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Abstract

Background: Representation learning provides new and powerful graph analytical approaches and tools for the
highly valued data science challenge of mining knowledge graphs. Since previous graph analytical methods have
mostly focused on homogeneous graphs, an important current challenge is extending this methodology for richly
heterogeneous graphs and knowledge domains. The biomedical sciences are such a domain, reflecting the
complexity of biology, with entities such as genes, proteins, drugs, diseases, and phenotypes, and relationships such
as gene co-expression, biochemical regulation, and biomolecular inhibition or activation. Therefore, the semantics of
edges and nodes are critical for representation learning and knowledge discovery in real world biomedical problems.

Results: In this paper, we propose the edge2vec model, which represents graphs considering edge semantics. An
edge-type transition matrix is trained by an Expectation-Maximization approach, and a stochastic gradient descent
model is employed to learn node embedding on a heterogeneous graph via the trained transition matrix. edge2vec is
validated on three biomedical domain tasks: biomedical entity classification, compound-gene bioactivity prediction,
and biomedical information retrieval. Results show that by considering edge-types into node embedding learning in
heterogeneous graphs, edge2vec significantly outperforms state-of-the-art models on all three tasks.

Conclusions: We propose this method for its added value relative to existing graph analytical methodology, and in
the real world context of biomedical knowledge discovery applicability.

Keywords: Knowledge graph, Heterogeneous network, Biomedical knowledge discovery, Representation learning,
Graph embedding, Node embedding, Edge semantics, Applied machine learning, Data science, Linked data, Semantic
web, Network science, Systems biology

Background
Introduction
The knowledge graph (KG) has become the preferred
data model for complex knowledge domains. Accord-
ingly Wilcke et al. published: “The knowledge graph as
the default data model for learning on heterogeneous
knowledge” [1]. Biology and biomedical knowledge is
complex and involves a plethora of entity and association
types, hence is particularly suited to heterogeneous graph
methodology. From such a KG, statistical knowledge
can be inferred, for example, probabilistic associations
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between genes and phenotypic traits. In KG terms, node
and edge semantics are varied and critical for precise
representation of the knowledge. Methods which con-
sider surrounding node and edge contexts support a rich
and combinatorially expanding feature set. KG embed-
ding connotes representation of entities as computable
feature vectors amenable to machine learning (ML) meth-
ods [2, 3]. As both KG and ML methodology advances,
the issues of embedding, representation and vectorization
become crucial, as signaled by related research activity
spanning computing, natural and social sciences [3]. Deep
learning is a powerful approach for representation learn-
ing on large graphs and datasets. Multi-layer deep neural
networks entail transformations from input raw data to
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layered representations obviating the need for feature
engineering up front. Instead a set of continuous, latent
features (representations) are learned which, in the graph
use case, encode localized structural topology around a
given node facilitating prediction tasks based on network
structure.
Previous work has focused on using neural network

learning models to generate node embeddings for graphs
such as DeepWalk [4], LINE [5], and node2vec [6]. How-
ever these models were designed for homogeneous net-
works, which means that they do not explicitly encode
information related to the types of nodes and edges in a
heterogeneous network. Recently, metapath2vec [7] was
proposed by incorporating metapaths with node seman-
tics for node embedding learning. However, this approach
has several drawbacks: 1) domain knowledge is required
to define metapaths and those mentioned in [7] are sym-
metric paths which are unrealistic in many applications;
2) metapath2vec does not consider edge types rather only
node types; and 3) metapath2vec can only consider one
metapath at one time to generate random walk, it can-
not consider all the metapaths at the same time during
random walk. On another related track, which might be
termed biomedical data science (BMDS), previous work
has employed KG embedding and ML methodology with
the focus on applicability and applications such as com-
pound target bioactivity [8, 9] and disease-associated gene
prioritization [10]. Yet other efforts have simply employed
off-the-shelf ML toolkits (e.g. Scikit-learn, WEKA) and
methods to address biomedical informatics prediction
challenges.
To address the above problems, edge2vec was devel-

oped to consider edge semantics when generating node
sequence using a random walk strategy. An edge-type
transition matrix is defined to improve representation
of node “context” and designed with an Expectation-
Maximization (EM) model. In the maximization step,
we use the transition matrix to generate node sequences
based on random walk in a heterogeneous graph. In the
expectation step, we use the generated node ’context’
from node embeddings as feedback to optimize the tran-
sition matrix. We also use a skip-gram sampling strategy
to select partial nodes for the EM approach to make
the edge2vec model run on large-scale networks to learn
node embeddings in a more efficient way. In the end, the
topologically similar nodes (with similar sub-structures
or located near each other in the network) are with sim-
ilar emebeddings; the semantically similar nodes (with
same node-types or logistically related attributes) are with
similar embeddings.
Within biomedicine, the sciences involved in drug dis-

covery are diverse. Drug efficacy and safety depend on
calibrated modulation of complex, interrelated biomolec-
ular pathways and targets. Prediction of compound-target

bioactivity, normally non-covalent binding, remains high-
challenge and high-value, both for generating novel drug
leads and hypotheses, and for elucidating the mechanism
of action for known compounds and drugs. With this
rich knowledge domain as context, in this paper, we apply
edge2vec on Chem2Bio2RDF [11], a highly heterogeneous
graph integrating over 25 biomedical and drug discovery
datasets.
The contribution of our work is threefold.

• We define an edge-type transition matrix to
represent network heterogeneity. The calculation of
the matrix is mainly based on the path similarity of
different edge-types.

• We develop an EM model to train a transition matrix
via random walks on a heterogeneous graph as a
unified framework and employ a stochastic gradient
descent (SGD) method to learn node embedding in
an efficient manner. The learned node vector can
include not only the topological information of
network structure, but also the edge type information,
which indicates different relationships among nodes.

• We evaluate our model in the drug discovery domain
by predicting drug-target associations using the
highest available quality datasets as ground truth.
Validation of the edge2vec model is addressed via
three prediction tasks, all realistic biomedical
discovery use cases. Validation results indicate that
edge2vec adds value relative to existing methodology
for drug discovery knowledge discovery.

In the following sections, first, we introduces edge2vec
and its importance; second, we discusses related work
about node embedding learning as well as heterogeneous
network analysis; third, we explains edge2vec; fourth, we
evaluates edge2vec based on later drug discovery; fifth, we
illustrates two case studies to visualize edge2vec results,
And in the end we concludes and points out future work.

RelatedWork
Network Representation: Network representation is
useful in a variety of applications such as network
classification [12, 13], content recommendation [14–16],
community detection [17–19] and link prediction [20].
Networks are easily and naturally represented by adja-
cency matrix, but such matrices are generally sparse and
high dimension, thus not well suited to statistical learning
[4]. How to represent network information in low dimen-
sion is an important task. There are classical methods
of network representation which is dimension reduction
based on calculating eigenvector, such as LLE [21, 22],
Laplacian Eigenmap [23, 24], MDS [25], IsoMap [26], and
DGE [27]. However, these methods do not perform well in
large-scale networks.
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Representation Learning based on Deep Neural Net-
work: In deep learning, more and more encoder-decoder
models have been proposed to solve network represen-
tation problems. By optimizing a deterministic distance
measure, those models can learn a node embedding from
its neighbor nodes so as to project nodes into a latent
space with a pre-defined dimensionality.
Recently, deep neural network [28] based representa-

tion learning has been widely used in the natural lan-
guage processing. Word2vec [29] is the deep learning
model developed by Google to represent a word in a
low dimension dense vector, which has proven to be
successful in natural language processing [30]. By close
analogy, topological paths neighboring a node may be
handled like sequences of words, and word2vec can be
adapted to network representation learning to reduce
computing complexity and improve performance relative
to conventional approaches. Accordingly, several recent
publications have proposed word2vec-based network rep-
resentation learning frameworks, such as DeepWalk [4],
GraRep [31], TADW [31], CNRL [32], LINE [5], node2vec
[6], and metapath2vec [7]. All of the above frame-
works utilize the skip-gram model [33, 34] to learn a
representation of a node incorporating its topological
context, so nodes with similar topological information
will have similar numerical representations. Node rep-
resentations are learned via skip-gram model by opti-
mizing the likelihood objective using SGD with negative
sampling [35].
Sampling Strategy: Similar to word sequences from

documents, node sequences may be sampled from the
underlying network as an ordered sequence of nodes
[7]. Accordingly, different network representation learn-
ing frameworks adopt different node sampling strate-
gies. DeepWalk [4] deploys a truncated random walk to
sample node sequences, and uses the skip-gram model
to learn the representation of node sequences. How-
ever, DeepWalk only considers the first-order proximity
between nodes. Moreover, it applies to unweighted net-
works. Practically, LINE is applicable for both weighted
and unweighted networks and easily scales to large-scale
networks with millions of nodes. The problem is that
embedding of some loosely-connected nodes, which have
few connected edges, heavily depends on their connected
neighbors and unconnected negative samples [36]. Most
prior methods do not give full consideration to hetero-
geneity of nodes and edges. Thus Deepwalk, LINE, and
Node2vec are not effective for representing these hetero-
geneous networks. Sun et al. [37] introduced a metapath-
based similarity measurement to find similar objects of
the heterogeneous information networks. Furthermore,
Dong et al. proposed metapath2vec [7] to capture het-
erogeneous structure and semantic correlation exhibited
from large-scale networks by considering node types.

However, one drawback of all previous methods is that
they either only deal with homogeneous networks or do
not consider edge semantics. When network contains
nodes and edges with different types, the state-of-the-
art embedding results are no longer effective as all of
them do not consider edge semantics. To represent het-
erogeneity, we have developed edge2vec to learn node
representations with general, systematic consideration of
edge semantics.
Representation learning in biomedical domains:

In biomedical domains, there exist rich heterogeneous
datasets about genes, proteins, genetic variations, chem-
ical compounds, diseases, and drugs. Ongoing and
expanding efforts to integrate and harness these datasets
for data-driven discovery reflect widespread understand-
ings of potential benefits to science and human health.
For example, Chem2Bio2RDF [11] integrates over 25 dif-
ferent datasets related to drug discovery and comprises
a large scale heterogeneous network. Such repositories
hold complex relationships between many entity types.
Representing this semantic complexity requires suitable
embedding methods informed by these rich domains.
Chen et al. [8] propose Semantic Link Association Pre-
diction (SLAP) to predict ’missing links’ between drugs
and targets in Chem2Bio2RDF. Subsequently, Fu et al. [38]
applied an improved PathSim method with more than
50 metapaths on an extended Chem2Bio2RDF dataset
to predict drug target interactions and rank metapaths
based on Gini index. Although these previous stud-
ies focus on relationships between drugs and targets,
none handle edge heterogeneity in graph embedding
directly and generally. We regard this as an unmet
need, both for the methodological value in exploring
edge semantics, and also for the more practical value
of applying and validating this novel methodology via
biomedical data science use cases. Thus motivated, we
propose edge2vec as an improved representation learning
model, well suited for discovery on biomedical knowledge
graphs.
Context: applied machine learning and data science:

Machine learning is a big, diverse and rapidly advancing
area of research, challenging to monitor and contextual-
ize even to its scholars and practitioners. For biomedical
data science, the challenge is compounded with applica-
bility to complex real world datasets and tasks. This is
applied machine learning, wherein the final evaluation
depends on relevance and comprehensibility to the appli-
cation domain. In this paper we strive to maintain this
relevance and comprehensibility through concise, con-
textualizing notes and examples, with appropriate cita-
tions for further study. Terminology is a related challenge,
for example the equivalence of “graph” and “network”,
so to assist we provide a glossary as supplementary
material.
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Methods
In this section, we introduce edge2vec. The pipeline is
shown in Fig. 1. We treat heterogeneous network embed-
ding learning as an optimization problem and design an
EM framework associated with a skip grammodel to solve
it. See Algorithm 1 pseudo code for details.

Edge-type transition matrix for network embedding
As word2vec [29] informed node2vec [6], we can repre-
sent a node and its network neighborhood analogous to a
word-context relationship in a text corpus. Random walk
paths of nodes are akin to word sequences. We thereby
convert the node embedding learning problem into a
node neighborhood optimization problem: given a node,
we need to maximize the probability of neighbor nodes,
which is Formula 1:

argmax
θ

∏

v∈V

∏

c∈N(v)
p(c|v; θ) (1)

where V refers to the node collection of the network
G(V,E); N(v) refers to the neighbor node collection of
node v; θ is the node embedding parameterization to be
learned.
However, this optimization only works well in homoge-

neous networks. As in heterogeneous networks, different
types of nodes and edges occur with varying frequency.
But low frequency node and edge types may be very
important, depending on their semantics in the knowl-
edge domain. For instance, in a scholarly citation network,
venue nodes (i.e., conferences and journals) are fewer but
more important than publication nodes. Since node2vec
would treat all nodes equally, knowledge contained in the
venue relationships would be lost. Likewise, throughout

biomedical domains, node and edge semantics must be
considered to avoid loss of critical knowledge. For one
example, the edge relationship between an approved drug
and its well validated protein target is highly and excep-
tionally informative, reflecting prodigious research efforts
and expense. To address this need for edge semantics,
we design an edge-type transition matrix which holds the
transition weights between different edge types during the
random walk process. Therefore, we consider not only
the topological structure of the network but also edge
semantics. Accordingly, the optimized version is shown in
Formula 2:

argmax
θ ,M

∏

v∈V

∏

c∈N(v)
p(c|v; θ ;M) (2)

M refers to the edge-type transition matrix. The matrix
stores the random walk transition weights between dif-
ferent edge types. By employing the transition matrix as
a prior distribution guiding the random walk process, we
not only consider the distance between the next-step node
and the previous-step node but also the weight between
the next-step traversed edge type and the previous-step
traversed edge type. Therefore, we can normalize by type
so that the effect of low frequency node/edge types won’t
be lost by dilution among high frequency node/edge
types. As shown above, the optimization function max-
imizes the probability of generating the node neighbor-
hood of a given node v, thus the transition probability
from the current node v to its neighbor c can be seen in
Formula 3:

p(c|v; θ ;M) = e�fv·�fc
∑

u∈V e �fu·�fc
(3)

Fig. 1 An illustrative pipeline of edge2vec. a a heterogeneous network with three types of nodes and two types of edges, colored by types. b EM
framework to optimize an edge-type transition matrixM and generate node random walks as well as related edge-type corpus. c skip-grammodel is
used for node embedding learning. For a node v4, the input layer is its one-hot encoding and the output layer is the one-hot prediction for all its K
neighbor nodes (e.g. node v1 and node v10)
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Algorithm 1 edge2vec algorithm
Require: Graph< V ,E > g, Edge-type transition matrix

M
initializewalks empty, all values inM as 1, node embed-
dings f
walks,M = GenerateTransitionMatrix(g,M)
f = StochasticGradientDescent(walks)
return f
GenerateTransitionMatrix(g,M)
initialize # of iteration N
while N > 0 do
N ← N − 1
#E step
walks = HeteroRandomWalk(g,M)
#M step
�vi = vector with each dimension as the # of edge type
i in each walk from walks
Mij = Sigmoid( PearsonCorrelation( �vi, �vj) )

end while
return walks, M

HeteroRandomWalk(g,M)
for node n ∈ g do

initialize an empty node walk w, an empty edge walk
T, given random walk length l
Append n to w
while length(w) < l do
if length(w) == 1 then
curr = w[−1]
Random sample node m from Neighbour(curr)
based on edge weight.
Appendm to w
Append EdgeType(curr,m) to T

else
curr = w[−1], prev = w[−2]
p1 = T[-1]
for node k ∈ Neighbour(curr) do

p2 = EdgeType(k, curr)
EW (k, curr) = M[ p1] [ p2] ·W (k, curr) ·
αpq(k,u) #W (k,curr) is edge weight between
node k and curr.
Random sample node m from Neigh-
bour(curr) based on updated edge weight
EW (k, curr).
Appendm to w
Append EdgeType(curr,m) to T

end for
end if

end while
end for
return T

where �fi means the current step embedding for node i
which will be updated in each batch. We calculate the
inner product of two node embeddings, which are nor-
malized by a Softmax function.
We designed an EM framework to combine the update

of the transition matrix M and optimization of node con-
text into a unified framework. An edge-type transition
matrix is initialized with all values set to 1, meaning ini-
tially, all edge type transitions are regarded as equally
probable. Then, we iteratively generate the random walk
corpus of paths, optimizing the transitionmatrix based on
the sampled frequencies of edge type transitions.

Expectation-Maximization framework
Expectation step
Assume we have a set of E={e1, e2, e3 . . . em} different
edge types in a network. From the previous iteration in
the EM framework, we can get a collection of random
walk paths for each node as P = {p1, p2, . . . pn} . In each
walk path pi(i ∈ {1, 2 . . .n}), it is constructed like pi =
{n1, n2, n3, ..., nl} where ni is the ith node in pi and l is
a predefined walk length. Based on each path, we first
extract all edges {T(n1, n2), T(n2, n3), . . . , T(nl−1, nl)} in
the path by locating every start node nk and end node nk+1
where k ∈ {1, 2, ..., l − 1}, ek = T(ni, nj) refers to the edge
type between ni and nj. After that, we calculate the num-
ber of times each type of edge ej(ej ∈ E) appears in the
walk path pi. The same calculation is applied to all walk
paths. In the end, for each edge type ej, we get a vector
representation vj, where the ith dimension in the vj refers
to the number of times ej appears in walk path pi . One
assumption of our model is for a pair of edge type e1 and
e2, the distribution of each edge type sampled from the
random walk paths is a valid estimator for the transition
correlation for the graph. Hence, by calculating the cor-
relation between their associated vector vi and vj in the
walks, we can regard the correlation score as their updated
transition weight. Therefore, we can define the formula
for updating transition matrix as Formula 4:

M(ei, ej) = Sigmoid(
E[ �(vi − μ(�vi)) �(vj − μ(�vj))]

σ(�vi)σ (�vj) ) (4)

where E[ ·] is the expectation value and σ is related stan-
dard derivation value. M(ei , ej) refers to the updated
transition weight between edge type i and j. vi and vj are
vector representation of ei and ej on all walk paths. By
using Pearson correlation analysis, we can get a pairwise
correlation score between two edge types to check the
distribution difference. Larger weight value means larger
correlation between the pair of edge types. However, as
the range of the correlation score varies from -1 to +1, it
makes no sense if we keep the original negative weights
between a pair of edge types. Because we involve the opti-
mized transition weights to the random walk probability,
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and the probability can’t be negative, thus we normal-
ize by transformation to a Sigmoid function to solve this
issue and restrict the transition probability in a range of
between 0 and 1. Moreover this non-linear transforma-
tion can better help to capture the patterns of transition
probability than other linear or quadratic transformation
functions [39]. The definition of Sigmoid(·) is shown as
Formula 5:

Sigmoid(x) = 1
1 + e−x (5)

In summary, the non-linear transformed correlation
ensures three characteristics of the biased random walk
on a heterogeneous network: First, a random walk tends
to pass on edges with same edge-type. Based on the cor-
relation calculation in Formula 4, given an edge-type, the
correlation with itself is always +1, which is the highest
transition weight inside the transition matrix. Second, the
Sigmoid function guarantees optimization convergence of
transition matrix. Transition weights are adjusted accord-
ing to the Sigmoid function by training based on the
correlations calculated from the random walks until a sta-
ble final value is reached. Third, only edge-types with
closer relationships tend to have higher transition weights.
Although some edge-types are globallymore common and
likely to appear in random walks, we consider the specific
co-occurrence rates between edge-types in the same ran-
dom walk. For example, if edge-type a appears (20,30,40)
times in three random walks, while edge-type b appears
(1,1,1) times in the same randoms walks. The transition
weight from b to a is still considerably low.

Maximization step
In each iteration in the EM framework, based on the
updated edge-type transition matrix M in the expectation
step and the network topological structure, the biased ran-
dom walk process generates a new paths with information
of nodes and node neighbors. The transition matrix con-
tributes to the calculation of random walk probabilities,
thereby including the influence of edge-type information
in sampling, which can reduce the negative effects caused
by skewed type distribution issues. Even though some
types of edges appear less frequently in the network, if
the transition weights between those edge-types and other
edge-types are high, the edge still has a high probability
to get visited during the random walk process. Another
important feature is that based on the expectation step,
as well as Formula 4, for an edge-type e, Me,e is always
the largest among all possible edge-type pairs toward e,
which means random walk prefers to keep the same kind
of edge-type. So, during the random walk process, given
the current node v and the previous node u, the probabil-
ity for the next candidate node n is calculated as Formula
6 and demonstrated in Fig. 2:

Fig. 2 Three parts of the weights to guide the biased random walk on
heterogeneous networks

p(n|v;u;M) = wvn · MT(u,v)T(v,n) · αpq(n,u)∑
k∈N(v) wvk · MT(u,v)T(v,k) · αpq(k,u)

(6)

where T(v,u) refers to the edge-type between node v
and node u. αpq(k,u) is defined based on the distance
dku between next step node candidate k and previous
traversed node u. The distance function is defined as
Formula 7:

αpq(k,u) =

⎧
⎪⎨

⎪⎩

1
p , dku = 0
1, dku = 1
1
q , dku = 2

(7)

As seen in Algorithm 1, at the beginning, we ini-
tialize walk paths as empty, all values in the transition
matrix as 1, we use function GenerateTransitionMatrix(·)
to utilize an EM framework to get walk paths and the
matrix M. In maximization steps, the function takes tran-
sition matrix in the last iteration as input, invokes the
HeteroRandomWalk(·) function to get walk paths, the
probability of random walk is mainly based on Formula
6. In expectation steps, the function utilizes the updated
walk paths to optimize the transition matrix by Formula 4.
We can retrieve an optimized edge-type transitionmatrix,
which holds the correlation between edge-types, via the
EM framework. At the same time, we can also get the
random walks as a node “corpus”, which holds the corre-
lation between nodes. We therefore represent the whole
heterogeneous network as a collection of random walk
paths, which can be used as the input of the next step for
embedding optimization.

Skip gram for embedding optimization
With the help of the EM framework, we can get the tran-
sition matrix M and random walks w as the input layer
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to train the node embedding via a one layer neural net-
work. To optimize the Formula 2, we use the stochastic
gradient descent (SGD) method to get optimized node
embeddings. Considering all nodes to maximize Formula
2 would be slow and computationally inefficient. Hence,
in addition to the known neighbor node t, we use the
negative sampling method to generate k negative nodes
towards a given node v. And the K negative nodes ui where
i ∈ {1, 2, ..., k} are randomly sampled from the uniformed
distribution D(t) with probability P(t). Moreover, we take
logarithm on Formula 2 to reduce calculation complexity.
And the final objective function turns to be Formula 8 in
the end:

O(f ) =log [Sigmoid(�ftT �fv)]+
k∑

i=1
Eui∼P(t|t∼D(t))

log [Sigmoid( �−fui
T �fv)]

(8)

The goal of the objective function is to maximize the
similarity with the positive neighbour node and minimize
the similarity with negative neighbor nodes.

Results
In this section, we describe the biomedical dataset used
to test edge2vec and demonstrate the advantage of our
model in three evaluation tasks. Moreover, we have a sep-
arate section for parameter tuning to retrieve the best
model in both efficacy and efficiency points of view.

Biomedical dataset: Chem2Bio2RDF
Chem2Bio2RDF [11] is a richly heterogeneous dataset
integrating data from multiple public sources spanning
biomedical sub-domains including bioinformatics, chem-
informatics and chemical biology. The dataset includes
10 node types and 12 edge types. For details of each
node/edge-type description, please refer to Table 1. In
total, there are 295,911 nodes and 727,997 edges, a rel-
atively sparsely connected network. There exist multiple
edge types between two given node types, for exam-
ple, two edge types between node types “gene” and
“compound.” Node and edge type distributions are highly
skewed. For instance, there are more than 20,000 com-
pound nodes but a relative few are well studied in biologi-
cal experiments, such as approved drugs, while most have
few high confidence biological associations. Overall, the
heterogeneity comprised by these network characteris-
tics present significant challenges for embedding learning,
and moreover, the particulars and specific semantics of
this biomedical knowledge graph are essential consider-
ations in optimizing learning power. Figure 3 shows the
whole network structure of Chem2Bio2RDF.
Given the proposed edg2vec, we set up parameters with

p = q = 0.25; embedding dimension d = 128; for other
parameters we use the defaults from node2vec. After

Table 1 Node and edge description in Chem2BioRDF

node type number edge type number edge type
description

gene 21,738 hprd 30,215 protein protein
interaction

compound 258,003 protein 11,258 has pathway

chebi 2,777 tissue 10,178 tissue gene
expression

pathway 192 GO id 95,422 has GO

sider 1,051 family name 7,181 has gene family

gene-family 329 gene 2,929 cause disease

GO 9,710 chebi 15,986 has chemical
ontology

substructure 290 drug 943 has pathway

tissue 507 cid 9,004 cause side effect

disease 1,284 expression 16,167 compound gene
expression

substructure 6,169 has substructure

chemogenomics 522,545 bind

those parameters are assigned, we use Chem2BioRDF to
train our edge2vec model. To evaluate the fitness of the
generated node embeddings, we propose three evaluation
tasks in the following three sections.

Evaluation Metrics
In this paper, we evaluate our model from both classifica-
tion and information retrieval viewpoints.
Precision, recall, F1 score and Hamming loss are four

metrics reported in classification tasks. Precision implies
the ratio of correct positive results returned by the clas-
sifier; recall implies the ratio of correct positive results

Fig. 3 Chem2Bio2RF medical data graph structure
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are returned; F1 score balances both precision and recall
by taking their harmonic average. All above three metrics
are in a range of 0 and 1, the higher the better. While the
Hamming loss is the fraction of labels that are incorrectly
predicted. The score is also in a range of 0 and 1, but the
lower the better.
Precision@K, recall@K, MAP, NDCG and reciprocal

rank are five metrics reported in information retrieval
related tasks. Precision@K and recall@K imply the preci-
sion and recall score in the Top K ranked results. MAP
refers to “mean average precision”, which implies the aver-
age precision score for all searching queries. NDCG refers
to “normalized discounted cumulative gain”, which is a
metric to measure not only the accuracy of searching
results but also the ranked position of correct results. Like
NDCG, reciprocal rank also considers the correct results
ranking positions in the returned ranking list. It is the
multiplicative inverse of the rank of the first correct result
among all searching queries.

Entity multi-classification
We first propose a node multi-classification task. In this
task, we take the types of nodes away so the network
only has nodes, edges, and edge-types. We run edge2vec
and cluster nodes based on the result of edge2vec to
see whether nodes with similar types will be clustered
together. In the Chem2BioRDF dataset, there are 10 dif-
ferent node types with different scale number. In order
to build up a suitable dataset for the classification model,
for each node type, we randomly sample equal number
of nodes from the dataset. In this way, we have a nat-
ural baseline as precision = 0.1 for a random classifier.
Each node is represented as an instance; the 128 dimen-
sion vectors are regarded as 128 different features. Its
related node type is the response variable. We use a lin-
ear support vector machine as the classification model to
predict the node’s labels, and use a 10-fold validation to
evaluate the returned metrics. Three network embedding
methods including DeepWalk, LINE and node2vec are our
baseline algorithms. For node2vec, we take p = q = 0.25
which is the same setting as edge2vec. Other settings for
all three algorithms are just default settings according to
their related publications. For each node, after we learn
its node embeddings for all baselines, we concatenate the
embedding with the number of edges it has for each edge-
type to integrate edge-type information into all baseline
models as well. For example, if there are four edge-types
in a network and a node has one edge with type 1, two
edges with type 2, three edges with type 3 and zero edge
with type 4, we concatenate an additional four dimen-
sional vector (1,2,3,0) to the original learned embedding.
As metapath2vec requires metapath definitions (manu-
ally curated) and thereby only uses selected metapath-
pattern matched nodes for training node embeddings,

metapath2vec is not comparable with other algorithms
for a multi-classification task, which is also a drawback of
metapath2vec.
We use precision, recall, F1 score macro, and Hamming

loss as four evaluation metrics. These are all commonly
used evaluation metrics particularly for classification
problem. Precision is the fraction of relevant instances
among the retrieved instances, while recall is the frac-
tion of relevant instances that have been retrieved over
the total amount of relevant instances. F1 measure is the
harmonic average of the precision and recall, which bal-
ances the two metrics. Hamming loss is the fraction of
labels that are incorrectly predicted. Details of the evalu-
ation results can be seen in Table 2. To verify our model’s
superiority, we run our model five times and calculate
the performance differences between our model and the
best baseline on each metric for all the runs, and apply
a T-test to check whether the performance difference is
significantly above 0 or not.
From the evaluation results, we can find all four algo-

rithms can predict node types far better than a random
classifier. It means even we treat this heterogeneous
network as a homogeneous one, there is still some
meaningful information stored in these node embeddings.
DeepWalk and node2vec have similar results which is
no wonder because DeepWalk can be regarded as a par-
ticular node2vec model when p = q = 1. While LINE
performs the best among all three baselines. It means
for this medical network, local structure (one step neigh-
bours and two step neighbours contains most information
of a node). However, our proposed edge2vec model out-
performs all baseline algorithms,. In all four evaluation
metrics, our model has at least 20% improvement in each
evaluation metric. It reflects that our model can better
predict node labels via its node embedding. Moreover, in
all steps of edge2vec, we only use edge-type information
during the random walk to generate edge-type transition
metrics, and no node type information. Therefore, we
can rigorously validate model performance in node type
prediction.

Compound-gene bioactivity prediction
One high-value biomedical challenge is to predict
bioactivity between a compound and protein target

Table 2 Classification on node labels in the medical network

Algorithm Precision Recall F1 measure Hamming loss

DeepWalk 0.5624 0.5708 0.5650 0.4291

LINE 0.6366 0.6390 0.6279 0.3609

node2vec 0.5652 0.5656 0.5622 0.4343

edge2vec 0.7554* 0.7546* 0.7544* 0.2453*

Symbol “*” highlights the cases where our model significantly beats the best
baseline with p value smaller than 0.01
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(often referenced by the encoding gene). Such predictions
can accelerate early stage drug discovery by informing
and/or replacing expensive screening campaigns via vir-
tual screening. Therefore, we considered the real world
bioactivity prediction use case for a validation task.
Besides the three baselines in the first task, we add meta-
path2vec to our baseline as well. As metapath2vec needs
to define metapaths a priori, three metapaths, which
are compound-gene-compound; compound -gene-gene-
compound; compound-drug-gene-drug-compound were
selected as the metapaths for our baseline metapath2vec.
As metapaths need to be symmetric, we have to take
the network as undirected when training metapath2vec
node embeddings. Our ground truth is from another
work [38] in which the authors generated 600,000 neg-
ative compound gene pairs and 145,6222 positive pairs.
These ground truth pairs do not exist in Chem2BioRDF
so it can be used as ground truth to evaluate of the result
of edge2vec for bioactivity prediction. As the label for a
compound-gene pair in ground truth is either ’positive’
or ’negative’, the prediction task is a binary classification
task. Here, we randomly select 2,000 positive pairs and
2,000 negative pairs from the ground truth. And a random
classifier will have an accuracy value as 0.5 naturally. Sim-
ilar to the approach in the multi-class classification task,
for each compound-gene pair, we use the difference of
both embeddings together to form a new 128-dimension
embedding to represent the pair, and we apply a logis-
tic regression classifier to train a prediction model. Each
dimension of the pair is also regarded as a feature. The
relationship between the compound and gene is a binary
label for each pair. In the training and testing process, If
the prediction score is above 0.5, we label the pair as “pos-
itive”, otherwise as “negative”. We deploy the same evalua-
tion metrics as the multi-class classification task plus area
under an ROC curve (AUROC) . The detailed result is
shown in Table 3. To verify ourmodel’s superiority, we run

our model five times and calculate the performance dif-
ferences between our model and the best baseline on each
metric for all the runs, and apply a T-test to check whether
the performance difference is significantly above 0 or not.
In Fig. 4, we also report the ROC curve for edge2vec and
baseline models based on their prediction scores, where
we can find our model curve significantly performs better
than the baselines.
Some interesting findings are observed from the exper-

iments. First of all, among all three well known baseline
algorithms (DeepWalk, LINE and node2vec), LINE still
outperforms the other two baselines. And the result of
DeepWalk is similar to that of node2vec. So, edge2vec
is reliable and functionally stable for the two tasks. For
metapath2vec, we leverage both metapath2vec and meta-
path2vec++ in our baseline models. As metapath2vec
relies too much on selected metapaths, none of the three
metapaths performs well.
Among these three metapaths, we find metapath

compound-drug-gene-drug-compound works the best,
implying that prediction accuracy is improved by the addi-
tional node types. Although the number of drug nodes
is trivial compared with the number of compound nodes
and gene nodes, drug nodes have larger effects than com-
pounds and genes in terms of bioactivity prediction. So
it is necessary to treat different types of nodes sepa-
rately within an embedding model. Compared with meta-
path2vec, metapath2vec++ however achieves worse result
in all three metapaths. edge2vec outperforms all baseline
models. The F1 measure is around 0.9 which is far better
than the random classifier with a score of 0.5. Also it has
around 10% improvement compared to the LINE result
which is the best of baseline results.

Compound-gene search ranking
Bioactivity prediction as a binary classification task, like
single point high throughput screening in the wet lab,

Table 3 Compound-gene bioactivity prediction

Algorithm Precision Recall F1 measure Hamming loss AUROC

DeepWalk 0.7787 0.7750 0.7742 0.2250 0.7660

LINE 0.8170 0.8166 0.8166 0.1833 0.8058

node2vec 0.7983 0.7916 0.7904 0.2083 0.7793

metapath2vec (Co-Ge-Co) 0.5170 0.5170 0.5168 0.4830 0.5007

metapath2vec (Co-Ge-Ge-Co) 0.4979 0.4980 0.4976 0.5020 0.4890

metapath2vec (Co-Dr-Ge-Dr-Co) 0.5305 0.5305 0.5304 0.4695 0.5304

metapath2vec++ (Co-Ge-Co) 0.4969 0.4970 0.4965 0.5030 0.4776

metapath2vec++ (Co-Ge-Ge-Co) 0.4854 0.4855 0.4854 0.5145 0.4776

metapath2vec++ (Co-Dr-Ge-Dr-Co) 0.5120 0.5120 0.5119 0.4880 0.5102

edge2vec 0.9017* 0.9000* 0.8998* 0.1000* 0.8914*

Symbol “*” highlights the cases where our model significantly beats the best baseline with p value smaller than 0.01
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Fig. 4 The ROC curve of compound-gene bioactivity prediction. the
metapath2vec curve refers to the best result from all six reported
metapath2vec/ metapath2vec++ models in Table 3

predicts active or inactive only. This is helpful, but more
useful is the capability to predict ranking of hits by a mea-
sure that increases the probability of success and overall
efficiency in costly follow up efforts. Hence, this com-
prises our final evaluation task: compound-gene search
ranking. By analogy, the number of hits returned by a
search algorithm is generally less important than the rank-
ing and particularly the top ranked hits. Thus, our final
task can be described as an information retrieval or search
efficiency task. To limit runtime cost, from the ground
truth, we select 70 compounds, which contain more than
one positive pair with a gene. For each compound, we cal-
culate the top 100 similar nodes in Chem2BioRDF. Com-
pared with the positive pairs of 70 compounds in ground
truth, we evaluate the searching result using metrics such
as precision, recall, MAP, NDCG, and mean reciprocal
rank (MRR). These metrics care not only whether the
bioactive genes are returned but also the ranking of the
returned genes. For a compound node, if its bioactive
genes shows up with a higher rank in the top 100 returned
ranking list, the evaluation metrics will have larger values.

After the bioactivity prediction task, we choose the best
metapath among all threemetapaths, which is compound-
drug-gene-drug-compound. We evaluate the embedding
results from LINE, node2vec, and edge2vec, as well as
metapath2vec with the best metapath. Evaluation details
are shown in Table 4. To verify our model’s superiority, we
run our model five times and calculate the performance
differences between our model and the best baseline on
each metric for all the runs, and apply a T-test to check
whether the performance difference is significantly above
0 or not. From the evaluation table, we find DeepWalk and
node2vec still have similar results, and both outperform
LINE. metapath2vec is almost meaningless because all
returned evaluation metrics are approaching to 0, which
means it can barely retrieve future positive genes to com-
pounds. Metapaht2vec++ performs slightly better than its
previous performance in other two tasks and is compa-
rable to LINE. And overall, node2vec works the best in
all baseline algorithms. Compared with all baseline algo-
rithms, our edge2vec outperforms all the baseline meth-
ods. Although the retrieved scores are all relatively small,
there is around 10% improvement in precision and a lit-
tle better in the rest of evaluation metrics at least. This,
edge2vec adds value in this critical task of compound-
gene ranking, which can improve cost efficiency in virtual
screening follow up efforts of early stage drug discovery.

Parameter tuning
In our EM framework for edge transition matrix train-
ing, in order to get the best fit to retrieve transition
relationships between edge types, we have tried various
correlation methods including cosine, Spearman, Pearson
and Wilcoxon signed-rank. To standardize the returned
correlation scores into a reasonable (above 0) and com-
parable range, we have tried various activation function
such as ReLU, Sigmoid and traditional standardization
methods. Our experiments show that using the combina-
tion Sigmoid activation function and Pearson correlation
similarity performs the best to represent the transition
relationship between edges. Hence, we decided to use
this combination for building up our framework. During

Table 4 Searching accuracy for retrieving potential compound-gene bindings

algorithm P@10 P@100 Recall@10 Recall@100 MAP NDCG MRR

DeepWalk 0.0623 0.0198 0.0725 0.2780 0.0707 0.1444 0.1502

LINE 0.0186 0.0069 0.0109 0.0360 0.0042 0.0234 0.0532

node2vec 0.0714 0.0277 0.0859 0.2804 0.0786 0.1690 0.1676

metapath2vec (Co-Dr-Ge-Dr-Co) 0.0000 0.0001 0.0000 0.0011 0.0000 0.0004 0.0001

metapath2vec++ (Co-Dr-Ge-Dr-Co) 0.0157 0.0039 0.0082 0.0200 0.0040 0.0172 0.0509

edge2vec 0.0843* 0.0329* 0.0990* 0.3092* 0.0809* 0.1840* 0.1882*

Symbol “*” highlights the cases where our model significantly beats the best baseline with p value smaller than 0.01
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the transition matrix training process, there are four
important parameters to be tuned. We list them with
default value below.

1 Number of walks on per node, r = 1
2 Walk length in each random walk path, w = 50
3 The ratio of nodes sampled for training edge

transition matrix, p = 0.01
4 The number of iterations for training edge transition

matrix, N = 10

The default parameter settings are used to train our
edge2vecmodel and compare with baselinemodels in pre-
vious sections. In this section, we vary each of them and
fix the rest to examine the parameter sensitivity of our
model. We leverage all generated results on solving node
multi-class classification task and use the Macro F1 score
as the judgment to evaluate related models. The result of
our tuning process is shown in Fig. 5.
To test how much that numbers of walk per node can

affect our model, we test five cases r = {1, 10, 20, 30, 40}
and the result is in Fig. 5a. We can see that more num-
bers of walks on per node leads to an increase in Macro
F1 score. The reason might be that more walks on a node
can better reflect the edge relationships around the node

and avoid the negative influence of walk randomness.
However, even though it shows a positive trend, the
increase is small. So a short number of walks on per node
should be able to capture enough edge relation informa-
tion around the node.
In Fig. 5b, with the increase of walk length, the Macro

F1 score increases in the beginning and decreases later on.
In general, as the random walk length increasing, it will
tend to contain all types of edges. As we don’t consider the
sequence of the edge types in the same walk, increasing
walk length can add noise obfuscating edge type transition
relationships.
Figure 5c shows the different ratio of nodes involved

in the EM training process to generate edge transition
matrix. It might be no need to involve all nodes when
training the edge transition matrix as long as all edge
types can be covered in random walks in each iteration.
Although with more nodes involved, the overall trend of
Macro F1 score has a positive sign, the increase of Macro
F1 score is not huge and the trend even fluctuates a little
bit. We thereby conclude that using a sampling of nodes
to train the edge type transition matrix is sufficient and
computationally efficient.
Figure 5d refers to the influence of number of itera-

tions in the EM process for edge type transition matrix

Fig. 5 Parameter tuning in multi-class node classification. a number of walks per node, r b walk length, w c ratio of nodes in EM training, p d
number of iterations in EM training, N
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training.We believe the reason why whenN = 1 theMacro
F1 score outperforms than N = 10 is by chance as when
we increase the number of iterations, the overall trend of
Macro F1 score also increases. From the Fig. 5d, the con-
vergence is fast, and a few iterations can already generate
a satisfactory Macro F1 score.

Discussion
To discuss how we can apply our node2vec model on a
biomedical data set, we conduct two case studies to show
the practical values of our model. The first one is to rank
the positive links between nodes, which can be used for
similarity search and recommendation; the second one is
to cluster and visualize similar gene nodes that belong to
the same gene family.

Ranking positive bindings for similarity search
To verify how well our model can be used for similar-
ity search and recommendation use cases, we carried
out a ranking experiments using the links identified in
the existing network. We randomly selected three widely
used drugs from the network, which are Hyaluronic
acid (DB08818), Calcium Phosphate (DB11348), Copper
(DB09130), and Cupric Chloride (DB09131). Each of them
has multiple target genes to interact with. The selected
pairs of drugs and target genes exist in the network, and
we want to reproduce the links using the cosine similarity
score based on the embedding vectors. As we can see, our
proposed edge2vec embedding can represent node simi-
larity significantly better than the node2vec embedding.
The cosine similarity scores for the drug targets of cal-
cium phosphate were all above 0.6, indicating strong sim-
ilarity between the drug and the target genes. However,
using node2vec embedding the cosine similarity scores
between calcium phosphate and its targets were all below
0.4, and some of them demonstrated strong dissimilar-
ity like CADPS2 as a target gene of calcium phosphate.
The same findings for the other three drugs and their

target genes. In addition, all of the target genes for those
drugs can be identified as similar nodes with high rankings
using edge2vec embeddings. Details are shown in Table 5.
we further performed a pairwise t-test [40] study to see
whether the similarity scores generated by two models
are significantly different or not. If edge2vec has signifi-
cantly higher similarity score than node2vec, it means our
model can better predict those positive drug-target pairs
in the network. In our result, the difference between two
embedding approaches is 0.0103 with a p-value of 0.0001.
It means our embedding approach can better rank and
retrieve the existing links in the network than node2vec.

Gene clustering analysis
In order to further prove the usefulness of our node
embedding results, we carried out a clustering analysis
of gene nodes. We arbitrarily selected five gene fami-
lies, which are ATP binding cassette transporters (ABC),
Gap junction proteins (GJ), DEAD-box helicases (DDX),
Cytochrome C Oxidase Subunits (COX), and Pseudoau-
tosomal region 2 (PAR2). Each gene family refers to a
collection of genes originated from the same root gene
and performing similar biochemical functions. From each
given gene family, five genes are randomly selected to
perform clustering analysis. Then, we use principal com-
ponent analysis (PCA) to project the default 128 dimen-
sions of all gene embeddings into a 2-D space. Ideally,
genes belonging to the same family should locate closer to
each other than genes from different families. The result-
ing 2-D plot has shown that the twenty five genes in five
gene families have been well clustered based on their node
embedding vectors. Results can be visualized in Fig. 6,
where each pentagon refers to a gene and different colors
indicate different gene families. It is easy to observe that
genes are clustered by family in the 2-D space. In the 2-D
projection, genes in family COX are all located in the bot-
tom right corner of the plot, and genes in family GJ tend
to stay in the bottom left corner. In a word, our edge2vec

Table 5 Compare node2vec & edge2vec difference on classification tasks

drug gene node2vec similarity edge2vec similarity drug gene node2vec similarity edge2vec similarity

DB11348 CADPS2 0.1196 0.6199 DB09130 CLEC3B 0.2177 0.6299

DB11348 NUCB1 0.2221 0.6613 DB09130 HSPA13 0.1547 0.6278

DB11348 TPT1 0.2233 0.6439 DB09130 IGLL1 0.1806 0.5856

DB11348 NUCB2 0.2668 0.6867 DB09130 SFPQ 0.1275 0.5281

DB11348 CIB2 0.2761 0.6946 DB09130 A1BG 0.2478 0.6483

DB11348 CAPS 0.2827 0.6765 DB08818 HMMR 0.1624 0.6072

DB11348 PEF1 0.3357 0.7472 DB08818 CD44 0.1408 0.5670

DB11348 CALR3 0.2396 0.6429 DB08818 HAPLN1 0.1672 0.5790

DB11348 CADPS 0.1715 0.5657 DB08818 VCAN 0.1877 0.6186

DB11348 FBN3 0.3306 0.7369 DB09131 CSTB 0.1675 0.5999
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Fig. 6 2-D PCA projection on 25 random selected genes, five each from 5 random gene families

model can generate node embeddings highly reflecting
their family information.

Conclusions
In this paper, we propose edge2vec, which incorporates
edge semantics to add value over previous methods, as
evaluated by knowledge discovery tasks in the domain
of biomedical informatics. Edge2vec employs an EM
framework associated with a one-layer neural network,
to learn node embeddings which perform better than
previous methods for heterogeneous networks. The nov-
elty of our work is to generate an edge-type transition
matrix so that during the process to generate the node
random walk corpus, heterogeneity of the network is
also considered. It can reduce the skewed type distribu-
tion issue via weighted sampling. Moreover, compared
with other state-of-art heterogeneous network embed-
ding methods such as metapath2vec, our edge2vec has
no restrictions and can deal with the situation where
there are multiple relationships between two types of
nodes. To illustrate efficiency and accuracy of our pro-
posed model, we evaluate it on biomedical dataset
Chem2BioRDF and propose three evaluation tasks includ-
ing node multi-class classification, link prediction, and
search rank efficiency. Edge2vec outperforms all base-
line algorithms significantly. Furthermore, we illustrate
the effect of edge2vec in biomedical domains using two
case studies to explain the biological meanings of the
prediction. Moreover, edge2vec can work well in both
undirected and unweighted networks, and computational
cost is only moderately increased relative to node2vec by
choice of appropriate random walk strategy in the EM
framework.

There are certainly promising future directions to be
explored, which can be subdivided into (1) algorithmic
modifications applicable to heterogeneous graphs gen-
erally,and (2) domain knowledge based enhancements
applicable to characteristics of biomedical datasets and
use cases. Informed by metapath2vec, we could change
the objective function by using a node-type based nega-
tive sampling. Instead of random sampling from all types
of nodes, we could sample negative nodes based on the
ratio of each node type. Another opportunity for improve-
ment involves adding domain knowledge into our existing
model. During the random walk generation process, we
have already considered both node distance (p,q) and
edge-type (transition matrix M). In addition to these two
attributes, we could add some pre-defined rules guiding
random walks based on our domain knowledge. Another
problem for such complex networks is the scale free issue,
i.e. skewed degree distributions, where a relative few hub
nodes account for the bulk of connections. To reduce this
hub node effect in the network, we can also come up
with new methods such as novel restriction rules in the
random walk, or mitigate those effects by adding node
degree related information to optimize a new objective
function. For the node attribute prediction task, we can
actually apply a semi-supervised approach: Given a sam-
pling of nodes with known attributes, we can add this
information into our embedding learning process and pre-
dict the attributes of remaining nodes. Or we can apply
an unsupervised approach: given the relationship between
the target attribute with other known attributes, we use
this relationship information and other known attributes
information in our embedding learning process, and in
the end directly predict node target attributes. These
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enhancements could extend our edge2vec model to better
address specific downstream tasks such as node attribute
prediction with unsupervised or semi-supervised training
strategies.

Endnotes
1 https://github.com/RoyZhengGao/edge2vec
2 https://bmcbioinformatics.biomedcentral.com/

articles/10.1186/s12859-016-1005-x
3 https://github.com/RoyZhengGao/edge2vec
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neural network based language model. In: Interspeech; 2010. p. 3.

30. Pennington J, Socher R, Manning C. Glove: Global vectors for word
representation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP); 2014. p. 1532–43.

31. Cao S, Lu W, Xu Q. Grarep: Learning graph representations with global
structural information. In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. ACM; 2015. p.
891–900.

32. Tu C, Wang H, Zeng X, Liu Z, Sun M. Community-enhanced network
representation learning for network analysis. 2016. arXiv preprint
arXiv:1611.06645.

33. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. 2013. arXiv preprint arXiv:1301.3781.

34. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed
representations of words and phrases and their compositionality. In:
Advances in Neural Information Processing Systems; 2013. p. 3111–9.

35. Levy O, Goldberg Y, Dagan I. Improving distributional similarity with
lessons learned from word embeddings. Trans Assoc Comput Linguist.
2015;3:211–25.

36. Xu Y. An empirical study of locally updated large-scale information
network embedding (line). PhD thesis. Los Angeles: University of
California; 2017.

37. Sun Y, Han J, Yan X, Yu PS, Wu T. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. Proc VLDB
Endowment. 2011;4(11):992–1003.

38. Fu G, Ding Y, Seal A, Chen B, Sun Y, Bolton E. Predicting drug target
interactions using meta-path-based semantic network analysis. BMC
Bioinformatics. 2016;17(1):160.

39. Kedem D, Tyree S, Sha F, Lanckriet GR, Weinberger KQ. Non-linear
metric learning. In: Advances in Neural Information Processing Systems;
2012. p. 2573–81.

40. Box JF. Guinness, gosset, fisher, and small samples. Stat Sci. 198745–52.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://www.cs.toronto.edu/~roweis/lle/publications.html
http://www.cs.toronto.edu/~roweis/lle/publications.html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Introduction
	Related Work

	Methods
	Edge-type transition matrix for network embedding
	Expectation-Maximization framework
	Expectation step
	Maximization step

	Skip gram for embedding optimization

	Results
	Biomedical dataset: Chem2Bio2RDF
	Evaluation Metrics
	Entity multi-classification
	Compound-gene bioactivity prediction
	Compound-gene search ranking
	Parameter tuning

	Discussion
	Ranking positive bindings for similarity search
	Gene clustering analysis

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

