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Abstract

Background: Modern molecular profiling techniques are yielding vast amounts of data from patient samples that
could be utilized with machine learning methods to provide important biological insights and improvements in
patient outcomes. Unsupervised methods have been successfully used to identify molecularly-defined disease
subtypes. However, these approaches do not take advantage of potential additional clinical outcome information.
Supervised methods can be implemented when training classes are apparent (e.g., responders or non-responders
to treatment). However, training classes can be difficult to define when assessing relative benefit of one therapy
over another using gold standard clinical endpoints, since it is often not clear how much benefit each individual
patient receives.

Results: We introduce an iterative approach to binary classification tasks based on the simultaneous refinement of
training class labels and classifiers towards self-consistency. As training labels are refined during the process, the
method is well suited to cases where training class definitions are not obvious or noisy. Clinical data, including
time-to-event endpoints, can be incorporated into the approach to enable the iterative refinement to identify
molecular phenotypes associated with a particular clinical variable. Using synthetic data, we show how this
approach can be used to increase the accuracy of identification of outcome-related phenotypes and their
associated molecular attributes. Further, we demonstrate that the advantages of the method persist in real world
genomic datasets, allowing the reliable identification of molecular phenotypes and estimation of their association
with outcome that generalizes to validation datasets. We show that at convergence of the iterative refinement,
there is a consistent incorporation of the molecular data into the classifier yielding the molecular phenotype and
that this allows a robust identification of associated attributes and the underlying biological processes.

Conclusions: The consistent incorporation of the structure of the molecular data into the classifier helps to
minimize overfitting and facilitates not only good generalization of classification and molecular phenotypes, but
also reliable identification of biologically relevant features and elucidation of underlying biological processes.
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Background

Recent progress in multiplexed molecular profiling of
tissue and blood-based patient samples has yielded a
plethora of information that potentially holds the key to
advances in personalized medicine. Applying modern
machine learning techniques to these datasets presents
particular challenges, most notably the curse of dimen-
sionality. There are nearly always many more measured
attributes or features (often of the order of many thou-
sands) than patient samples or instances (frequently only
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100-200 or less). One approach to extracting useful
knowledge from such data uses unsupervised learning
techniques, such as hierarchical clustering, to access the
underlying structure of the feature space, allowing the
elucidation of different patient phenotypes [1, 2]. How-
ever, looking for structure only in the molecular feature
space without making full use of other available patient
data is restrictive and may be insufficient to produce an-
swers to many clinical questions.

Regression-based approaches have been used to lever-
age the information contained in continuous patient at-
tributes, most notably time-to-event (TTE) outcomes.
Methods such as regularized Cox proportional hazard
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(PH) models [3-5], feed-forward neural network based
nonlinear PH models [6], and random survival forests
[7, 8] have been explored to predict a patient’s hazard,
relative risk, or survival time directly using a TTE end-
point and clinical and/or molecular data. A
deep-learning based approach that simultaneously also
provides a personalized treatment recommendation has
also been implemented [9].

Often the goal when analyzing this type of data is to
identify molecular phenotypes associated with a particular
patient attribute, e.g., survival. In what follows we will de-
note this specific attribute of interest as the ‘endpoint, to
allow the distinction between this single attribute, for
which we want to identify an associated molecular pheno-
type, and the many attributes in the molecular data that
can be used to define that endpoint-related phenotype.
One basic approach to discover an endpoint-related
phenotype is to adopt supervised learning with training
class labels assigned based on the endpoint [10, 11]. This
methodology can work well when the endpoint is categor-
ical and there are two or more clearly defined training
classes (for example, subjects with cancer versus those
without cancer, or patients demonstrating an objective re-
sponse to therapy versus those who do not). However, in
many cases, important endpoints are continuous variables.
For example, the gold standard assessments of outcome
are not binary, but rather TTE variables, such as overall
survival (OS), progression-free survival, or recurrence-free
survival (RFS), and these can rarely be replaced adequately
by surrogate endpoints [12—14]. Defining training class la-
bels for binary classification from continuous endpoints
brings challenges, such as how to determine what is a
good or a poor outcome for a particular patient or, more
critically, which patients receive more or less benefit from
one therapy relative to another.

A simple and commonly used approach is to
dichotomize the continuous endpoint into two classes at
a percentile or landmark value. This approach has sev-
eral drawbacks. It reduces the information content of
the endpoint variable and requires selection of an appro-
priate percentile or landmark threshold. In addition, for
time-to-event endpoints, patients with insufficient follow
up may not be able to be categorized unambiguously as
achieving the landmark value. However, this approach is
very likely to produce training class labels with some
correlation with the unknown endpoint-related,
molecularly-defined phenotype. Considering survival as
the endpoint of interest, two classes can be defined by
dividing the cohort at median survival. More patients in
a molecularly-defined good prognosis group are likely to
be in the class with survival above the median, and more
patients in a molecularly-defined poor prognosis group
in the class with survival below the median. Since many
factors outside of the molecular data combine to impact
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outcomes, these training class assignments will not be
perfectly correlated with the molecular survival-related
phenotype. Even in the case of highly clinically relevant,
biologically-identified, univariate biomarkers, such as
HER?2 status [15], there are patients who exhibit short
TTE outcomes in the good prognosis biomarker group
(e.g., HER2- patients with poor outcomes) and patients
who exhibit long TTE outcomes in the poor prognosis
biomarker group (e.g, HER2+ patients with good out-
comes). So, one would never expect to find a
molecularly-based classification that could cleanly divide
patients into groups with non-overlapping endpoint
values. Although these cutoff-based approximations for
training class labels are not perfect, they may still be
good enough to allow the discovery of endpoint-related
molecular phenotypes. However, depending on the diffi-
culty of the associated classification problem, use of a
poor approximation for training class labels can lead to
reduced performance of the resulting classifier and iden-
tification of a molecular phenotype with weaker associ-
ation with the endpoint. This may occur either directly
from errors in training class labels or indirectly if a sub-
optimal selection of features used in classification is
made based on a poor choice of the class labels.

To access the underlying structure of the molecular
feature space and allow incorporation of endpoint data
when accurate training class labels are not clear, we have
developed a method of classification that is based on
simultaneous iterative refinement of the training class la-
bels and the classifier model towards self-consistency
(i.e., the sample training class labels are the classifica-
tions produced by the classifier). This not only yields a
classifier, or test, that is able to stratify subjects into one
of two endpoint-related classes, but also defines the as-
sociated molecular phenotypes. The aim is to create a
self-consistent system of binary classifier and class defi-
nitions. Briefly, each sample in the development set is
assigned to one of two training classes. Using these class
labels and a chosen classification algorithm, a first classi-
fier is constructed. This first classifier can then be used
to stratify the development set samples, yielding sample
classifications that are then used as new class labels for a
second iteration of classifier development. This process
is repeated until convergence to produce a final classifier
which reproduces the class labels for the samples from
which it is constructed. Full details are given in the
Methods section.

In the case of randomly selected initial training class la-
bels and no use of endpoint data, the method is unsuper-
vised in nature and is analogous to clustering. When
endpoint data is used to set initial training class label as-
signments or to steer the classifier development step (e.g.,
by using it to filter or prune) within the iterative refinement
process, the method becomes semi-supervised. The
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iterative process means that the initial assignment of train-
ing class labels is no longer as critical for final classifier per-
formance, as it is refined iteration by iteration. Hence the
method is well-suited to use with TTE outcomes or in
other settings where training class labels cannot be easily
defined or may contain errors. The approach depends on
the classifier producing unbiased classifications for in-
stances used in its development but is otherwise agnostic to
classifier development scheme. The endpoint information
can be utilized to define the training class labels that
initialize the iterative process or to guide the development
of the classifier itself. For some classifier paradigms the lat-
ter can be achieved by directly influencing the classifier de-
velopment step within each iteration of class label and
classifier refinement. Henceforth we will refer to a single
step of the refinement process - taking the training class la-
bels from the previous step, constructing a new classifier
using those training class labels, and producing new classifi-
cations for the development set samples using this new
classifier - as one “refinement iteration”.

The iterative refinement approach (IRA) can be used
to develop classification algorithms to identify binary
molecular phenotypes associated with any endpoint
where training class labels are not obvious. Here, we
demonstrate the utility of this IRA for discovering
TTE-related molecular phenotypes. In particular, we will
demonstrate that the method can:

a. Identify TTE-related molecular phenotypes, where
training class labels are not unambiguously defined,
and do this robustly, so that the strength of associ-
ation between classifier-defined phenotype and TTE
outcome (i.e., the effect size, as measured by the
hazard ratio between the binary phenotypes) gener-
alizes to validation sample sets;

b. Identify individual molecular features associated
with such TTE-related phenotypes accurately and
robustly, so that sets of features identified show
consistency between datasets;

c. Improve detection of biological processes associated
with the classifier-defined phenotypes and
generalization of the these identified processes
across datasets;

d. Improve the reliability of the estimates of strength
of association between classifier-defined phenotype
and TTE outcome generated during classifier devel-
opment when feature selection methods are
employed.

First, we present results where synthetic data are used
to construct a survival-related binary phenotype (a good
survival class and a poor survival class). In this setting
the true phenotype is known. Hence, it is possible to as-
sess accuracy of identification of the true molecular
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phenotype via its concordance with the classifications
generated by the classifiers and to evaluate accuracy of
detection of the subset of features that determine the
true phenotype. We show that carrying out the iterative
refinement can improve identification of the true pheno-
type in both development and validation. In addition, we
use this model system to illustrate how the approach
can improve generalization of the effect size of associ-
ation between survival and classifier-defined phenotype
when feature selection methods are employed during
classifier development.

We then show that the advantages of IRA are retained
in real-world datasets, where many molecular phenotypes,
with and without association with the endpoint of interest,
are likely to coexist, and where these phenotypes are not
known a priori. In these applications we primarily assess
success in identification of TTE-related molecular pheno-
types via the hazard ratio between Cclassifier-defined
groups in validation datasets and the reliability of the de-
velopment set estimates of this hazard ratio. The first ex-
ample uses mRNA expression data from tissue samples
collected from patients with breast cancer. For this prob-
lem we also evaluate the biological processes associated
with the classifier-defined phenotype using gene set en-
richment analysis. Lastly, we study an mRNA expression
dataset from patients with lymphoma to assess some tech-
nical aspects of the method. In this real-world data setting,
we study the influence of choice of initial condition (either
associated with TTE outcome or not) on the iterative
process, the effect of incorporation of TTE data into clas-
sifier construction, and some convergence properties of
the iterative refinement process.

Results

lllustration of the utility of iterative refinement approach
with synthetic data

The synthetic datasets, composed of 1000 attributes,
were created to contain two survival-related phenotypes,
A and B. The molecular phenotypes were defined by a
marked difference in mean attribute value in 100 of the
1000 attributes, which was kept constant throughout the
studies. The difference in survival between phenotype A
(better survival) and phenotype B (worse survival) was
controlled by a parameter, a (a > 0), with larger a corre-
sponding to greater difference in survival between phe-
notypes and a=0 corresponding to no difference in
outcome between phenotypes. (Full details about the
generation of the datasets can be found in Methods.)
Multiple development datasets were generated, each
containing Ng =120 instances (samples). The instances
were divided into the two phenotypes in the ratios 1:1,
1:3, and 3:1. Ten development set realizations were
drawn at random for each N:Ng ratio and value of «
studied. Validation datasets containing 1000 samples
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were generated in the same manner. Using the
dropout-regularized combination (DRC) classifier devel-
opment approach [16-18] (see Methods and Appendix
A Fig. 9), the IRA was used to attempt to identify the
true phenotype within the synthetic dataset. Note that
the DRC classification method incorporates ensemble
averaging (“bagging”) [19]. Hence, reliable classifications
can be obtained from development set results using
out-of-bag estimators [20]. This is essential for the IRA
to function. Initial training class labels were chosen by
dichotomizing the survival times at the median.

Identification of the true phenotype

The concordance of the median-dichotomized initial
training class labels with the true phenotype increases
with a. Simulation of the sampling distribution of datasets
with «a =2 and N, =N =60, showed that the median
concordance was 0.62, with interquartile range (IQR)
0.58-0.65, and concordance of 0.5 was the 0.7th percent-
ile. The median hazard ratio between true phenotypes was
determined to be 1.82. Given the clear distinction between
the true phenotypes in multiple attributes, this level of
concordance was sufficient for the true phenotype to be
identified accurately from the dichotomized training class
labels for three of the realizations studied. However, six of
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iteration to discover the true phenotype exactly, and one
realization required two additional refinement iterations.
As a is decreased to 1, concordance of the median-
dichotomized training class labels with true phenotype is
reduced. Sampling distribution simulations for Ny = Np =
60 and a =1 demonstrated median (IQR) concordance of
0.57 (0.53-0.60) with concordance of 0.5 at the 5.8th per-
centile. The median HR between true phenotypes was
143. The Cclassifications generated from the initial
training class labels in this case accurately reproduced
the true phenotype in only two of the ten develop-
ment set realizations. However, as shown in Fig. la
and c, the IRA usually converged quickly and, at con-
vergence, the classifier-defined phenotype was either
identical or very close to the true phenotype. Note
that for development set realization 7, for which the
initial training class labels were concordant with the
true phenotype for less than 50% of instances, the ap-
proach was unable to identify the true phenotype
even after ten refinement iterations. The results were
similar when validated in the independent set (Fig. 1b
and d). The classifier built using the initial training
class labels failed to identify the true phenotype with
an accuracy exceeding 0.90 when constructed with
five of the ten development set realizations, and only
achieved an accuracy greater than 0.95 for three de-
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Fig. 1 Performance of the iterative refinement approach on synthetic data with a= 1 for N5 = Ng = 60. For each development set realization the IRA
was applied. At each refinement iteration, the classifiers were applied to their development set realization and the independent validation set. Concordance of
classifier-derived phenotype with true phenotype is shown for (a) the ten development set realizations, and (b) the validation set, for all ten development set
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convergence and concordance greater than 99% was
achieved in nine of the ten development set realiza-
tions. This improvement as a function of refinement
iteration was also apparent in the HRs between
classifier-derived phenotypes. Using only the initial
training class labels for classifier development, the
HRs achieved varied widely around that for phenotype
A vs phenotype B in the development sets (Fig. 1c).
In validation the classification groups generated from
the initial training class labels showed smaller effect
sizes than those for the true phenotypes, except for
the one case where the IRA converged in one refine-
ment iteration. For eight of the nine remaining cases
the HRs between the classifier-defined phenotypes in-
creased to, or close to, the HR between phenotype A
and phenotype B with iterative refinement.

Qualitatively similar results were obtained for o = 1 with
ratios Na:Ng of 30:90 and 90:30 (Appendix B Fig. 10 and
Fig. 11), illustrating that utility is not restricted to identifi-
cation of phenotypes of equal prevalence. While conver-
gence of the IRA appeared to be somewhat slower in
these cases of uneven phenotype prevalence, as the IRA
adjusted to the imbalance in the true phenotype propor-
tions, each of the ten development set realizations for
both 1:3 and 3:1 ratios produced IRA convergence and ac-
curate discovery of the true phenotype.

Sampling distribution simulations for smaller o =0.8
and N = Np =60 gave median (IQR) for concordance of
true phenotype and dichotomized initial training class la-
bels of 0.57 (0.53-0.58) with the 9th percentile at a con-
cordance of 0.5; the median HR between true phenotypes
was 1.35. Results from applying IRA in this setting are

Page 5 of 25

shown in Fig. 2. The initial training labels were not suffi-
ciently accurate to allow discovery of the true phenotypes
in all but one case (set 8). However, the IRA recovered the
true phenotype with 100% accuracy for eight of the other
nine development set realizations. This was mirrored in
validation, where the true phenotype was detected with at
least 99% accuracy by the iterative refinement process on
convergence. The corresponding hazard ratios for
classifier-defined phenotypes obtained using the initial
class labels showed a wide range across the development
set realizations and reduced effect sizes in validation. The
IRA improved the HRs in the validation set in the major-
ity of cases once convergence was achieved.

For each development set realization the IRA was applied.
At each refinement iteration, the classifiers were applied to
their development set realization and the independent valid-
ation set. Concordance of classifier-derived phenotype with
true phenotype is shown for (a) the ten development set real-
izations, and (b) the validation set, for all ten development
set realizations as a function of refinement iteration. The
difference between the hazard ratio for classifier-derived phe-
notypes and the hazard ratio for phenotype A vs phenotype
B in the development sets, AHR, is shown in (c) as a func-
tion of refinement iteration. The hazard ratios for
classifier-derived phenotypes in the validation set as a func-
tion of refinement iteration are shown in (d). The value of
the hazard ratio in the validation set for phenotype A vs B
(HR = 1.54) is indicated by the dashed line. The crossed open
circle indicates lack of convergence after ten refinement
iterations.

The effect of the iterative refinement process was visual-
ized within the molecular feature space using t-SNE
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Fig. 2 Performance of the iterative refinement approach on synthetic data with a=0.8 for Ny =Ng =60
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(t-distributed stochastic neighbor embedding) plots [21].
t-SNE analysis is a tool that allows the visualization of
high-dimensional data in a 2D map, capturing both local
and global structure. The t-SNE plots are shown in Fig. 3
for development set realization 1 for Ny = N =60 and «
=1 for each refinement iteration. The marked differences
in mean value in 100 of the 1000 attributes between
phenotype A and B produced two clearly separated clus-
ters of attributes, phenotype A in the upper right of the
plot and phenotype B in the lower left. There was little
concordance between the initial training class labels and
the underlying feature space structure (Fig. 3a), as the two
training classes (1 — poor prognosis (red) and 2 — good
prognosis (blue)) were spread across the two clusters. As
iterative refinement occurred (Fig. 3b to Fig. 3c to Fig. 3d),
the classifier-derived phenotypes changed to more closely
match the molecular feature space structure. At conver-
gence (Fig. 3d) the classifier-derived phenotype (and train-
ing labels of the classifier itself) reproduced the two
compact clusters of the true phenotypes exactly. In this
setting of compact regions of class labelled instances, small
changes in attribute values have little impact on instance
classification. Classification is then less dependent on spe-
cific details of the development set, less likely to be over-
fitted, and more likely to generalize well. (Corresponding
t-SNE plots for the validation set classified by the classifiers
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developed for development set realization 1 are shown in
Appendix B Fig. 12.)

Results are shown for a) initial training class labels, b)
classifier-derived phenotypes using initial training class la-
bels (refinement iteration 1), c) classifier-derived pheno-
types using training class labels from refinement iteration
1 (“refinement iteration 2”), d) classifier-derived pheno-
types at convergence at refinement iteration 3. x and y
axes show arbitrary scales of the two t-SNE components.

Identification of attributes defining the true phenotypes

By construction, only 100 of the 1000 attributes are as-
sociated with the phenotype. We investigated the associ-
ation of all attributes with the classifier-defined groups
during the IRA. For a =1 and o = 2, the training class la-
bels at the second refinement iteration were always asso-
ciated with the 100 true associated attributes at a
Bonferroni-adjusted 95% significance level, except for
one training set realization for o =1 where the iterative
refinement did not converge within 10 refinement itera-
tions. However, these attributes were not reliably associ-
ated with the initial training class labels generated by
survival dichotomization. Only one development set
realization for a« =1 and one for o =0.8 had any of the
100 attributes defining true phenotype associated with
the initial training class labels at the Bonferroni-adjusted
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95% significance level. One of the development set reali-
zations (set 4) for a = 0.8 identified all 100 of the associ-
ated attributes only after the third refinement iteration.

Generalization of effect size during iterative refinement with
feature selection

Many classifier development approaches require fea-
ture selection when applied in the setting of more at-
tributes than instances. We investigated classifier
development with feature selection for the synthetic
data using development set realization 1 for a =1 and
N =Ngp =60. At each refinement iteration, 50 of the
1000 attributes were selected based on t-test for asso-
ciation between training class label and survival. The
results are shown in Fig. 4. The hazard ratios between
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classifier-defined phenotypes from the initial refine-
ment iteration were over-estimated within the devel-
opment set and the effect size was reduced in the
validation set compared with that between the true
phenotypes. As shown above, the attributes selected
at the initial refinement iteration do not well repre-
sent those that are associated with the true pheno-
type. This leads to overfitting to the poorly selected
attributes during classifier development and lack of
generalization to and poor performance in the valid-
ation set. However, at convergence, both in the devel-
opment set and in the validation set, the true
phenotype was recovered to within a few percent and
the corresponding HR between phenotypes was ob-
tained. As the training class labels become more
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accurate during the IRA, the set of features selected
converges to the set associated with the true pheno-
type. This allows development of robust classifiers, re-
liable hazard ratio estimations from the development
set and good generalization to the validation set.

Classifier development was carried out selecting 50
features by t-test at each refinement iteration for a=1
and N, =Ng =60 and development set realization 1. a)
Hazard ratio between classifier-derived phenotypes ob-
tained in the development set as a function of refine-
ment iteration. The dashed line shows the HR between
true phenotypes in this development set realization. b)
Hazard ratio between phenotypes obtained in the valid-
ation set as a function of refinement iteration. The
dashed line shows the HR between true phenotypes in
the validation set.

Real world data application 1: prognostic classifier for
recurrence-free survival for patients with breast cancer
treated with adjuvant chemotherapy

In this application the goal was to identify molecular
phenotypes with better and worse recurrence-free sur-
vival in mRNA expression datasets from patients with
breast cancer. The datasets contained 12,770 attributes
each and 148, 147, and 380 patients for the development
set, the internal validation set, and the independent val-
idation set, respectively.

Using the strongly regularized bagged logistic regression
classifier development method (see Methods and Appendix
A for more details) we examined the process of including
TTE outcome data into the classifier development by
TTE-determined initial condition and TTE-based feature se-
lection within the iterative refinement process. For each re-
finement iteration, the association of the training class labels
with each attribute (feature) was determined by t-test. Only
the 100 features with the smallest p values for this associ-
ation (largest absolute values of t-test statistic) were selected
for training the classifier within that refinement iteration.
The initial condition was determined by dichotomizing
recurrence-free survival (RFS), with 74 of the 148 develop-
ment set samples with RFS below the median assigned to
the poor prognosis group and the other samples assigned to
the good prognosis group.

Figure 5 shows the HR between the resulting classifi-
cation groups as a function of refinement iteration for
out-of-bag classifications for the development set and
standard classifications for the internal and independent
validation sets. Initially, within the development set an
overestimation of the true stratification power of the
classifier occurred (HR for RFS between classification
groups was 5.5 for the development set compared with
1.7 for the internal validation set). However, as the itera-
tive refinement process continued, this overestimate of
effect size diminished, and a reliable development set

Page 8 of 25

estimate of effect size was achieved after 3—4 refinement
iterations. The lack of consistency between the TTE
median-based initial training class assignments and the
true feature space structure led to feature selection in-
consistent with the feature space structure and to over-
fitting to specific details of the development set. As the
IRA proceeded, the training class labels relaxed to reflect
the overall feature space structure. This led to feature se-
lection consistent with that molecular structure, with
minimization of the chance for overfitting to random in-
tricacies of associations of features and outcomes within
the development set and improved generalization to the
internal and independent validation sets. (This is illus-
trated in Appendix B Fig. 13 by t-SNE plots for the TTE
median-based initial training class labels and the classifi-
cations at refinement iteration 7 for the development
and validation sets.)

This generalization extended beyond the effect size es-
timate of the classifier for stratification of prognosis as
measured by HR to the assessment of relevance of the
individual attributes for prediction of outcomes. Figure 6
compares the t-test statistics for association of each at-
tribute with the initial training class labels and with the
classifications of refinement iteration 0 and 7 between
the development set and internal validation set and be-
tween the development set and independent validation
set. The t-test statistics of the internal and independent
validations were normalized in order to take into ac-
count the different dataset sizes by multiplying by
\/I/Nl,val + 1/I\[2,vall/\/1/1\[1,dev + 1/]\[Z,dev » where
Njya and Ny, are the number of samples assigned to
the poor prognosis and good prognosis classification
groups in the validation set (internal or independent),
and Njgey and Nyg., are the number of samples
assigned to the poor prognosis and good prognosis
groups in the development set. There was little, if any,
correlation between the features associated with the ini-
tial training class labels between the development set
and either of the validation sets (Fig. 6, top row). How-
ever, coherence and consistency between the molecular
feature space structure and training class assignments
was achieved during the refinement process, and this
generalized to the wvalidation sets. This implies
generalization of the strength of association of features
with the resulting classifications.

Left panels: development and internal validation
sets, right panels: development and independent valid-
ation sets. For each data set, the statistics were
obtained by comparing the univariate distributions of
the attributes between the two classes Poor prognosis
and Good prognosis. For the top 2 panels, the labels
were TTE median-based. For the medium and bottom
panels, the labels were those given by the resulting
classifiers of refinement iterations O and 7, res-
pectively. Each panel corresponds to a bivariate histo-
gram with 12,770 entries (number of attributes); the
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x- and y-axes are divided into 200 bins in the range
-20 to 20.

This can be of crucial biological importance as it
means that, with this process of iterative refinement of
training class labels and classifier, we can reliably access
structure in the molecular data in a way that generalizes
across datasets. After several refinement iterations, we
can isolate the most relevant individual genes associated
with the classifier-defined phenotype and these will be
consistent across the datasets. For example, if we select
from the 12,770 available genes, the 100 most strongly
associated with the classification results of refinement it-
eration 7 separately for the development set, the internal
validation set, and the independent validation set, we
identify only 142 distinct features, 63 (44%) of which are
common across all three sets.

The increased levels of association of attributes with
classifier-defined phenotypes and their generalization
across datasets means that the biological processes asso-
ciated with the phenotypes can also be more easily and
reliably detected via methods such as gene set
enrichment analysis (GSEA) [22, 23]. Using software
publicly available from the Broad Institute (software.
broadinstitute.org/gsea/index.jsp), GSEA was carried out
separately for the gene expression datasets of the devel-
opment set, the internal validation set, and the
independent validation set for the TTE endpoint

dichotomized initial training class labels and the classifi-
cations from refinement iteration 7. The hallmark gene
sets library from MSigDB was selected for the analysis
[24]. Gene sets that were associated with the
classifier-derived phenotypes with nominal p value <0.1
and false discovery rate (FDR) q value < 0.25 were identi-
fied. Table 1 shows the gene sets identified for each data-
set. With the TTE median-dichotomized training class
labels, only four gene sets were identified as associated
for all three datasets and nine different gene sets were
identified in only one of the three datasets. For the clas-
sifications of refinement iteration 7, at convergence and
consistent with the underlying feature space structure,
21 gene sets were identified as associated with the
classifier-defined phenotypes in all three datasets and
only five gene sets were identified in a single dataset.
Hence, the phenotypes associated with the converged
classifications showed clearer and more consistent asso-
ciations with biological processes than those associated
with the initial training class labels.

There is biological rationale for many of the additional
gene sets identified across all datasets using the phenotypes
elucidated by the IRA. Estrogen receptor response plays a
critical role in the endocrine dependence of breast cancer
and the outcomes of therapy [25]. Unfolded protein re-
sponse has been shown to be associated with pathogenesis
of a variety of diseases [26, 27] and poor prognosis and
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chemotherapy resistance in breast cancer [28]. Elevation of
the reactive oxygen species (ROS) pathway has been de-
tected in almost all cancers, where it promotes many as-
pects of tumor development and progression [29, 30].
Dysregulation of metabolism is one of the hallmarks of can-
cer [31] and switching of cancer cells from oxidative phos-
phorylation to aerobic glycolysis as a source of energy is
typical for many tumors [32]. The epithelial-mesenchymal
transition is relevant for cancer prognosis as a mechanism
for invasion and metastasis of cancer [33], and angiogenesis
is known to be important in breast cancer, where bevacizu-
mab, an angiogenesis inhibitor, is an approved drug.

Real World Data Application 2: Prognostic classifier for
overall survival for patients with lymphoma treated with
chemotherapy

mRNA expression of 21,024 genes in samples from
181 patients with lymphoma were available for ana-
lysis, together with overall survival data. The goal was
to identify binary phenotypes of patients with better
and worse survival. The cohort was split into a
development set (91 patients) and validation set (90
patients). Via identification of survival-related pheno-
types in this dataset, we aimed to assess the following
technical aspects of the IRA:
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Table 1 Gene sets association with training class labels at iteration 0 or classification at iteration 7. Gene sets associated with p
value < 0.1 and FDR < 0.25 in gene set enrichment analysis of the development set (DEV), the internal validation set (INT VAL) and

the independent validation set (IND VAL) are marked with “X"

Initial Training Class Labels

Classifications: Iteration 7

Gene Set DEV INT VAL

IND VAL DEV INT VAL IND VAL

MYC Targets V2 X
Spermatogenesis
G2M Checkpoint
E2F Targets

X X X X

Estrogen Response Early
PI3K AKT MTOR Signaling
DNA Repair

Mitotic Spindle

MTORCI Signaling

MYC Targets V1

Cholesterol Homeostasis
UV Response Up

Glycolysis

Unfolded Protein Response
Reactive Oxygen Species Pathway

UV Response Down

X X X X X X X X X X X X X X X X

Oxidative Phosphorylation
Epithelial Mesenchymal Transition
Angiogenesis

Myogenesis

Coagulation

TGF beta Signaling

NOTCH Signaling

Interferon gamma Response X
Inflammatory Response

Allograft Rejection

Interferon alpha Response

Estrogen Response Late

X X

X X X X X X X X X X

X X X X X X X X X X X X X X X X X X X xX Xx
X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X

<X X X X

a. The influence of initial training class labels on the
convergence of the iterative process;

b. The impact on convergence of the iterative process
of tuning of the classifier development process
using survival data within the IRA; and

c. The relative importance of within iteration tuning
of classifier development using survival data and
initial training class labels on convergence of the
iterative process.

For this application we used the dropout-regularized
combination (DRC) classifier development method
(see Methods and Appendix A) [16-18]. This is a

hierarchical approach to classification in which many
sub-classifiers are created from small numbers of at-
tributes. These sub-classifiers are then applied to their
training set and the hazard ratio between resulting
classification groups is evaluated. Only sub-classifiers
achieving a minimal level of performance on this
endpoint-related metric pass filtering to be combined,
regularized by dropout, into a master classifier. This
is repeated for multiple splits of the development set
into training and test sets, which are ensemble aver-
aged. The filtering, or pruning, step allows for tuning
of classifier performance towards improved associ-
ation with the endpoint.
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The IRA was implemented with four sets of initial
conditions (ICs), i.e., four methods of initial training
class label assignment, and three levels of filtering of the
DRC sub-classifiers. The initial conditions for the train-
ing classes were selected as follows:

a. Instances were randomly assigned to good or poor
prognosis training classes in ten independent
realizations (“random ICs”);

b. Instances with overall survival (OS) below the
median were assigned to the poor prognosis group
and instances with OS above the median were
assigned to the good prognosis group (median-
dichotomized initial training class labels). Instances
that could not be unambiguously assigned due to
censoring were assigned half to each class in all
possible combinations to yield six realizations and a
seventh realization was generated by dichotomizing
at the median survival time independent of
censoring information (“T'TE median-based ICs”);

c. 10% noise in the initial class label assignments was
added to the seventh realization of (b), by randomly
swapping labels between pairs of samples, one in
each training class, to yield ten initial training class
label realizations more weakly associated with TTE
outcome than (b) (“10% noise ICs”); and

d. 20% noise in the initial class label assignments was
added to the seventh realization of (b), by randomly
swapping labels between pairs of samples, one in
each training class, to yield ten initial training class
label realizations more weakly associated with TTE
outcome than (c) (“20% noise ICs”).

Three levels of filtering of the sub-classifiers were
chosen: no filtering, ie., no pruning and all sub-classifiers
combined; intermediate filtering, only sub-classifiers pro-
ducing a HR for OS between classification groups of the
training set between 1.3—100 accepted (around 25-35% of
sub-classifiers accepted for random ICs and 25-75% ac-
cepted for other ICs, depending on refinement iteration);
and stronger filtering, only sub-classifiers producing a HR
for OS between classification groups of the training set be-
tween 2.0-100 accepted (around 2-10% of sub-classifiers
accepted for random ICs and 5-45% for other ICs, de-
pending on refinement iteration). The iterative refinement
process was carried out for each combination of initial
condition for training class labels and filtering. The results
were averaged over each set of realizations of the initial
training class labels. The HRs between classifier-defined
phenotypes at each refinement iteration for out-of-bag
classifications of the development set and standard classi-
fication of the validation set are shown in Fig. 7.

No filtering (top row), intermediate filtering (middle row)
and stronger filtering (bottom row) for the development set
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(left) and the validation set (right). Error bars show stand-
ard error.

For random initial conditions, with no association be-
tween initial training class labels and endpoint, and no fil-
tering, the final classifiers showed no ability to stratify
patients based on OS. The average HR between classifica-
tion groups over the random ICs realizations was around
1 in development and validation. Increasing to an inter-
mediate level of filtering of sub-classifiers yielded an aver-
age HR above 1 in development and consistent results in
validation. Investigation of the individual random IC reali-
zations (Appendix B, Fig. 14) showed that two of the reali-
zations produced validating classifiers with reasonable
stratification power (HRs around 2 and 1.5), while the
other eight realizations investigated produced classifiers
with no prognostic utility. Further increasing the level of
filtering produced classifiers with good stratification
power, with average HRs between classifier-defined phe-
notypes around 2 in development and validation. Closer
inspection of the individual ICs showed that all but one of
the ten random IC realizations produced a useful classifier
with the strongest filtering.

For TTE median-based ICs, it was still not possible to reli-
ably stratify patient prognosis if no filtering was used. How-
ever, as filtering was increased, even to the intermediate
level, the combination of filtering and TTE median-based
initial training class assignments was sufficient to reliably
produce classifiers with good performance (HRs around 2 or
higher in development and validation sets).

The 10% noise and 20% noise ICs, with weaker associ-
ation of initial training class labels with endpoint than
for TTE median-based initial training class labels, pro-
duced classifiers similar to those for the completely ran-
dom initial conditions at all three levels of filtering. For
the strongest filtering all 10 and 20% noise ICs produced
useful classifiers, with HRs between classifier-defined
phenotypes greater than or around 1.5 in development
and validation. However, only a minority or none of the
noise-based ICs vyielded classifiers with acceptable per-
formance with intermediate filtering or no filtering, re-
spectively (Appendix B Fig. 14c and d). Note that these
observations at intermediate filtering illustrated that
adding as little as 10% noise to initial training class label
assignment can impact the ability to adequately solve
the classification task.

Hence, for this particular problem of prognostic stratifi-
cation in lymphoma with the DRC classifier development
method, it was necessary to utilize endpoint input into both
the choice of initial training class labels and filtering of the
sub-classifier pool to consistently generate classifiers that
could stratify patients effectively by overall survival.

Some observations could be made on the course of
the IRA from comparing the convergence of the individ-
ual realizations of the four different initial training class
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Fig. 7 Average hazard ratio for each set of realizations of initial training class labels at each refinement iteration

J

label assignment protocols. The convergence was
quite fast, with the number of changes in class label
assignments between iterations dropping rapidly in
the first few refinement iterations. The number of
changes in the training class labels from refinement
iteration 0 to 1 was typically of the order of 30% or
more, while the number of changes at each refine-
ment iteration after iteration 4, assuming no prior
complete convergence, was small (typically between 1
and 4 instances). While not all realizations converged
within the maximum eight refinement iterations car-
ried out for this study, 47% did. Rate of convergence
did not seem to vary by kind of initial training class
assignment protocol or level of filtering, and the fixed

points of the IRA could be either a definitive combin-
ation of classifier and training class assignments or a
periodic attractor, e.g. a swapping back and forth of
the training class labels for a pair of instances by re-
finement iteration. In cases where convergence was
not achieved within eight refinement iterations, the
number of changes in training class labels from iter-
ation to iteration was generally small, causing small
fluctuations in classifier-defined phenotype propor-
tions. Interestingly, even with a sampling of only ten
realizations, several of the random IC realizations
converged to identical classifier-defined phenotypes
and classifiers. This indicates that the space of fixed
points for the IRA must be relatively small and
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certainly not of the order of the number of possible
initial class label assignments.

Discussion

We have introduced an iterative process which simul-
taneously refines training class labels and the associ-
ated classifier to identify endpoint-associated
phenotypes in molecular datasets. At its simplest
level, this approach can be viewed as an alternative
clustering-like approach to discerning structure in
molecular feature space which could allow us to iden-
tify patient phenotypes from the molecular data. We
have shown that this iterative refinement paradigm
can easily incorporate endpoint information to steer
the process towards the development of classifiers
suited for particular tasks. A major advantage of the
process is that even when guided by endpoint data,
the IRA relaxes to a self-consistency between training
class label and classifier which reflects the underlying
structure of the molecular feature space. This means
that classifiers and classifier-defined phenotypes are
relatively resistant to changes in feature values within
the “clustered”, class-specific regions of feature space
(see Fig. 3). Hence, phenotypes can be detected ro-
bustly, stable to the inevitable uncertainties in
real-world genomic or proteomic measurements and
the classifiers which identify these phenotypes can
generalize well to unseen datasets. Further, this
generalization can assist researchers to reliably iden-
tify genes or proteins associated with the
classifier-defined phenotypes at IRA convergence. This
information can be synthesized to produce more re-
producible and generalizable assessments of the rele-
vant underlying biological processes.

The IRA has been used to generate validated tests for the
identification of patients likely to have good outcomes
when treated with immunotherapy using high-throughput,
reproducible measurements of the circulating proteome.
Associated set enrichment analyses highlighted the import-
ance of complement activation and wound healing for the
classifier-defined phenotype and this novel in silico result
has been confirmed by independent work using conven-
tional clinical and preclinical methods [16, 17].

It has been recognized, particularly in the field of adju-
vant breast cancer prognostic stratification, that it is
possible to discover many different survival-related phe-
notypes using barely overlapping sets of genomic fea-
tures [34]. Furthermore, Venet et al. [35] showed that
most randomly selected genomic signatures identify phe-
notypes with similar differences in outcome between
them. In practice, it may not be very relevant what gen-
omic signature is used or precisely what phenotypes are
identified, as long there is a similar difference in survival
between the phenotypes, i.e., as long as the classifier or
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test identifying the phenotypes demonstrates similar per-
formance and utility [36]. However, for biological under-
standing of the resulting phenotypes and their
outcomes, some genomic signatures may well be more
useful than others, and our method may be helpful in
providing a level of consistency across datasets, not just
in prognostic stratification power, but also in association
of the identified phenotype with molecular features and
biological processes.

As the IRA is based on the refinement of training class
labels, it is well-suited for use in settings where training
classes are not a priori obvious, such as determination of
relative benefit of one treatment over another or when
the gold-standard endpoints are TTE outcomes. It is also
well-suited to problems where the training class labels
are known in principle, but where they are missing for
some instances or known to be noisy or only partially
accurate. Examples in the medical setting where training
labels are known to be noisy include histological subtyp-
ing and gene copy number measurement [37].

Many aspects of this iterative refinement process re-
main to be investigated. Here, in addition to the syn-
thetic data investigations, we have studied two
prognostic stratification problems in oncology using
mRNA datasets. The methods have also previously
been used with measurements of the circulating
proteome [16, 17]. However, we have yet to under-
stand how generic the convergence properties of the
algorithm are and how much the feature space struc-
ture depends on the type of classification problem,
the clinical setting, and the measurement data (e.g.
RNA-seq, epigenetic data). We have implemented the
IRA using two different classifier development para-
digms and, as long as an unbiased classification can
be provided for development set samples, the method
is agnostic to the supervised method used for classifi-
cation. Different paradigms may be better suited to
particular kinds of classification task and also provide
alternative avenues for guiding or steering the final
classifier towards optimal performance for the desired
task.

Conclusions

The iterative refinement approach simultaneously refines
training class labels and the associated classifier to facili-
tate the robust identification of endpoint-associated phe-
notypes in molecular datasets. Its consistent incorporation
of the structure of the molecular data into the classifier
helps to minimize overfitting and enable good
generalization of classification and molecular phenotypes.
The method also aids the reliable identification of bio-
logically relevant features and elucidation of underlying
biological processes. Hence, the iterative refinement para-
digm provides many advantages when working with
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binary classification problems when training class labels
are ambiguous or poorly defined.

Methods

Synthetic datasets

Synthetic data was used to define sets containing two
molecular phenotypes. The datasets were composed of
1000 attributes. Attribute values were randomly selected
for Ng samples from a multivariate normal distribution.
Each one of first nine hundred attributes was uncorre-
lated with all other attributes and centered around 0
with a variance of 1. One hundred additional attributes
were used to define the molecular phenotype. They were
selected to be uncorrelated with the first 900 attributes
and randomly correlated within the subset of 100 attri-
butes. The correlations were established using the
method of Numpacharoen and Atsawarungruangkit [38].
N4 samples were defined as phenotype A and Ng sam-
ples as phenotype B (Nn +Np=Ns). The 100
phenotype-defining attributes were centered at 0 with
variance 0.1 for phenotype A and centered at 2 with
variance 1 for phenotype B. A survival time was ran-
domly assigned to each sample from an exponential dis-
tribution. No censoring of survival was considered.
Survival times for samples with phenotype B were re-
duced by a scaling factor dependent on the values of the
100 phenotype-defining attributes. The scaling factor
was calculated as follows. First, a large reference dataset
of 10,000 instances in phenotype B was generated. Prin-
cipal component analysis (PCA) was then performed on
the 100 phenotype-defining attributes of this reference
dataset to identify the first principal component (PC).
The projection of the attribute values of each instance
on the first PC was calculated and the 5th and 95th per-
centiles (“lower cutoff” or | and “upper cutoff” or u) of
these projections were determined. The definition of the
first PC, u and 1 were used to define the scaling factor
for the phenotype B instances in the classification data-
sets. The vector of values of the 100 phenotype-defining
attributes was projected onto the reference first PC to
yield the projection, p, of each instance and the scaling
factor for each instance defined as 1 + o (p-1)/(u-1) if p>1
and 1 if p<l. Lastly, survival times associated with in-
stances with phenotype B were then divided by this scal-
ing factor, so that survival for phenotype B was shorter
than that for phenotype A and the difference in survival
between the phenotypes could be controlled by the par-
ameter, o.

Simulations were used to assess the distribution of
hazard ratios between true phenotypes and the con-
cordance between the true phenotypes and the initial
training class labels as defined by survival dichotomi-
zation within the synthetic dataset. The sampling dis-
tributions for synthetic datasets for size Ny = Ng =60
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were estimated for fixed a by generating 1000 dataset
realizations and evaluating the desired metrics in each
realization.

The synthetic datasets demonstrate a highly simplified
model with each instance in one of only two
survival-related molecular phenotypes. This allows in-
vestigation of how the IRA can improve identification of
the known phenotypes and isolation of the set of the at-
tributes that define them.

mRNA cohorts

Two two-class classification problems were chosen to
demonstrate the properties and application of the
IRA in real world datasets. The first example is the
prognostic stratification of patients with breast cancer
undergoing surgery and adjuvant chemotherapy. The
second example is the stratification of patients with
lymphoma treated with chemotherapy into good and
poor prognosis groups. Both examples use publicly
available mRNA expression datasets including TTE
endpoints.

Breast Cancer

Two mRNA expression datasets generated from tissue
samples collected from patients with non-metastatic
breast cancer at time of surgery were available. The
datasets were accessed from the supplementary materials
associated with Venet et al. [35]. The NKI set was col-
lected from 295 patients and consists of the expression
of 13,108 genes [39], while the Loi set consists of expres-
sion values for 17,585 genes profiled for 380 patients
[40]. The Loi set can also be accessed as GSE6532 within
the Gene Expression Omnibus. The two sample sets had
12,770 genes in common and our investigations use only
these as features for classification. Profiling had been
carried out using Affymetrix U133 microarrays. The
ComBat (http://www.bu.edu/jlab/wp-assets/ComBat/Ab-
stract.html) platform [41] was used to make the two
datasets compatible. ComBat is an empirical Bayes
method that standardizes across datasets by trying to set
the expression of each gene to a mean of 0 and a stand-
ard deviation of one. The NKI set was split into a devel-
opment set of 148 samples and an internal validation set
of 147 samples. The Loi set was used as an independent
validation set.

Lymphoma

A gene expression profiling dataset of samples from 181 pa-
tients with diffuse large-B-cell lymphoma treated with
CHOP (Cyclophosphamide, Hydroxydaunorubicin, Oncovin
and Prednisone) chemotherapy was selected from the Gene
Expression Omnibus (GSE10846). Profiling had been
carried out using Affymetrix U133 plus 2.0 microar-
rays to vyield expression data on 21,024 genes
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(features) and overall survival data were available [42,
43]. The cohort was split into a development set
(N =91) and an internal validation set (N = 90).

Evaluation approach

For the synthetic datasets with known phenotypes,
performance of the IRA was primarily evaluated by
the ability of the developed classifiers to identify the
true phenotypes. In particular this was assessed by
concordance of classifier-defined phenotype with the
true phenotype in both development set and valid-
ation sets. Out-of-bag estimates were used to obtain
reliable instance classifications within the develop-
ment sets. Hazard ratios between classifier-defined
phenotypes were also evaluated and studied as the it-
erative refinement converged in both development
and validation sets.

Real world datasets may contain many coexisting mo-
lecular phenotypes, and these are not known a priori.
Hence, the performance of the IRA and the classifiers
developed within it were assessed via the Cox propor-
tional hazard ratio between classifier-defined pheno-
types for the relevant TTE endpoint (OS for lymphoma
and RFS for breast cancer) in both development set (by
out-of-bag estimates) and the validation sets.

The iterative refinement approach
The methodology of iterative simultaneous refinement of
training class labels and classifier is illustrated in Fig. 8.
The aim is to create a self-consistent system of classi-
fier and class definitions. An initial set of class defini-
tions for the development set is created by assigning
each instance to one of the two training classes (e.g.,
good/bad prognosis, benefit/no benefit). Using these ini-
tial training class labels, a classifier is constructed using
some chosen classification procedure. Any supervised
learning scheme could be used as long as it provides
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unbiased classifications for samples that are used in de-
velopment. This could be achieved, for example, by
using a bagged approach to classifier development [19]
and taking out-of-bag estimates [20] for classification of
the instances used in training. The classifier created with
the initial training class label assignment is used to clas-
sify the development set instances. Some of the resulting
classifications will match the initial training class labels
used for classifier development and some will not. The
classifications produced by the classifier constitute a
new set of training class labels for the development sam-
ple set with which a new classifier can be trained in the
next refinement iteration. This is iterated until the
process converges to produce a classifier that reproduces
the class labels that are used to generate it or until a pre-
viously set maximum number of refinement iterations
have been completed. This approach is similar in spirit
to the Yarowsky algorithm in computational linguistics
[44], and it can also be considered as a clustering
method.

In general, the resulting classifier and classifier-de-
fined phenotype depend on the initial conditions of the
refinement process, i.e., the initial choice of develop-
ment set training class labels, and may or may not
prove useful for a particular practical application. To
maintain the putative advantages of the process while
steering it towards a final classifier and phenotype more
likely to fulfill a specific performance goal, one can
make use of outcome data. This can be done via two
main approaches: choice of the initial training class la-
bels and tuning of the classifier development within the
refinement iterations. If the goal is to produce a good
prognostic classifier, it is reasonable to start the itera-
tive process not from a random initial condition, where
the two classes are likely to have similar outcomes, but
rather from a point where the two assigned sets of
class-labeled instances have different outcomes. For
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for each
development set
sample

Classifier and
class definitions

/bo all” Yes
:i’\iclassificati(}s;
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have been
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Using class
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Fig. 8 Schema showing the process of simultaneous refinement of training class labels and classifier
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example, instances associated with patients with the
longest survival can be initially assigned to the good
prognosis class and those with the shortest survival to
the poor prognosis class. Instances which cannot be un-
ambiguously assigned within this initial scheme, e.g,,
because of censoring of TTE outcomes, can be assigned
randomly. The options available for integration of end-
point data into the classifier development step of the it-
erative refinement process (tuning) depend on the
choice of classification paradigm. For classifiers which
incorporate  boosting, i.e., the combination of
sub-classifiers to produce a final classifier with as good
or better performance than the individual
sub-classifiers [45], the endpoint data can be used to
filter or prune the sub-classifier pool to leave only those
that have a minimal level of performance with respect
to a metric defined by for the endpoint. For example, if
the aim is to stratify patients according to survival, we
can test the ability of the sub-classifiers to carry out
this task on the training set, or another sample set, by
calculating the survival hazard ratio between patients
assigned by each sub-classifier to the good and poor
prognosis classes. Only sub-classifiers that demonstrate
a specified level of performance for this task would be
combined in the boosting step of the classifier develop-
ment process, while the other sub-classifiers would be
discarded. Note that if the sub-classifiers provide a
biased classification of the data, this can be compen-
sated for by choice of a higher threshold for filtering
than might otherwise be deemed acceptable. Hence un-
biased classification of the training set by the
sub-classifiers is not an essential element.

Here we demonstrate each of the above scenarios. To
examine the effect of incorporating TTE data into classi-
fier development via choice of TTE-based initial training
class label assignment together with feature selection dur-
ing classifier development, we used bagged logistic regres-
sion as the classifier development paradigm. The method
included strong dropout regularization to minimize over-
fitting in the setting of many more attributes than training
instances. Full details can be found in Appendix A. This
approach was used for the breast cancer datasets. The
process was started with initial training class labels deter-
mined by dichotomization of RES, and for each refine-
ment iteration only the 100 attributes most strongly
associated with the training class labels, as determined by
a t-test, were selected for inclusion in classifier
development.

To compare results between the fully unsupervised
case, starting from randomly selected initial training
class labels, initial training class labels chosen according
to the TTE data, use of TTE data within classifier train-
ing, and combinations of these options, we used a hier-
archical, dropout-regularized combination approach to
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classifier development that incorporates boosting, bag-
ging and strong regularization. This DRC paradigm was
also used for the synthetic data investigations. This
method was designed for use in settings with many attri-
butes and relatively few training instances, and it has
been previously used in the field of personalized medi-
cine test development [16—18]. More details can be
found in Appendix A. This approach does not require
any feature selection and time-to-event data can be eas-
ily incorporated to filter, with variable strength, the
k-nearest neighbor sub-classifiers created using subsets
of the feature space prior to their combination under
strong regularization via dropout. Specifically, each of
the sub-classifiers is applied to the training set to classify
each training set instance, splitting the training set into
the two classification groups. The hazard ratio for a TTE
endpoint between these two groups is calculated using
Cox proportional hazards methods and must exceed a
chosen threshold for the sub-classifier to be included in
the boosted combination. Sub-classifiers not meeting the
criterion are discarded. The threshold can be tuned to
study the effect of stronger or weaker filtering.

Note that no optimization or tuning of the parameters
of the classifier development algorithms was performed
and the goal of these studies was to assess the benefits
of the IRA, not to compare between different classifier
development paradigms. Hence, no optimization of clas-
sifier algorithm parameters was performed based on re-
sults from the IRA. Parameter values (see Appendix A)
were defined from prior experience at the beginning of
the study and held fixed throughout.

Software

Software implementing the methods presented in this
study is available at https://bitbucket.org/ in the Biode-
sixDxCortex2 repository.

Availability and requirements
Project Name: BiodesixDxCortex2.

Project Home Page: https://bitbucket.org/diagnostic-
cortex/biodesixdxcortex2

Operating  System(s):
Standard.

Programming Language(s): Matlab R2017a.

License: New (3-clause) BSD license, https://en.wikipe-
dia.org/wiki/BSD_licenses#3-clause

Data: The dataset supporting the conclusions of this
article is available in the supplementary materials associ-
ated with Venet et al. [35] at https://doi.org/10.1371/
journal.pcbi.1002240.s001 and in the Gene Expression
Omnibus under GSE10846 and GSE6532. The datasets
after any preprocessing prior to classifier development are
available in the BiodesixDxCortex2 repository at https://
bitbucket.org/diagnosticcortex/biodesixdxcortex2.

Windows Server 2012 R2


https://bitbucket.org/
https://en.wikipedia.org/wiki/BSD_licenses#3-clause
https://en.wikipedia.org/wiki/BSD_licenses#3-clause
https://doi.org/10.1371/journal.pcbi.1002240.s001
https://doi.org/10.1371/journal.pcbi.1002240.s001
https://bitbucket.org/diagnosticcortex/biodesixdxcortex2
https://bitbucket.org/diagnosticcortex/biodesixdxcortex2
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Table 2 Parameters used with the dropout regularized classifier for the synthetic data investigation

Method Parameter Value(s)
DRC classifier (applied to the synthetic  k (kNN sub-classifiers) 9
data) Subsets of features used in the sub-classifiers Singles

Sub-classifier filtering criteria

Survival HR between the two classification groups

Sub-classifier filtering range applied to the training set [1.5; 10.0]

Number of dropout iterations (in the boosting step)

Number of sub-classifiers kept in each dropout

iteration

Number of training / test realizations

Number of samples included in the training subset,

for each class

Maximum number of refinement iterations

15,000
4

325
smaller class. Remainder samples assigned to the

test subset
10

Table 3 Parameters used with the

logistic regression classifier for the breast cancer application

Method

Parameter

Value(s)

Bagged logistic regression (applied to  Number of features used in training (selected

the breast cancer data set)

by t-test)

Number of features used in each dropout
iteration

100

1

Number of dropout iterations (in the boosting 5000

step)
Number of training / test realizations

Number of samples included in the training
subset, for each class

Maximum number of refinement iterations

101

2/3 x Ng, where Ng is the number of samples in the smaller

class. Remainder samples assigned to the test subset

10 (converged at iteration 8)

Table 4 Parameters used with the dropout regularized combination classifier for the lymphoma application

Method Parameter Value(s)
DRC classifier (applied to the k (kNN sub-classifiers) 9
lymphoma data set) Subsets of features used in the sub-classifiers Singles

Sub-classifier filtering criteria

Sub-classifier filtering range applied to the
training set

Number of dropout iterations (in the boosting
step)

Number of sub-classifiers kept in each dropout
iteration

Number of training / test realizations

Number of samples included in the training
subset, for each class

Maximum number of refinement iterations

OS HR between the two classification groups

[0.0; 100.0] (no filtering), [1.3; 100.0] (intermediate filtering)

and [2.0; 100.0] (strong filtering)
100,000

10

375

2/3 x Ng, where Ng is the number of samples in the
smaller class. Remainder samples assigned to the test
subset

8

2/3 x Ng, where Ng is the number of samples in the
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Appendix B: Results

1. Synthetic Data
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Fig. 10 Development sets results for synthetic datasets with ratio of phenotype AB of 30:90 and a = 1. For each development set realization the
IRA was applied. At each refinement iteration, the classifiers were applied to their development set realization and the independent validation set.
Concordance of classifier-derived phenotype with true phenotype is shown for (a) the ten development set realizations, and (b) the validation
set, for all ten development set realizations as a function of refinement iteration. The difference between the hazard ratio for classifier-derived
phenotypes and the hazard ratio for phenotype A vs phenotype B in the development sets, AHR, is shown in (c) as a function of refinement iter-
ation. The hazard ratios for classifier-derived phenotypes in the validation set as a function of refinement iteration are shown in (d). The value of
the hazard ratio in the validation set for phenotype A vs B (HR=1.68) is indicated by the dashed line
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Fig. 11 Development sets results for synthetic datasets with ratio of phenotype A:B of 90:30 and a = 1. For each development set realization the
IRA was applied. At each refinement iteration, the classifiers were applied to their development set realization and the independent validation set.
Concordance of classifier-derived phenotype with true phenotype is shown for (a) the ten development set realizations, and (b) the validation
set, for all ten development set realizations as a function of refinement iteration. The difference between the hazard ratio for classifier-derived
phenotypes and the hazard ratio for phenotype A vs phenotype B in the development sets, AHR, is shown in (c) as a function of refinement iter-
ation. The hazard ratios for classifier-derived phenotypes in the validation set as a function of refinement iteration are shown in (d). The value of
the hazard ratio in the validation set for phenotype A vs B (HR = 1.74) is indicated by the dashed line
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3. Lymphoma dataset
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Fig. 14 Hazard ratio as a function of refinement iteration for the three filtering settings for the individual initial condition realizations (grey) and
their average (red) for: a — random initial conditions, b — TTE median-based initial conditions, ¢ — 10% noise initial conditions, d — 20% noise initial
conditions. Error bars show standard error
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