals to test, because mammals
have closer relation with human than prokaryotes or
non-mammals. We obtained acetylated proteins of
Mus.musculus and Rattus.norvegicus from database
mentioned in 2.1, and process data in the same way
as section 2.1. Then, we test these two species by our
method, and the results are listed in Table 5. From
Table 5, we can obviously observe that the perfor-
mances of Mus.musculus and Rattus.norvegicus are
not satisfactory, no matter on Sn, Sp, Acc or MCC.
To explain it, we drew compositional biases around

acetylation sites compared to non-acetylation sites in
Homo.sapiens, Mus.musculus and Rattus.norvegicus, in
Fig. 10. We can see that among the three species, the
distribution of amino acids around center lysine is very
different, especially in Homo.sapiens and the other two
species, which may lead to different mechanisms of ly-
sine acetylation. Therefore, different species may require
different methods of classification.

Gene ontology analysis of acetylated proteins
We statistically analyze the enriched biological pro-
cesses, cell component and molecular functions with
the gene ontology (GO) annotations with Fisher-exact
test for acetylated proteins, of which the top 10

statistically significant terms of these three criteria
are shown in Fig. 11 (p-value< 0.01).
We clearly find that acetylation prefers to occur at

diverse metabolic process because among the top 10 bio-
logical process, 5 terms are related to metabolic process,
including primary metabolic process (GO:0044238), or-
ganic substance metabolic process (GO:0071704), cellular
metabolic process (GO:0044237), small molecule metabolic
process(GO:0044281), single-organism metabolic process
(GO:0044710). It has been reported that acetylation may
play an important role in the development of cardiovascu-
lar diseases through metabolic regulation [54]. Metabolic
processes that we found from GO analysis may be entry
points for studies on the correlate acetylation with disease.
Besides, 3 GO terms are related to regulation, including
negative regulation of biological process (GO:0048519),
positive regulation of cellular process (GO:0048522), posi-
tive regulation of biological process (GO:0048518). Nega-
tive regulation of biological process means any process
that stops, prevents, or reduces the frequency, rate or
extent of a biological process, positive regulation of cellular
process any process that activates or increases the fre-
quency, rate or extent of a cellular process, any of those
that are carried out at the cellular level, positive regulation
of biological process means any process that activates or
increases the frequency, rate or extent of a biological
process. From this observation, we can infer that
acetylation is a key that can active or stop some biological
processes.
As for cell component, the top three most significant

GO terms are cytosol (GO:0005829), cytoplasmic part
(GO:0044444) and cytoplasm (GO:0005737), and intra-
cellular part (GO:0044424) is also in top 10, which are
all positions in cellular. And among the top 10 biological
process, 3 terms are different extra cellular positions in-
cluding extracellular membrane-bounded organelle (GO:
0065010), extracellular exosome (GO:0070062) and

Fig. 12 The enriched KEGG annotations for acetylated proteins (p-value< 0.01). E-fold, Enrichment fold
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extracellular organelle (GO:0043230). These observations
indicate that acetylated proteins are active no matter in
cellular or out of cellular.
For molecular function, we can obviously find from that

9 terms among the top 10 GO terms are about binding
(protein binding (GO:0005515), binding (GO:0005488),
enzyme binding (GO:0019899), identical protein binding
(GO:0042802), anion binding (GO:0043168), RNA binding
(GO:0003723), poly(A) RNA binding (GO:0044822), small
molecule binding (GO:0036094), organic cyclic compound
binding (GO:0097159)). We can infer from it that acetyl-
ation may promote binding between proteins, various li-
gands and compounds which may cause a lot of diseases.
Besides, enzyme have high specificity and catalytic ef-
ficiency to their substrates, and catalytic activity (GO:
0003824) means catalysis of a biochemical reaction,
both of which are essential for a lot of biological
processes and ensure that the intricate biological pro-
cesses within the cell can proceed in an orderly
manner.
Taken together, these observations show that acetyl-

ation plays an indispensable role in human body.

KEGG analysis of acetylated protein
We map all the acetylated protein used in our study
to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways to further explore functional as-
pects of acetylation substrates. The top 10 enriched
pathways are listed in Fig. 12 (p-value< 0.01) and the
statistical result of significant pathways is shown in
Fig. 13 (p-value< 0.01).
We can detect that six terms belong to metabolism

class, including Metabolic pathways (hsa01100), Valine,
leucine and isoleucine degradation (hsa00280), Carbon
metabolism (hsa01200), Alanine, aspartate and glutam-
ate metabolism (hsa00250), Biosynthesis of amino acids
(hsa01230) and Propanoate metabolism (hsa00640),
which is consistent with the result of biological process
in GO, meaning that acetylation plays an important role
in metabolism. And three terms are subordinate to gen-
etic information processing class, consisting of RNA deg-
radation (hsa03018), Mismatch repair (hsa03430) and
DNA replication (hsa03030), and this observation is also
clearly emerged form Fig. 13. Except metabolism path-
way and genetic information processing pathway, a
large portion of acetylated proteins are related to dis-
ease. Though organismal system terms and environ-
mental information processing didn’t appear in Fig. 12,
they occupy a large proportion in Fig. 13. These results
concluded demonstrate that acetylation involved in di-
verse pathways in organism, and the study of acetyl-
ation mechanism contributes to the understanding of
disease and pharmaceutical industry.

Conclusions
In this study, we implement an application of cascade
classifier to human protein acetylation prediction prob-
lem, combining sequence features and structural fea-
tures. In this method, we employed a two step feature
selection (mRMR and IFS). We proofed that combined
feature (sequence features and structural features) is bet-
ter than sequence feature, and the result of our method
is much better than others’ which shown that our
method is very promising and can be a useful tool to
identification of acetylation sites in human. This work

Fig. 13 The statistical result of significant pathways(p-value< 0.01)
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also indicated that cascade classifier can resolve the im-
balance between positive samples and negative samples
to improve the performance. We are looking forward
that our method will give a powerful help for further
studies of acetylation process in human body. We also
test that whether different species can get good results
on the same method, while the performances of other
species are not satisfactory. Therefore, for future work,
we are going to seek suitable methods for acetylation
sites prediction in other species.
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