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Abstract

Background: Missense mutations in the first five exons of F9, which encodes factor FIX, represent 40% of all
mutations that cause hemophilia B. To address the ongoing debate regarding in silico identification of disease-
causing mutations at these exons, we analyzed 215 missense mutations from www.factorix.org using six in silico
prediction tools, which are the most common used programs for analysis prediction of impact of mutations on the
protein structure and function, with further advantage of using similar approaches. We developed different
algorithms to integrate multiple predictions from such tools. In order to approach a structural analysis on FIX we
performed a modeling of five selected pathogenic mutations.

Results: SIFT, PolyPhen-2 HumDiv, SNAP2, and MutationAssessor were the most successful in identifying true non-
causative and causative mutations. A proposed function integrating these algorithms (wgP4) was the most sensitive
(90.1%), specific (22.6%), and accurate (87%) than similar functions, and identified 187 variants as deleterious. Clinical
phenotype was significantly associated with predicted causative mutations at all five exons. However, PolyPhen-2
HumDiv was more successful in linking clinical severity to specific exons, while functions that integrate 4–6
predictions were more successful in linking phenotype to genotypes at the light chain (exons 3–5). The most
important value of integrating multiple predictions is the inclusion of scores derived from different approaches.
Modeling of protein structure showed the effects of pathogenic nsSNPs on structure and function of FIX.

Conclusions: A simple function that integrates information from different in silico programs yields the best
prediction of mutated phenotypes. However, the specificity, sensitivity, and accuracy of genotype-phenotype
predictions depend on specific characteristics of the protein domain and the disease of interest as we validated by
the structural analysis of selected pathogenic F9 mutations. The proposed function integrating algorithm (wgP4)
might be useful for the analysis of nsSNPs impact on other genes.
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Background
Hemophilia B is a recessive X-linked disorder character-
ized by defective function or loss of the coagulation factor
IX due to mutations in the gene F9, of which 40% cluster
in exons 1–5 [1]. By international consensus, hemophilia
B is considered severe when residual factor IX activity is
< 1%, moderate when levels are between 1 and 5%, and
mild when levels are > 5% [2]. The precursor contains an
N-terminal prepro-leader sequence consisting of a signal
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peptide (exon 1) and a propeptide (exon 2), followed by a
light chain that contains a gamma-carboxyglutamic (Gla)
domain (exon 3), two epidermal growth factor-like do-
mains (exons 4 and 5), a linker (exon 6), an activation pep-
tide, and a C-terminal heavy chain containing the catalytic
domain (exons 7 and 8) [3].
In early translation, the signal peptide directs the poly-

peptide towards the endoplasmic reticulum, and is then
eliminated [4]. Subsequently, the propeptide triggers the
carboxylation of the Gla domain by forming a binding site
for gamma-glutamyl carboxylase [5, 6]. The ensuing re-
moval of the signal and propeptide generates the fully
functional mature protein [7]. Factor IX can be activated
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both by factor XIa and by the tissue factor/factor VIIa
complex, which eliminate the activation peptide to gener-
ate the light chain and the heavy chain [8]. In the presence
of calcium, the Gla domain undergoes conformational
changes to interact with the plasma membrane of active
platelets [9]. Similarly, binding of calcium to the EGF-1
domain elicits conformational changes that enable inter-
action with the tissue factor/factor VII complex [10], and
that enable the EGF-2 and proteolytic domains to form
the factor IXa/factor VIIIa complex, which, in turn, is crit-
ical to the activation of factor X at platelet membranes
during coagulation [11, 12].
Thus, it is important to identify factor IX mutations that

prevent protein-protein interactions and subsequent clot-
ting. Recently, a large number of mutations of unknown
functional significance were described [13], although these
mutations are difficult and time-consuming to
characterize in vitro [14]. On the other hand, computa-
tional analysis has become reliable as a tool to predict the
possible biological effects of mutations, and may help
focus resources on those that warrant exhaustive and
functional analysis. To achieve the best correlation be-
tween clinical phenotype and specific mutations in F9,
biochemical and molecular parameters have been com-
bined with bioinformatics data [15, 16]. Similarly, we have
now analyzed mutations in F9 exons 1–5 through multiple
bioinformatics tools to assess the concordance between
predicted effects and reported clinical severity. We found
that a mutation predicted as deleterious may be associated
with a severe clinical phenotype depending on the domain
in which it occurs. In addition, the data suggest that it is
not necessary to use a large number of programs to accur-
ately predict the effects of a mutation.

Methods
The factor IX amino acid sequence was obtained from Uni-
Prot [17], and numbered according to Yoshitake et al. [18].

Selection of missense mutations and in silico tools
F9 mutations are referred on different databases included
in the Coagvdb database (info.vit.ac.in/CoagVdb/index.
html), from which, missense mutations in F9 exons 1–5
were obtained from www.factorix.org [1]. Non-synonymous
single nucleotide polymorphisms (nsSNPs) in F9 coding re-
gions were also collected from the NCBI single nucleotide
polymorphism database with access number NP_000124.1
[13]. The nsSNPs were analyzed using multiple online bio-
informatics tools to obtain a reliable in silico prediction of
deleterious effects, if any (Table 1). We chose SIFT, Poly-
Phen2, PROVEAN, MutationAssessor and Panther as they
are commonly used tools available for free, using a similar
approach (sequence conservation), applying various
methods to calculate sequence conservation. In addition,
we chose SNAP2 which, like PolyPhen2, integrates
characteristics based on sequence and structure using an
automatic learning approach (machine learning) to
categorize variants as benign or damaging (Table 1).
To improve the quality of predictions, we combined four

(wgP4) or six (wgP6) programs using corresponding func-
tions that were designed to generate binary predictions
similar to PolyPhen-2, so that scores 0–0.5 were considered
benign and scores between 0.5 and 1 were regarded as dele-
terious (Fig. 1). The functions were also designed to weight
each program, so that the program with the highest accur-
acy was weighted 1 and all other programs were weighted
proportionally (see Table 2 in Results).

Sensitivity, specificity, and accuracy
Based on the FIX activity and secondarily, on the associated
clinical phenotype reported in the consulted sources, the
severity of the phenotype was categorized as severe (FIX ac-
tivity 0–5%) or non-severe (FIX activity higher than 5%)
[25, 26]. Predictions were classified as true positive (TP, se-
vere phenotype predicted from a damaging mutation), false
positive (FP, non-severe phenotype predicted as damaging
mutation), true negative (TN, non-severe phenotype pre-
dicted as benign mutation), and false negative (FN, severe
phenotype predicted as benign mutation). Sensitivity was
calculated as TP/(TP + FN) × 100, specificity was calculated
as TN/(TN+ FP) × 100, and accuracy was calculated as
(TN+TP)/(TN+ FP + FN+TP) × 100.

Statistical analysis of in silico prediction vs. phenotype
Two-tailed Pearson’s χ2 test or Fisher’s exact test in SPSS
20.0 [27] were used to assess the relationship between in
silico prediction for each variant vs. clinical severity. P <
0.05 was considered statistically significant.

Secondary structure
The FFPRED tool in PSIPRED [28] was used to analyze
changes in secondary structure (alpha helix, extended
strand, and random coil) and other protein properties (ali-
phatic index, hydrophobicity, surface area, and addition or
deletion of phosphorylation sites). Secondary structure was
predicted for the sequence corresponding to the signal pep-
tide, propeptide, and the Gla, EGF-1, and EGF-2 domains.

Tertiary structure modeling of selected mutations on the
EGF domains
Using the structure of the light chain from the full FIX
protein from pig (PDB ID 1PFX, chain L [29] as a tem-
plate in I-TASSER (Iterative Threading Assembly Refine-
ment) [30] we modeled the human F9 EGF domains and
C-terminal linker (residues 93 to 192) with the mutations
p.Gln96Pro, p.Gly105Asp, p.Glu124Lys, p.Gln143Arg, and
p.Val153Met. As this structure lacks calcium, we also
modeled EGF-1 (residues 93 to 129) with the p.Gln96Pro
mutation using the structure of EGF-1 from human F9
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Table 1 Bioinformatics tools for in silico analysis

Program Based on Prediction Score Functional impact (reference) Available at

Poly Phen 2* Sequence- and
structure-based approach

Benign < 0.5 On the structure and function of a human
protein [19]

http://genetics.Bwh.harvard.edu/
pph2/index.shtml

Possibly
damaging

≥0.5

Probably
damaging

SIFT Sequence-based
approach

Tolerated ≥0.05 On protein function and the physiochemical
properties of AA [20].

http://sift.jcvi.org/

Damaging < 0.05

PANTHER Sequence-based
approach

Probably
benign

0 to −3 Estimates the likelihood of a particular
nonsynonymous coding SNP causing
a functional impact on the protein [21].

http://www.pantherdb.org/tools/
csnpScoreForm.jsp

Possibly
damaging

<−3

Probably
damaging

MutationAssessor Sequence-based
approach

neutral ≤0.8 On the substitution of AA in the protein
by assessing evolutionary conservation [22].

http://mutationassessor.org

low impact 0.8 to
< 1.9

medium
impact

1.9 to
≤3.5

high
impact

> 3.5

PROVEAN Sequence-based
approach

Neutral > − 2.5 On the biological function of a protein [23]. http://provean.jcvi.org/index.php

Deleterious <−2.5

SNAP2 Sequence- and
structure-based
approach

Neutral 100 On the secondary structure and compares
the solvent accessibility of the wild and
mutated protein [24].

https://rostlab.org/services/
snap2web

Effect − 100

*, “HumDiv” is the default Classifier model used by probabilistic predictor; it is preferred for evaluating rare alleles, dense mapping of regions identified by
genome-wide association studies, and analysis of natural selection. “HumVar” is better suited for diagnostics of Mendelian diseases, which requires distinguishing
mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles
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with calcium (PDB ID [31]) as reference. All modeling at-
tempts resulted in a single structure, with C-scores > 1.4
and TM-scores > 0.9, so, according to I-TRASSER criteria,
these are well-known and very reliable models [32]. The
structure of the complex between the EGF domains and
the catalytic domain was obtained by superposition of the
modeled EGF-2 domains with that of the human EGF-2
domain in the most recent high resolution structure of a
Fig. 1 Formulas for combined predictions. (1 – SIFT), as SIFT scores are invers
PolyPhen, score obtained from PolyPhen-2 HumDiv. (SNAP2/100)2, SNAP2 sco
PolyPhen-2 scores by dividing by 100 and squaring. MutationAssessor, scores
and so are coded as 1. Predicted values were log-transformed at base 5 to ob
categorized as deleterious or benign, and are coded 1 and 0 respectively. n, n
and wgP4, n is substituted by the weight for each program. In B and C, predic
fragment of human F9 (PDB ID 6MV4 [33]. All models
were inspected in VMD [34].

Results
Selection of single nucleotide polymorphisms and
missense mutations
We analyzed 215 missense mutations deposited at www.
factorix.org for exons 1–5 in F9. Residual factor IX
e to PolyPhen-2 scores, they were scaled by subtracting from 1.
res may be positive and negative percentages, they were scaled to
range from 4 to − 2. Mutations scoring below 1.9 are considered benign,
tain values between 0 and 1. PANTHER and PROVEAN, predictions are
umber of programs used in combined analysis. In the functions wgP6
ted values in the numerator are multiplied by the weight

http://www.factorix.org
http://www.factorix.org
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Table 2 In silico analysis of 215 single nucleotide polymorphisms at F9 exons 1–5

Program Variants predicted
as deleterious (%)

Variants predicted
as benign (%)

Accuracy Weighte

SIFT 194 (90.2) 21 (9.8) 90.2 1

PolyPhen-2 HumDiv 189 (87.9) 26 (12.1) 87.9 0.974

PolyPhen-2 HumVar 179 (83.3) 36 (16.7)

SNAP2 184 (58.6) 31 (14.4) 85.6 0.924

MutationAssessora 188 (87.4) 27 (12.6) 87.4 0.896

PANTHER 184 (85.6) 31 (14.4) 85.6 0.850

PROVEAN 176 (81.9) 39 (18.1) 81.9 0.772

gPb 184 (85.6) 31 (14.4)

wgP6c 184 (85.6) 31 (14.4)

wgP4d 187 (87.0) 28 (13.0)
aMutationAssessor scores mutational impact as neutral, low, medium, and high. Neutral and low impact were considered benign, while medium and high impact
were considered deleterious
bCombined prediction
cWeighted combined prediction from six programs
dWeighted combined prediction from four programs
eThe program with highest accuracy was weighted 1, and all other programs were weighted proportionally
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activity was obtained from associated publications. Two
nonsevere mutations were noted at the signal peptide,
along with 11 severe mutations. In the propeptide, 16 se-
vere mutations were noted, along with 55, 41, and 39 se-
vere mutations in Gla, EGF-1, and EGF-2. In addition,
16, 27, and 8 nonsevere mutations were noted in Gla,
EGF-1, and EGF-2. According to severity criteria, we se-
lected five mutations to be analyzed for changes in their
tertiary structure of FIX protein.
In silico analysis
The number of the variants predicted as deleterious by in-
dividual programs is listed in Table 2. SIFT, PolyPhen-2
HumDiv, and MutationAssessor identified the highest
number of variants as deleterious, while PROVEAN,
PolyPhen-2 HumVar, PARTNER, and SNAP2 identified
the highest number of variants as benign. A function that
weights predictions from 6 programs (wgP6) identified
184 variants as deleterious based on a threshold of ≥0.5.
Excluding PROVEAN and PANTHER, which were less
accurate, a function integrating the remaining four pro-
grams (wgP4) identified 187 variants as deleterious. Add-
itional data are provided in Additional file 1: Table S1),
including results from integrating all seven programs.
Sensitivity, specificity, and accuracy
Analysis of mutations at all domains indicated that SIFT
was the most accurate, followed by PolyPhen-2 HumDiv,
SNA2P, and MutationAssessor. After integrating the
scores of these four programs into wgP4, the accuracy was
87% (Table 2). SIFT was also the most sensitive (93.2%),
but not the most specific (18.9%), while MutationAssessor
was the next most sensitive (92%) and the most specific
(26.4%). wgP4 was the most sensitive (90.1%) and specific
(22.6%) of combined functions (see Fig. 2).
As shown in Fig. 3, only few mutations have been reported

in the first two domains (exons 1–2), most of which are
known to cause severe hemophilia B. Specificity was 100%
for PolyPhen-2 HumDiv, PolyPhen-2 HumVar, SNAP2,
PROVEAN, and the three combined functions. However,
SIFT classified the only two cases of nonsevere phenotype as
deleterious (0% specificity). MutationAssessor was the most
sensitive (63.6%) and accurate (61.54%), while wgP4 was the
most specific (36.4%) and accurate (30.8%) of combined
functions. Because mutations analyzed in exon 2 (propeptide
domain) were all severe, specificity was 0% in all cases, al-
though sensitivity was highest (87.5%) in SIFT, PolyPhen-2
HumDiv and HumVar, MutationAssessor, and the combined
function wgP4. The proportions of mutations causing severe
phenotype were of 77.5 and 83% for Gla and EGF-2 domains
although such mutations were less common in EGF-1
(60.3%). Of note, only PANTHER and PROVEAN failed to
identify true negatives in exon 3 and 4, respectively.

Association between in silico analysis and phenotype
As an grouped analysis, based on analysis by SIFT,
PolyPhen-2 HumDiv, MutationAssessor, and wgP4, dele-
terious mutations at all five domains, as well as in Gla,
EGF-2, and the light chain (exons 3–5) were significantly
associated to with severe phenotype (P < 0.05) (residual
factor IX activity 0–5%). A significant association (P <
0.05) was also observed between severe phenotype and
mutations in the light chain that were predicted to be
deleterious by SNAP2. However, the correlation between
phenotype and light chain genotype was strongest by in-
tegrating 4–6 programs (Table 3). Finally, mutations in
Gla that were predicted to be deleterious by all programs



Fig. 2 Sensitivity, specificity, and accuracy for five factor IX domains. The first five domains encoded by exons 1–5 were analyzed as one unit
using individual tools. See text for more details
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except PolyPhen-2 HumVar and PROVEAN were also
significantly correlated with clinical phenotype.
In order to test the possible corroboration of changes

in secondary structure due to the 215 amino acid
changes, we recapitulated the effects of mutations on
hydrophobicity, surface area, aliphatic index, percentage
of alpha helix, extended strand, random coil, and num-
ber of phosphorylation sites (Fig. 4). The prediction for
the sequence corresponding to the signal peptide, pro-
peptide, and the Gla, EGF-1, and EGF-2 domains, was
made by using PSIPRED analysis.

Association between predicted structural impact and
phenotype
In order to explore the consequences of selected muta-
tions on FIX structure and protein-protein interactions,
we modeled four severe mutations (p.Gln96Pro,
p.Glu124Lys, p.Gln143Arg, and p.Val153Met) and a mild
one (p.Gly105Asp). A comparison of the local structure
around the mutation site, in the wild-type and mutant ver-
sions, is shown in Fig. 5.
The Gly105Asp mutation happens in an exposed loop

and does not have any negative charges nearby that
would repel it (Fig. 5a and b), explaining why it is appar-
ently well tolerated.
One of the severe mutations lies at the interface between

the light chain and the catalytic domain. Gln143 fits snugly
against Tyr161 and the disulfide bond formed by C157 and
Cys170 (Fig. 5c). As Arginine is larger than Glutamine,
Arg143 clashes against Tyr161 and the disulfide from the
same domain, and with Phe208 (Phe423 considering the
full protein) from the catalytic domain (Fig. 5d). Relieving
this clash by displacing Tyr161 results in a new clash with
Pro177, which could affect the position of the C-terminal
linker and the interdomain disulfide bond with the catalytic
domain (Cys178 from the linker and Cys122 (Cys335 con-
sidering the full protein) from the catalytic domain).
Two of the severe mutations lie at the interface between

EGF-1 and EGF-2. Glu124 (Fig. 5e) forms a conserved salt
bridge with Arg140 in EGF-2, stabilizing the interaction
between the domains. Mutation of Glutamate to Lysine
results in a predominantly positive interface between the
two domains (Fig. 5f), which is likely to alter the angle of
interaction. Located in the loop below this salt bridge,
Val153 (Fig. 5g) fits in a densely packed cavity at the inter-
face between EGF-1 and EGF-2; Met153 (Fig. 5h) cannot
fit properly in the same space, bumping against one of the
disulfide bonds of EGF-2 (Cys155 and Cys141) and against
a loop in EGF-1 (Phe122 and Gly123), potentially altering
the angle between both domains.
The remaining severe mutation lies at the calcium-

binding site of EGF-1. The side chain of Gln96 is part of
the coordination shell of the calcium ion (Fig. 5i), so the
mutation to Proline (Fig. 5j) eliminates one of the li-
gands and is likely to decrease affinity for the ion.

Discussion
In this study, we analyzed specific, interacting protein do-
mains that impact the activity of factor IX. Accordingly,
six freely available bioinformatics tools were used to find
potentially deleterious missense mutations and single nu-
cleotide polymorphisms. Sensitivity, specificity, and accur-
acy were assessed based on observed clinical phenotypes.
Also, we considered the secondary and tertiary structures
analysis in an attempt to enhance the approaches to a pos-
sible correlation between in silico prediction and clinical
phenotypes. These approaches were integrated in the mo-
lecular modeling of F9 selected mutations in an attempt



Fig. 3 Sensitivity, specificity, and accuracy for each factor IX domain. The (a) signal peptide at exon 1, (b) propeptide at exon 2, (c) Gla domain at
exon 3, (d) EGF-1 domain at exon 4, and (e) EGF-2 domain at exon 5 were analyzed by individual tools. See text for more details
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Fig. 4 Analysis of factor IX secondary structure by the FFPRED tool
in PSIPRED. Analysis of predicted changes in (a) percentage alpha
helix, extended strand, and random coil, as well as in (b) aliphatic
index, hydrophobicity, surface area, and addition or deletion of
phosphorylation sites. Domains are depicted in different shades
of gray
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to corroborate the correlation between in silico prediction
and clinical phenotype.

Reliability of in silico predictions
The deleterious effects of missense mutations in F9
gene, especially at the first five domains of the precursor
protein product, have been studied in silico in several
studies. In this study, we integrated results from several
bioinformatics tools to enhance the quality of predic-
tions. The six tools integrated were selected not only
based on performance, but also for the complementarity
or diversity of approach to the analysis of an amino acid
sequence. Previously, Ou et al. [35] reports a total of 285
mutations with a 52% of concordance between predicted
deleterious mutations in IDUA gene made by SITF and
Poly Phen. In contrast, the concordance dropped to
9.83% when seven programs were used. Similarly, we
found that concordance was 85.6% (n = 184 mutations)
using SIFT and PolyPhen-2, but 67.4% using all six pro-
grams and or various combinations thereof (data not
shown). These results imply that prediction quality does
not necessarily improve by using a larger number of bio-
informatics tools, but by proper selection of programs
that analyze properties closely related to the biological
function of the gene and to the associated trait.
We have formulated a straightforward way to integrate

programs (gwP4) by which to generate reliable predic-
tions. Similar tools have been described, including Condel
[36], Meta-SNP [37], PON-P2 [38], and PredictSNP [39].
Condel combines SIFT, PolyPhen-2, MutationAssessor,
and MAPP. Notably, concordance was high (89%) be-
tween Condel and PROVEAN, especially when mutations
are predicted to be deleterious [40]. Similarly, we found
that predictions from gwP4 were 84.2% concordant to
results from SIFT and PolyPhen-2, and 81.4% concordant
to predictions from PROVEAN (data not shown). These
results highlight the notion that fewer programs may be
better to identify a mutation as deleterious.
The most important innovation from this work about

the integration of predictions into wgP4 is the inclusion of
a wide variety of scores and predictions from different
programs, yielding dichotomized results. However, this
analysis might mask intermediate phenotypes and is there-
fore suitable only for categorical phenotypes. On the other
hand, this approach focuses on coding regions and nonsy-
nonymous mutations, which represent more than 60% of
all missense mutations described for F9, but excludes



Fig. 5 Comparison of the local environment of severe and mild mutations in the EGF domains of FIX. The protein backbone is shown in silver ribbons,
interacting amino acids as a black licorice and the calcium ion as a white sphere. a, c, e, g, i correspond to wild type FIX. b, d, f, h, j correspond to mutant
FIX. a Location of Gly105 in EGF-1 (from PDB ID 1PFX); the N-terminus of the domain is labeled. b Location of Asp105 in EGF-1; the N-terminus of the
domain is labeled c Neighboring residues for Gln143 (from PDB ID 6MV4), labeled. d Neighboring residues for Arg143, clashing with the disulfide bond
between Cys157 and Cys170, Tyr161 and Phe423. e Salt bridge between Glu124 in EGF-1 and Arg140 in EGF-2; neighboring positive residue also labeled
(from PDB ID 1PFX). f Group of nearby positive charges in the Glu124Lys mutant. g Selected residues close to Val153 (from PDB ID 1PFX). h Residues that
clash with Met153. i Residues coordinating the calcium ion in EGF-1; the residues that contribute their side chains are labeled (from PDB ID 1EDM). j
Location of Pro96 as a first coordination shell residue for calcium
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mutations in introns and promoters, as well as synonym-
ous mutations and mutations that alter RNA stability, all
of which have also been associated with coagulation dis-
eases. Therefore, it may be necessary to consider parame-
ters such as RNA stability to predict the effect of
synonymous mutations on protein synthesis [15, 16].

Sensitivity, specificity, and accuracy
Since in silico programs have variable sensitivity, specificity,
and accuracy, one or two programs may not be sufficient to
predict the phenotypic effect of a mutation or single nu-
cleotide polymorphism. Indeed, we observed that sensitiv-
ity, specificity, and accuracy depend on the protein domain.
For example, very few mutations (n = 29/215) have been re-
ported in the first two N-terminal domains in factor IX
(signal peptide and propeptide), most of which (93.1%) have
been linked to severe phenotypes [1]. The signal peptide is
eminently functional, but its genetic variability provides
some “flexibility” to accommodate certain genetic variants,
e.g., nonconservative amino acid changes, without affecting
function. Strikingly, most programs identified all true nega-
tives (high specificity, compare Fig. 2 with Fig. 3), but only
few true positives (low sensitivity, compare Fig. 2 with Fig.
3). Accordingly, accuracy was remarkably low. This result
implies that if homologous sequences for a specific gene
are insufficiently informative or highly variable, and if func-
tion is other than eminently structural or enzymatic, in
silico programs may be of limited utility [41]. On the other
hand, mutations in the propeptide are more homoge-
neously predicted as deleterious due to lower specificity
and higher sensitivity. Hence, programs with high sensitiv-
ity are probably more useful to identify true positives in this
domain. Due to the proportion of severe and nonsevere
phenotypes associated with mutations in the light chain
(Gla + EGF-1 + EGF-2), specificity at this domain was also
low, but with high sensitivity. However, accuracy was higher
than 80%, so programs with high sensitivity or specificity,
i.e., SIFT, PolyPhen-2 HumDiv, SNAP2, and MutationAs-
sessor may detect true positives and negatives, respectively.
Indeed, prediction quality was highest using wgP4, which
integrates these four programs. Our results are in line with
Leong et al. [42], who found that specificity, sensitivity, and
accuracy in predicting mutational effects depend on the
gene and the combination of analytical tools, not necessar-
ily on the use of a large number of tools.

Association between prediction and clinical phenotype
As an grouped analysis, 215 mutations in the first five
exons showed significant association to the clinical severity
of hemophilia B based on analysis by SIFT, PolyPhen-2
HumDiv, MutationAssessor, SNAP2 (P ≤ 0.05), and wgP4
(P = 0.017), but this association was not significant for mu-
tations in EGF-1, as well as in the signal peptide and pro-
peptide. Hoffman [43] describes cellular coagulation as a
series of phases that depend on interactions between en-
zymes, cofactors, proteins, and phospholipids. During the
amplification phase, factor IX is activated by the tissue fac-
tor/factor VIIa complex or by factor XIa. In turn, factor IXa
and its cofactor factor VIIIa activate factor X in the propa-
gation phase, generating large amounts of thrombin. How-
ever, hemophilia B is considered monogenic disease, and is
diagnosed only based on residual factor IX activity. Hence,
even in silico predictions are insufficient to determine total
coagulation capacity. Accordingly, we used PolyPhen-2 to
investigate hemophilia B both as a monogenic disease with
rare alleles that may drastically alter protein function
(HumVar), and as a complex disorder (HumDiv) modified
by several genes [44, 45]. PolyPhen-2 HumDiv was found
to be a better predictor of clinical severity based on muta-
tions in a specific protein domain, a result similar to that of
Martelloto et al. [46] in studies of oncogenes.
Concordance between predicted deleterious mutations

and clinical phenotype was strongly variable among do-
mains. We ascribe this to sequence variability in the sig-
nal peptide, which contains a positively charged N-
terminal domain with a Lys or an Arg (domain n), a cen-
tral hydrophobic domain rich in Leu (domain h), and a
C-terminal hydrophilic domain (domain c) with a cleav-
age site [4]. The lack of context in the signal peptide ap-
pears to generate somewhat contradictory predictions,
e.g., all six programs individually predicted that Leu
-24Pro as deleterious, but Leu -23Pro as benign. Leu
-24Pro was also predicted as deleterious by wgP4, in
agreement with the reported phenotype. However, the
Leu > Pro substitution in both cases may disrupt func-
tion, since Leu strongly tends to form alpha helices
whereas Pro is often destabilizing [47]. Analysis of
secondary structure also showed that these mutations
affect the percentage of alpha helices, corroborating the
predicted deleterious effects. On the other hand, the
propeptide forms a binding site (amino acids − 18, − 17,
− 16, − 15, and − 10) that interacts directly with gamma-
glutamyl carboxylase [5, 48]. In particular, Phe − 16 and
Ala − 10 are essential for the carboxylation of Glu
residues in the Gla domain [49, 50]. Hence, mutations
in the propeptide diminish or abolish the affinity for
the enzyme, ultimately preventing carboxylation [51].
Nevertheless, mutations at amino acids − 18 and − 17
are associated with severe hemophilia B, but are
annotated differently by several tools [52]. Hence,
specialized tools such as Phobius [53] and SignalP 4.0
[54] might prove more useful in the analysis of this
domain.
The EGF domains encoded by exons 4 and 5 mediate

cell adhesion and ligand-receptor interactions that are
important in coagulation [55]. Although these domains
share similar secondary structures, only EGF-2 muta-
tions were reliably associated with clinical phenotype
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when annotated by PolyPhen-2 HumDiv, PolyPhen-2
HumVar, SNAP2, and wgP4. On the other hand, the
EGF-1 domain contained the most number of mutations
predicted by all programs as deleterious, although the
associated clinical phenotypes are nonsevere. The dis-
cordance in these results may be due to differences in
function. In EGF-1, Asp93, Asp95, Asp110, and Tyr115
[56] are considered important for calcium binding and
are associated with clinical severity. However, we found
that the mutations p.Asp93Gly, p.Asp93Glu, p.Asp95Tyr,
p.Asp110Gly, p.Asp110Glu, and p.Asp110Val are pre-
dicted as deleterious by all progrDisams, although the
reported clinical phenotype is mild. In EGF-2, residues
88–109 form two loops directly involved in the forma-
tion of the complex that activates factor X [57]. In this
case, the predicted mutational effects correlate with the
clinical phenotype and are true positives.
In this sense, the five selected mutations that were mod-

eled fall in the EGF-1 and EGF-2 domains, and some
could affect the interaction of the EGF-2 domain with the
catalytic domain. For these reasons, we modeled both the
EGF domains on their own and in the context of the cata-
lytic domain, using as templates the appropriate wild-type
structures from either human or pig FIX.
All the SNPs are laying in EGF-1 (Gln96Pro,

Gly105Asp, Glu124Lys) and EGF-2 (Gln143Arg, Val153-
Met) domains, from which only Gly105Asp, that lies in
EGF-1 near the interface with EGF-2, does not engage in
any interactions with it, so it would explain that this mu-
tation is associated to a Hemophilia B mild phenotype.
The severe mutation Gln143Arg has repercussions at the

interface between the light chain and the catalytic domain,
affecting its fit with Tyr161 and the disulfide bond (Cys157
and Cys170), as well as with Phe208; this change would
affect the Pro177 and the disulfide bond (Cys178 and
Cys335). All these interactions are located at the surface op-
posite from the catalytic site of the protease domain, but
may be important for correct activation by heparin and re-
lated signals [58], as they lie adjacent to a helix important for
interactions with heparin.
The two mutations, Glu124Lys and Val153Met might

alter the interactions proposed by Brandstetter et al. [29]
with both FVIII and FX in the coagulation cascade,
explaining the severe phenotype. Finally, the Gln96Pro
mutation affects a calcium-binding site, decreasing affin-
ity for the ion calcium, which is important for activation
of FIX [29] and in protein-protein interactions [31],
given that one of the ligands for calcium must be do-
nated by either another protein or by a water molecule.

Conclusions
Integration of results from selected programs into a func-
tion (wgP4) that generates binary predictions provides an
easy approach to associate nonsynonymous mutations with
severe hemophilia B that can be useful for the analysis of
nsSNPs impact on other genes. Indeed, it is not necessary
to use a large number of programs to predict mutational
effects. Nevertheless, the specificity, sensitivity, and accur-
acy of genotype-phenotype predictions depend on specific
characteristics of the protein domain and the disease of
interest as we corroborated with a secondary and tertiary
structural analysis of the effect of selected pathogenic
mutations on the FIX.
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