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Abstract

Background: Metagenomics experiments often make inferences about microbial communities by sequencing 165
and 18S rRNA, and taxonomic assignment is a fundamental step in such studies. This paper addresses the
weaknesses in two types of metrics commonly used by previous studies for measuring the performance of existing
taxonomic assignment methods: Sequence count based metrics and Binary error measurement. These metrics
made performance evaluation results biased, less informative and mutually incomparable.

Results: We investigated weaknesses in two types of metrics and proposed new performance metrics including
Average Taxonomy Distance (ATD) and ATD_by_Taxa, together with the visualized ATD plot.

Conclusions: By comparing the evaluation results from four popular taxonomic assignment methods across three
test data sets, we found the new metrics more robust, informative and comparable.

Keywords: Metagenomics, Classification, Performance evaluation, Data analysis

Background

Taxonomic assignment using 16S and 18S rRNA gene
classification

A fundamental step in microbiota studies is taxonomic
assignment, in which each sequence or “read” in the
study sample is assigned a taxonomic label [1]. The most
common method for taxonomic assignment is to se-
quence the 16S and 18S rRNA genes as biomarkers, and
there are several methods for doing this, including the
RDP Naive Bayesian Classifier [2] (hereafter RDPNBC),
K-Nearest Neighbor, SINTAX [3], TACOA [4], Taxator-
tk [5], Kraken [6] and 16S Classifier [7]. Method perfor-
mances are (cross-) validated on popular databases and
have been characterized as having different strengths.
Vinje et al. [8] compared performances for several k-mer
based taxonomic assignment methods and found that
the k-mer based methods that they used approach an
error plateau.

Challenges in performance evaluation
Taxonomic assignment methods are more difficult to
evaluate than previously thought for several reasons:
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(1) Taxonomy Choice: Classification results using
different taxonomic databases cannot be directly
compared [9]. Since different sets of reference
sequences and nomenclatures (e.g., Bergey’s, NCBI)
are used, they might give the same taxonomic
assignment for different query sequences or vice
versa. Besides, taxonomic names are changed (or
updated) as new microorganisms are identified,
which makes the results even less consistent.

(2) Testing Data: Data from communities differ from
context to context (human gut, soil...etc.), and
there are currently no standard testing data for
each context. Previous studies derived their
evaluation results by performing cross-validation on
existing 16S and 18S rRNA databases such as RDP
[10], Greengenes [11] and SILVA [12]. The Critical
Assessment of Metagenome Interpretation (CAMI)
[13] open-access platform also provides specially-
generated data sets for benchmarking.

(3) Reference database coverage: microbial marker
genes such as 16S and 18S rRNA correspond to
only a small fraction of species’ taxonomic names
and known sequences [14]. Taxonomic assignment
methods cannot learn the patterns from unseen
taxa, regardless of their performance.
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(4) Performance Metrics: After cross-validating on da-
tabases, one may summarize the test results with
some performance metrics such as accuracy, preci-
sion or recall. The different choices of metrics also
reflect different viewpoints for the task and would
reflect heavily on how researchers interpret the per-
formance evaluation results. We believe that good
taxonomic assignment performance metrics could
help make inferences on the absolute performance
given the known reference sequences and compare
the performances among different methods. It is
also worth mentioning that performance metrics
are separate from the first three challenges because
they have a stronger connection to referencing data
sets. Performance metrics will always be the final
direct performance reference for taxonomic assign-
ment methods.

Two weaknesses of performance metrics in previous
studies

Previous studies showed that most taxonomic assign-
ment algorithms could achieve around 90% accuracy
when choosing genus as its classification target rank.
High accuracy, however, does not necessarily imply high
performance. Here, we illustrate two weaknesses of the
performance metrics used by previous studies: Sequence
Count Based Metrics and Binary Error Measurement.
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Sequence count based metrics

Description The performance metrics commonly used
in previous studies, such as accuracy, precision or recall,
are generally in the form of a fraction based on the
count of predictions, such as:

N correct
Accuracy = ———

total

However, high accuracy does not necessarily represent
good recognition capabilities in the classification task
[15], especially when evaluating performance using im-
balanced data sets. Data sets are imbalanced when some
classes are highly underrepresented compared to others
[16]. The performance evaluation of a classification
model for multi-class imbalanced data sets in terms of
simple “accuracy rate” may provide misleading results
[17]. Unfortunately, common 16S and 18S databases are
highly imbalanced. See Fig. 1 for cumulative sequence
fractions in taxonomies (in their lowest rank) for the
common databases. When evaluating performance on
such imbalanced data sets, a result of 80% accuracy
seems sufficient for a classification method at first
glance, but it might accurately recognize only one-third
of the taxa — an accuracy paradox.
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Pitfalls (1) Biased Performance Evaluation

With sequence count based metrics, one may assume
that the taxa distributions in databases are similar to
those in samples, but this is usually not true in practical
microbiota research. With regard to imbalanced data
sets, the sequence count based metrics are just measur-
ing how well a method performs based on a few specific
taxa with high sequence frequency in a database, not its
ability to recognize every taxon.

As a consequence, the performance evaluation results
are optimistically biased toward the performance on
high frequency taxa. The sequence count based metrics
also favor methods that are good at recognizing patterns
of high frequency taxa in databases.

(2) Incomparable Evaluation Results

To address the problem of frequent taxa, some previ-
ous studies resorted to “pruning” (undersampling) large
taxa in databases to make the sequence counts for each
taxon even [7, 8]. This strategy alleviates the imbalances
in databases while trading off the sequence diversities
for the pruned taxa, making the database coverage even
poorer. Nevertheless, different undersampling methods
in different studies make experiment results between
studies mutually incomparable. Also, the vagueness in
descriptions on how this pruning was done made the ex-
periments less repeatable and reproducible.

Solution Replacing the “taxa distributions in databases
and samples are similar” assumption, we normalize taxa
distributions by weighting each taxon equally in per-
formance metrics to reflect a classification method’s rec-
ognition capabilities. We aim to give equal treatment to
the prediction results of each taxon while avoiding re-
sampling, which tends to make questionable adjustments
to the original databases. In contrast to sequence count
based metrics, this approach can be considered as “taxon
count based metrics”. This concept has also appeared in
some recent work [4, 5, 13].

Binary error measurement

Description Literatures show that it is very common to
measure prediction error in a binary form using:

1,if incorrect

Per—prediction error = ;
P { 0, if correct

without considering the similarities between taxa; the
binary error measurement only takes equality into ac-
count. However, is mistaking Archaea as Bacteria
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(different domains) equally as wrong as mistaking Col-
wellia as Thalassomonas (different genera)?

Consider the example illustrated in Fig. 2. Suppose
there is a sequence with an actual taxonomic label
T:“orderA;familyB;generaD”; T, “orderA;familyB;gen-
eraE” and T;"orderA;familyC;generaF” are two predic-
tions. Which prediction is better? Prediction T, is
“closer” to the actual taxon than Prediction T3 in num-
ber of different clade ranks. The binary error measure-
ment would, however, treat both predictions equally.

Pitfalls
(1) Loss of Information

The assumption behind the binary error measurement
is that all taxa (taxonomic labels) are equally different
from one another. But such an assumption does not
bode well with the very nature of tree-based taxonomy
where we view taxonomic assignment as a hierarchical
classification (HC) problem. A hierarchical performance
measure should use class hierarchy to properly evaluate
HC algorithms [18].

Most previous studies made independent binary evalu-
ations at each rank, in which performances were mea-
sured separately with different taxonomic ranks as
classification targets [2, 4, 5, 13]. This design does not
fully deploy the concept of HC, leading to loss of infor-
mation as explained below.

When setting a high rank as the classification target,
the evaluation result loses the information about
whether a method is capable of differentiating the taxa
in lower ranks. However, when setting a low rank as the
classification target, we face the issue of singletons. Since
singletons cannot be correctly classified, some previous
studies discarded these predictions in statistics (making
results overly optimistic).

Nevertheless, no taxon is completely novel in a taxo-
nomic tree. Therefore, a method could still make gener-
alized predictions on singletons. Discarding or ignoring
them actually leads to the data diversities shrinking fur-
ther and losing information on the performance on these
variations.

Consequently, the performance evaluation results lose
the information for prediction errors. The binary error

generaD
T

generakE
familyC generaF speciesG
| Ts H T3 H Ts

Fig. 2 An example of a taxonomic tree. (For simplicity, only four

ranks shown)
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familyB
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measurement also does not favor “stable” methods (i.e.,
making fewer correct but overall fewer severely incorrect
predictions); one example is the evaluation results pre-
sented in Vinje et al. (Fig. 5 in the paper), in which one
cannot tell whether all compared methods made the
same degree of mistakes in their common error
predictions.

(2) Incomparable Evaluation Results

Previous studies viewed singletons as unavoidable
(equal-degree) errors and used various treatments on
these sequences. Therefore, using binary error not only
caused loss of information, but raised the redundant
issue for treatments on singletons, making the evalu-
ation results incomparable.

We found that inconsistencies also existed within the
same studies. For example, Fig. 1 in Wang et als study
[2] suggested one would lose merely 3% accuracy when
changing the target rank from family to genus, but the
evaluation results were actually based on different data
sets (i.e., with different set of records recognized as sin-
gletons).

Solution We change the “All taxa are mutually equally
different” assumption by considering the dissimilarity
between taxa to be proportional to their rank difference.
We therefore define Taxonomy Distance as a way to
measure the dissimilarity between any two taxonomic
labels:

_ Number of ranks in difference

TD Number of unique ranks in two taxa

Consider again the taxonomic tree in Fig. 2. The cal-
culation examples are shown in Table 1.

Methods

We use the two solutions to propose a new set of per-
formance metrics, together with a visualized plot, and
reevaluate the performance of a few taxonomic assign-
ment methods on three databases.

Table 1 An example TD calculation. (T; Tg are the 6 taxonomic
labels shown in Fig. 2)

D T, T, T, T, Ts T,
T, 0 13 23 1/3 23 3/4
T, 0 23 13 23 3/4
T, 0 23 1/3 1/4
T, 0 1/2 3/4
Ts 0 2/4
Te 0
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Taxonomy based performance metrics

Per-prediction error: Taxonomy Distance For a given
query sequence, a taxonomic assignment method gives a
taxonomic label as a prediction. The Taxonomy Distance
in a prediction is TD as defined above.

Per-taxon error: Average Taxonomy Distance The
prediction error for a taxon T, called its “Average Tax-
onomy Distance” (ATD), is defined as

> " TD(s;, P(si))

ATD=%=L
N

Where
N = Number of sequences truly in taxon T
{s1,82,83...s5 } = Sequences truly in taxon T

P(s) = The predicted taxon label for sequence s

Overall performance: ATD_by _Taxa We used ATD_
by_Taxa to measure the overall performance for a taxo-
nomic assignment method, which is the simple mean of
the ATDs for all the taxa

> ATD(T))

ATD_by_Taxa =
y-Taxa o

Where

M = Total number of taxa

Error Rate (by taxa) and ATD (by seq) We also de-
rived two metrics to compare the effects of our two so-
lutions: Err_by_taxa and ATD_by_seq, which use only
one of the two solutions. Error rate (by taxa) is a taxon
count based metric that uses binary error for each pre-
diction, in which error rates are calculated for each
taxon and then averaged. ATD (by seq) is a metric using
Taxonomy Distance, but with no reference to taxon
count; it is simply the mean of TDs among the
predictions.

Visualizing through an ATD plot A taxonomic assign-
ment can be visualized through a graph, or ATD plot,
which is the plot of taxa ATDs sorted in ascending
order. This plot shows the degrees of differences be-
tween predicted and actual taxa. See Fig. 3 as an
example.
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Fig. 3 Example of ATD plot. This example plot shows that the method correctly classified around 1/2 of the taxa in the RDP database and
around 1/3 of the taxa with 0.16 TD (1-rank error)

Data and taxonomic assignment methods

10-fold cross-validation and macro average

We used stratified 10-fold cross-validation for this study
to reduce the outcome variance and bias across the folds
[19]. In keeping with the uniform taxa distribution as-
sumption, we performed macro-average [20] rather than
micro-average when summarizing ATDs for each taxon.
That is, rather than calculate performance metrics for
each data fold and average them, we first aggregated all
the TDs from the data folds, then calculated ATDs for
each taxon.

Data
We chose RDP, Greengenes and SILVA as our testing
data to evaluate 16S and 18S rRNA taxonomic assign-
ment methods. They were all downloaded from Mothur.
org [21]. Mothur had added some mitochondrial se-
quences from eukaryotes and removed subranks in the
RDP labels. They also removed some non-16S, chimeric
or low-quality sequences in SILVA. A detailed descrip-
tion of these data sets can be found on Mothur’s wiki
page. Table 2 summarizes some characteristics of these
databases.

This study used the full length 16S and 18S rRNA
gene sequences throughout the training and testing pro-
cesses, and no singletons or other sequences were

discarded from the databases so as to keep results com-
parable and maintain sequence variation.

Taxonomic assignment methods

Four taxonomic assignment methods with settings
shown in Table 3 were chosen for this study. K-Nearest
Neighbor (hereafter KNN), Nearest Neighbor (hereafter
1INN) and RDPNBC were implemented by Mothur. SIN-
TAX was from USEARCH. For better evaluation results,
we set the cutoff for RDPNBC and SINTAX to 0.

Results

The effects of taxon count based metrics and taxonomy
distance

In order to know the effects from taxon count based
metrics and Taxonomy Distance, we compared results
from 2 x 2 cases. Figure 4 shows the evaluation result of
RDPNBC on the RDP database. (See Supp. for plot

Table 2 Summary for the rRNA gene databases used for this

study

Database Version  Sequence Type Sequences Taxa Singletons
RDP V16 16S 13,212 2472 1119
Greengenes Aug2013 165 203,452 5405 2078
SILVA V128 16S & 185 190,061 2078 1920
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Table 3 Settings for the chosen taxonomic assignment
methods
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tables validating other methods on other databases; also
See ATDmeasures.R and StatsandPlots.R in Supp. for

Method Word length Other parameters Implemented by~ implementation codes).
KNN 8 Mothur v.1.39.5 The top left plot shows that most sequences in the
INN 3 numwanted = 1 Mothur v.1.39.5 database resulted in correct predictions and around one-
i 0
SINTAX g Utoff= 0 USEARCH va2 tenth of the sequences antalned errors. Among the 12%
ﬁ ) error rate, 8% were singletons and 4% were non-
RDPNBC 8 cutoff =0 Mothur v.1.39.5 singletons, which was compatible with the evaluation re-

sults from previous studies.

The top right plot shows the effect of switching from
sequence count based metrics to taxon count based met-
rics. The overall error rate weighted by taxon count was
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Fig. 4 Evaluation results from testing RDPNBC on the RDP database
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50%, showing that, though RDPNBC could correctly
classify 88% of sequences in the database in cross-
validation, those correct predictions only represent the
capability of classifying half of the taxa. Here we see se-
quence count based metrics were biased toward the per-
formance on majority taxa and failed to represent
recognition capabilities.

The bottom left plot shows the effect of switching
from binary error measurement to Taxonomy Distance.
88% of sequences had 0 TD corresponding to the O-
error sequences in the top left plot. Most of the 12% of
sequences with errors were actually 0.16 TD (1-rank
error). Here we see that Taxonomy Distance provides
more detailed information on incorrect predictions and
that singletons are not unavoidable errors.

The bottom right final ATD plot shows the ATDs
across the taxa. We again see that most of the 0 TDs in
the bottom left plot were from majority taxa and—
though RDPNBC was perfectly correct on only half of
the taxa in the database—most of the errors in the
remaining taxa were 1-rank errors. The overall perform-
ance—ATD_by_taxa—was 0.11, showing expected half
rank error for each prediction. The deployment of taxon
count based metrics and Taxonomy Distance gave more
robust and informative evaluation results.

Method performance and best performance

There is a difference between “how good the method is”
and “how close the method is to perfection”. By compar-
ing the evaluation result to best performance, we can get
the idea of how close a classifier is near to perfect and
identify the difficult and important cases that algorithm
designers need to work on. Here we describe how new
metrics could work better for such a purpose.

When using binary error measurement, the behavior
of the ideal (hereafter Plateau) algorithm can be de-
scribed as: (1) If a taxon T is also presented in training
data, predict T. (2) Else, get an error.

Considering Taxonomy Distance, the Plateau algo-
rithm’s behavior can be defined in a more delicate form:
(1) If a taxon T is also presented in training data, predict
T. (2) Else, generate a prediction with min TD from tax-
onomy labels in training data.

Note that we use the verb “generate” to indicate that
the prediction with the min TD was not necessarily the
taxonomy label that had the min TD in training data. In
some cases, the min TDs come from trimmed taxonomy
labels. For example, suppose the training data contained
only one single sequence with taxonomic label “orderA;
familyB;genusC;speciesD”. When a classifier tries to
make prediction on a sequence with the actual taxo-
nomic label “orderA;familyB;genusE”, it can definitely
not make an error-free prediction since there is no such
taxonomic label in the training data. However, the best
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prediction with the smallest TD given the training data
mentioned above was not “orderA;familyB;genusC;spe-
ciesD”, which would have 2/4 TD, but “trimmed” taxo-
nomic label “orderA;familyB;” or “orderA;familyB;
genusC” with 1/3 TD.

Figure 5 shows evaluation results for the RDPNBC
and Plateau methods using error rate and ATD. From
left to right, the first row shows the error for RDPNBC,
Plateau and their difference. One could conclude “12%
error for RDPNBC and 8% error for Plateau meaning 4%
to improve.” The sequence count based metrics focused
on having more correct prediction counts without the
consideration for the overall recognition capabilities.
Also, the deployment of binary error measurement does
not provide incentive for taxonomic assignment
methods to differentiate incorrect predictions.

The second row shows the ATD plots for RDPNBC,
Plateau and their ATD differences (paired by each
taxon). RDPNBC achieved 1/2 taxa error-free, 1/3 taxa
one-rank error, and 4/5 of the taxa with error Plateau.
For algorithm designers, this result not only points out
what could or should be improved, but how much im-
provements may influence overall recognition capabil-
ities. Here, we conclude ATD and ATD plot consider
both recognition capabilities and correctness measure.

(See Supp. for testing other methods on other
databases)

Method performance comparison

Here we examine the effects of taxon count based met-
rics and Taxonomy Distance in method performance
comparison. Error rate (by seq) is the simplest fraction
of correctly predicted sequences; ATD (by seq) is a
metric using Taxonomy Distance but without being
taxon count based, making it simply the mean of TDs
among the predictions. Error rate (by taxa) is a taxon
count based metric that uses binary error measurement
for each prediction, in which error rates are calculated
for each taxon and then averaged. Figure 6 summarizes
performance for testing the 4 methods on 3 databases.

The results of testing on RDP were compatible with
experimental results in previous studies. All metrics
show that the same performance ranking order and all
methods, except KNN, were nearly equally good and
closed to the Plateau.

When testing on Greengenes, Error rate (by seq) and
ATD (by seq) showed that KNN significantly outper-
formed RDPNBC and SINTAX. However, standard devi-
ations for these two metrics suggest that KNN is more
prone to having unexpectedly large errors for some pre-
dictions than RDPNBC and SINTAX. Here, we see that
binary error measurement leads to loss of information.
On the other hand, KNN gets a decent 0.165 Error rate
(by seq) but a high 0.745 error rate (by taxa). This shows
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that there is a high imbalance of taxa in Greengenes and
sequence count based metrics favor methods that are
good at recognizing majority taxa.

ATD_by_Taxa shows stable performance rankings
“Plateau, 1NN, RDPNBC, SINTAX, KNN”, regardless of
the databases used. There was still space for
improvement.

The merged ATD plots for the methods in Fig. 7 give
more intuitive results for method comparison. To see
which method performs better, one can simply ask “how
close is the ATD line to the Plateau ATD line?” Fig. 7b
and ¢ show significant space for improving the tests on
Greengenes and SILVA.

Discussion

This study brings up taxa count based metrics and Tax-
onomy Distance to address the weaknesses in previous
metrics. Kosmopoulos et al. [18] characterized existing
metrics for evaluating HC algorithms into two classes:
pair-based and set-based. Pair-based measures assign
costs to pairs of predicted and true classes as the mini-
mum distance in the tree hierarchy. Set-based measures
are based on operations in the entire sets of predicted
and true classes. The TD mainly uses the concept of set-
based calculation.

The UniFrac metric shown in the taxonomic profiling
challenge in Sczyrba et al.’s study [13] is more of taking
the paired-based metric approach, calculating the mini-
mum distance between the true taxonomic label and the
predicted label in a taxonomic tree. Both Taxonomy Dis-
tance and UniFrac distance take advantage of the hier-
archy in the taxonomic tree. Compared to UniFrac, TD
puts more emphasis on higher-rank prediction errors,
such as TD(T,4, T5) > TD(T;, T,) in Table 2, and less on
over-specialization cases. For example, suppose the ac-
tual taxonomic label is T, in Table 2. T¢ has 2 more
lower ranks in the label than Ts. The UniFrac distances
for (T4, Ts) and (T4, Te) are 2 and 4, respectively, being
proportional to edge differences. On the other hand,
TD(T, Ts) and TD(T,4 Tg) would be 1/2 and 3/4, re-
spectively, reflecting more on rank differences.

Set-based HC metrics have hierarchical precision, re-
call and F-measure, as presented by Kosmopoulos et al.
[18]. Nevertheless, hierarchical recall cannot reflect the
over-specialization cases and hierarchical precision can-
not reflect under-specialization ones. F-measure com-
bines precision and recall but is less intuitive than TD,
which centers around the concept of rank error.

However, TD also made the evaluation results highly
dependent on taxonomy choice. The Taxonomy Dis-
tances might differ when using different databases. Some
analysis platforms, such as Mothur, also made their own
adjustments to taxonomic ranks. This also influences
the calculation for Taxonomy Distance.
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There are three things to notice when using Taxonomy
Distance. First, we assume that the dissimilarity between
taxa is proportional to their rank difference. Second,
Taxonomy Distance is influenced by the number of
ranks for the two taxa. Third, the concept of ATD is
more like recall rate because the average is calculated by
the true classes.

In addition to addressing concerns about taxonomy,
for further studies we plan to evaluate performances of
other taxonomic assignment methods, other biomarkers
and other data sets. We also expect to make further bio-
logical interpretations based on those results.

Conclusion

We conclude that the benefits of using taxon count
based metrics and Taxonomy Distance in taxonomic as-
signment performance evaluation are as follow:

(1) More robust: Taxon count based metrics give equal
weight to each taxon and focus on recognition
capabilities; they are therefore less prone to
imbalanced databases.

(2) More informative: Taxonomy Distance adopts the
concept of taxonomic hierarchy and differentiates
incorrect predictions.

(3) More comparable: Taxon count based metrics solve
the controversial problem of pruning large taxa and
Taxonomy Distance clears the problem of whether
to exclude singletons before or after testing.

The sequence count based metrics with binary error
measurement used by previous studies imply the “same
taxa abundance distribution to database” and “all differ-
ent taxa are mutually equally different” assumptions.
This makes performance evaluation and comparison re-
sults biased and less informative. This study proposes
that ATD and ATD_by_Taxa, together with an ATD
plot, avoid these problems.
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