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Abstract

Background: Draft quality genomes for a multitude of organisms have become common due to the advancement
of genome assemblers using long-read technologies with high error rates. Although current assemblies are
substantially more contiguous than assemblies based on short reads, complete chromosomal assemblies are still
challenging. Interspersed repeat families with multiple copy versions dominate the contig and scaffold ends of
current long-read assemblies for complex genomes. These repeat families generally remain unresolved, as existing
algorithmic solutions either do not scale to large copy numbers or can not handle the current high read error rates.

Results: We propose novel repeat resolution methods for large interspersed repeat families and assess their accuracy
on simulated data sets with various distinct repeat structures and on drosophila melanogaster transposons.
Additionally, we compare our methods to an existing long read repeat resolution tool and show the improved
accuracy of our method.

Conclusions: Our results demonstrate the applicability of our methods for the improvement of the contiguity of
genome assemblies.
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Background
Long read sequencing technologies [1–4] have brought
us almost within reach of perfect genome assemblies.
For circular bacterial genomes, full resolution is already
considered as being the current standard for assem-
blers that are based on long-read sequencing technolo-
gies [5]. Perfect bacterial genome assemblies are achieved
by spanning repeat elements with reads that are long
enough to be anchored in unique sequences on both
sides of the repeat [6]. However, eukaryotic organisms
generally contain interspersed repeat families, mostly
transposons, that are responsible for repetitive regions
that are not spanned by the current read lengths. In
complex genomes, these interspersed repeat families are
the most prevalent reason for assembly breaks [7–9].
Especially in plant genomes contiguity of assemblies is
often limited by a high number of interspersed repeats
[10, 11]. Frequently, most interspersed repeats originate
from but a few repeat families [12]. As the number of
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indistinguishable repeat copies grows, it becomes increas-
ingly unlikely to find a unique path through an assem-
bly graph. Thus, the only strategy to resolve a given
repeat family directly from the sequencing data is to
detect distinguishing features between the copies of a
repeat family. Several approaches to detect and utilize
such repeat differences have been proposed [13–15].
However, these existing repeat resolution methods are
geared toward 2-10 repeat copies. This limits their appli-
cability to only a small subset of repeat structures as they
occur in complex genomes [7, 8].
Here, we present a method that is similar to that

of Tammi [14], in that it also uses multiple sequence
alignments (MSA) and a statistical analysis of the MSA
columns to determine discriminative variations. It uses
more sophisticated clustering heuristics to overcome the
limitation of Tammi’s method to an error rate below 11%,
and to repeat families with 10 or less copies. For simu-
lated data sets with distinct repeat structures we are able
to resolve repeat families with 100 copies under the typi-
cal PacBio error rate of 15%, while assuming an absolute
number of repeat copy differences comparable to that of
other methods. Our analysis of Drosophila melanogaster
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transposons proves that similar results can be achieved
with empirical data, while our comparison to an existing
repeat resolving tool for long read data demonstrates the
improved accuracy (82.9% vs 50.6% resolved copies) and
reduced runtime of our method.

Methods
Data sets
Simulating repeat data
To avoid overfitting our method to one specific repeat
family structure, we use three different approaches to cre-
ate simulated repeat families with≥x% difference between
copy pairs.
Equidistant Simulations: In equidistant simulated

repeats, each copy has x/2% variants that distinguish it
from the initial template. In pairwise comparisons these
per-copy differences then yield a difference of x%.
Distributed Variants Simulation: Additionally, we con-

duct a distributed variant repeat family simulation. Here,
we distribute each variant over a subset of copies. Thus,
each copy consists of an intersection of variants. In turn,
these variants characterize a subset of copies, rather
than a single copy. Adding 3x% variants again yields
an expected difference between copy pairs of x% (see
Additional file 1: S4).
Tree-like Simulations: Finally, we simulate tree-like vari-

ant repeats. Here we create a repeat family by building
a binary tree of copies, each copy obtaining x/2% vari-
ants that distinguish it from the parent copy. The leaves
of this tree create a repeat family where sister leaves show
a difference of x%. The binary tree simulates a simplified
version of the phylogenesis of repeat families via copying
and mutation [16, 17].
Our three simulation scenarios pose distinct algorith-

mic challenges in variant detection and copy disambigua-
tion. In general, a repeat resolvingmethod should perform
well under all three simulation scenarios. To benchmark
our algorithms, we create synthetic data sets for each sce-
nario described above. Each simulated data set contains
100 copies derived from a randomly created 30 kbp tem-
plate. This is the repeat length, where spanning reads
become unlikely with current read lengths. In practice,
repeat regions of this size or larger will often, but not
always, consist of several distinct repeat modules. This
does not impact the applicability of our methods.
These 100 copies are diversified with equal numbers of

substitutions, insertions and deletions of single bases. We
create data sets with 0.1%, 0.5% and 1% minimal copy dif-
ferences respectively. To each copy we add two unique
10kbp flanking sequences on both sides of the 30kbp
repeat. From these copies 30-40X coverage is randomly
sampled, with the read length distribution and coverage
modelled after the empirical PacBio data set described
in the following paragraph [18]. The 10 kbp flanking

sequences ensure that the coverage does not decrease at
the ends of the repeat sequence. Each read exhibits the
typical PacBio error rate of 11.5% insertions, 3.4% dele-
tions and 1.4% substitutions. (For more details on the
simulated data sets, see Additional file 1: Table S7).

Transposon data sets
As simulated data is often less challenging to analyse
than real data, we also test our algorithms on several
empirical PacBio data sets obtained from a subline of the
ISO1(y;cn,bw,sp) strain of Drosophila melanogaster [18].
Each data set is created by selecting reads that fully map to
a transposon template. These templates are taken from the
canonical transposon sequence set [19], with a length cut-
off of > 4 kbp, as resolving even shorter repeat sequences
is not required due to current read lengths. There are
seventeen transposon data sets numbered from 0 to 21,
with the missing numbers indicating transposons below
the length cutoff. The transposon template length varies
between 4.4 kbp and 7.5 kbp with a mean of 5.8 kbp and
a median of 5.3 kbp, the copy numbers lie between 7 and
157. Due to the selection of reads that fully fit the tem-
plate, the initial sequencing coverage of 90x is reduced
to 35-54x. (For more details on each transposon data set,
see Additional file 1: Tables S6 A) and B)). The ground
truth for the resolution of each repeat family is manu-
ally determined by clustering the flanking sequences of
every transposon data set according to the Levenshtein
distance [20].

Resolving repeat families
Our repeat resolution algorithm consists of several steps.
First, we calculate a multiple sequence alignment to accu-
rately compare the reads sampled from copies of the
repeat family. We proceed to extract variations between
repeat copies by a statistical analysis of intra-alignment
column deviations. On the basis of these extracted vari-
ations, we conduct a two-step clustering. We subdivide
the reads covering a section of the repeat by determining
strong signals within the variations and apply a sim-
ple clustering algorithm on the subdivided sets of reads.
Then, we apply an algorithm that utilizes the resulting
clusters to resolve long repetitive stretches in the genome,
that can only be covered by several adjacent reads. In the
following we describe each step in detail.

Multiple sequence alignments
In a pre-processing step, the simulated reads are arranged
into a multiple sequence alignment (MSA) [21]. This ini-
tial MSA is computed by aligning all reads to a repeat
family template. In our test data sets we use simulated
repeat templates and templates extracted from existing
genome assemblies, but in practice any sequence of a
repeat family of interest can be used. Ideally the MSA
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is initiated by a consensus sequence of the entire repeat,
however, a long raw read can also be used for this purpose.
The initial MSA is subsequently refined by realigning
all sequences until the sum of pairwise alignment scores
does not further improve. This approach is similar to the
method proposed by Anson [22].

Detecting significant bases
Due to the high error rate, each site of this refined MSA
contains all four bases as well as coverage and align-
ment gaps. To find the sites where this variation can be
explained by significant differences between repeat copies
that are beyond random error, we conduct a statistical
analysis of the co-appearance of bases at different MSA
sites. Every base b at site j defines a group Gb

j contain-
ing the sequences that have a b at site j. The likelihood
of statistically independent Gb2

j ∩ Gb1
i exceeding a cer-

tain size is described by the cumulative hypergeometric
probability [13, 14]. The lower the probability of a given
intersection of base groups, the more likely it is that
both groups are defined by a significant variation between
repeat copies. Via pairwise comparison of all base groups
we can subsequently extract all groups G that in at least
one comparison exceed a probability cut-off. This proba-
bility cut-off is calculated as the inverse of the number of
comparisons. In extremely large MSAs the pairwise com-
parison can be restricted to sites, that contain a majority
of bases, as opposed to alignment gaps. This reduces run-
time by almost two orders of magnitude. But in the data
sets used for this paper, the quadratic complexity of this
step does not yet constitute a computational bottleneck.

Refining base groups
If a base group G extracted from the MSA was com-
pletely error free, we could model it as a union of true
copy groups Ti with i ∈ IG. Here Ti contains exactly
those reads sampled from repeat copy number i and IG
describes which copies comprise the base that defines the
base groupG. Due to the existing error rate,Gwill contain
a fraction p of these true positives in the Tis with i ∈ IG
and also, a fraction q of the sequences in theTis with i /∈ IG
as false positives.
In the following, we describe a framework to refine

such groups and to identify those, where the refine-
ment induces a low proportion q of false positives and a
high proportion p of true positives. In this analysis, we
assume that all groups have been restricted to contain only
sequences that show no coverage gaps on any of the MSA
sites from which the groups are derived.
First, we calculate a clique C of n groups Gj, with j ∈ J

and |J| = n, that share the most significant positive inter-
section with G. A positive intersection is an intersection
that is larger than expected by chance. The parameter n
is chosen empirically. This is a clique in the graph that

contains groups as nodes and statistically significant inter-
sections between those groups as edges. Now we can
define a consensus group Ck := {s|s ∈ Gj for j ∈ J
with |J| > k} for every cut-off k ≤ n. The cut-off k deter-
mines in how many groups of the clique a given read has
to occur, to be included in the consensus group Ck . If the
groups that constitute a clique all share the same IG, that
is, they all describe the same ground truth group, the fol-
lowing formula gives the probability that a specific read is
in the consensus group Ck :

n∑

l<k

∑

i+j=l
Pr(i, l, p) × Pr(j, n − l, q)

This formula is a sum over the probabilities that a given
read occurs in exactly l out of n groups, with l > k. A given
read occurs in exactly l groups, if it occurs in i groups as
true positive, that is, an element of the Ti with i ∈ IG, and
in j groups as false positive while i+ j = l. These probabil-
ities are given by Pr(.,.,.), the probability mass function of
the binomial distribution, which takes as parameters the
probabilities p, q of a group element being a true positive
or a false positive, respectively.
The fraction of false positives in Ck coming from the

Ti with i /∈ IG, is described by the cumulative prob-
ability function

∑n
i=k+1

(n
i
)
qi(1 − q)n−i of the binomial

distribution. As shown in Fig. 1, this fraction of false pos-
itives decreases quickly with increasing cut-off k, while
the number of true positives remains constant for larger
k. This is due to p being significantly larger than q. In
reality, the subset of Tis described by the groups that
form a clique can vary considerably. Also, not every Ti
is described by either all or none of the groups. If we
consider the Tis separately, we find that if a Ti is con-
tained in m groups of the clique, we expect the fraction∑m

l>k
∑

i+j=l Pr(i, l, p) × Pr(j, n − l, q) of the elements of
Ti to occur in the consensus group Ck . In this formula l is
the number of groups, in which an element occurs. This
number is split into i true positives in the m groups that
describeTi , and j false positives in the groups not describ-
ing Ti. For low cut-offs k, this fraction is close to 100% and
we expect all elements of Ti to occur in Ck . As k increases
the expected number of true positives decreases to zero.
So, for every Ti there are three separate value ranges for
the cut-off k, the perfect range, in which all elements are
contained, the dropping range, in which the number of
true positives decreases, and the zero range, where no ele-
ments of Ti are part of Ck , any more. See Fig. 1 for an
illustration.
For distinct Tis the k value ranges for perfect and drop-

ping accuracy will be different, due to different values
of m, the number of groups describing Ti. If k is high
enough for the number of false positives from the Tis not
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Fig. 1 True positives and false positives for a single Ti . If the groups Gj of a clique all describe a single Ti , the number of false positives (red squares)
coming from other groups Tj decreases quickly, while the number of true positives (black dots) remains constant until the cut-off value is relatively
high. In the green areas, the cut-off guarantees to yield a consensus that either perfectly contains Ti or is completely empty

described by any clique members to decrease to zero, the
number of elements of Ck is equal to the sum over the
cardinalities of Ti∩Ck as given above. As we will see, min-
imizing the difference between Ck and Ck+1 allows us to
determine the optimal cut-off value k, which places most
Tis into, or close to, either their perfect or zero range (See
Fig. 2).
We call the size difference between Ck and Ck+1 the

drop-off between Ck and Ck+1. The size of the drop-off
is determined by the number of Tis for which the cut-
off value k is in the dropping range. Therefore, a drop-off
close to zero indicates that all Tis are either completely
contained in Ck or not contained therein at all. The drop-
off allows to determine the optimal cut-off value k for
every clique of groups. More importantly, it allows to
rank the different clique consensuses by their likelihood of
perfectly describing a subset of Tis.

Clustering
The refinement procedure described above aims to
extract sufficiently strong signals to accurately classify the
sequences into two subsets of copy versions. It can then be
applied recursively to each of the respective subsets. For a
recursive subdivision to work, it needs to be highly accu-
rate. Otherwise, noise will accumulate in subsets, yielding
subsequent analyses increasingly difficult. We achieve this
increases accuracy in the recursion via the refinement and
the drop-off precision estimate for each refinement. The
recursive subdivision terminates, once no subset is left

that can produce a consensus group which is sufficiently
refined for further subdivision.
When the recursive subdivision process has terminated,

we apply a simple clustering algorithm to each of the
remaining subsets. It assigns reads to centroids according
to the differences that are significant for the subset. To
that end, we initially recalculate the statistical significance
of each variation restricted to that subset. Only those vari-
ations, that still show statistically significant intersections
of their base groups, are then used for clustering. For
each read we extract the instances of these still signifi-
cant variations into a so-called read signature. Then, every
signature is corrected with the four most similar other sig-
natures for noise reduction and subsequently used as a
centroid. In the first round of clustering, signatures are
assigned to centroids by the best fit according to the Ham-
ming distance. This creates a large number of clusters of
varying size. Some clusters will have fewer elements than
half the expected sequencing coverage. We resolve these
small clusters by merging their elements into other clus-
ters, again according to the smallest Hamming distance
between the signature and the centroid.

Resolution
The output of the recursive division step and the sub-
sequent clustering consists of groups of reads that are
required to resolve a repetitive region. To resolve a large
repetitive region in a genome, we likely have to subdivide
our MSA into several sections, whose reads are clustered
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Fig. 2 True positives and false positives for several Tis. If the groups Gj of a clique describe several Ti , the size of the consensus is determined by the
aggregate of the true positives (black dots) from each Ti , as well as the false positives (red squares) from the remaining Tjs. The green area shows the
cut-offs that create a consensus that accurately distinguishes one subset of s from the rest. It is exactly this range where the perfect or zero ranges of
all Ti overlap. Furthermore, the aggregate number of true positives (denoted by the uppermost black dots) stays constant in this range

separately. This keeps the number of reads that completely
cover each section high. Together, these sections and their
clusterings cover the entire repeat. Initially, however, we
examine a simplified one-clustering scenario with some
of the reads of each repeat copy having a unique flanking
sequence on the 5′ end and the other half having unique
flanking sequences on the 3′ end. We now answer the
question how many of these flanking sequences we can
accurately connect using the clustering information.
We propose a model to calculate a confidence score

for each possible connection. This can be used as a
basis for a resolution that takes the probability of mis-
assemblies into account as opposed to just providing a
"best guess". In the one-clustering scenario it can also
be used to assess how well a clustering corresponds to
the ground truth. The calculated clusters can be seen
as hubs which are entered by incoming reads and can
be exited by outgoing reads. We can, for instance, sam-
ple a random path from one flanking sequence cluster
to another flanking sequence cluster on the other side of
the repetitive region. This is done by randomly choos-
ing shared reads that connect the current hub to the next
(see Additional file 1: Figure S1). We use the probability
of such a randomly sampled path to connect two flanking
sequence clusters to define a unidirectional connection
confidence. The full connection confidence is then cal-
culated as the product of the unidirectional connection
confidences in both directions. It is normalized such that

the connection confidences of all possible connections for
a flanking sequence cluster sum to 1.0. Naively, calculat-
ing the fraction of randomly sampled paths that start from
a 5′ flanking sequence and end in a 3′ flanking sequence,
has a time complexity that is exponential in the num-
ber of clusterings. To address this, we break down the
calculation into clustering-to-clustering path probability
matrices that can be multiplied to give the probability of
a complete path. This is possible, because the probabil-
ity of reaching a specific cluster from a given cluster, is
independent of the path taken to the given cluster.
Let Xi<n be the 3′-flanking sequence clusters and Yi<m

be the 5′-flanking sequence clusters, while Hk
i<nk denotes

the 0 < k ≤ l calculated clusterings of sections of
the repetitive sequence that lie in between. The follow-
ingmatrices describe the probability of a randomly chosen
read from one particular cluster to connect to a read from
a cluster that is part of the next clustering.

Iij = |Xi ∩ H1
j |

|Xi| ∈ Q ∩ [0, 1]

Oij = |Yi ∩ Hl
j |

|Hl
j |

∈ Q ∩ [0, 1]

Ck
ij = |Hk

i ∩ Hk+1
j |

|Hk
i |

∈ Q ∩ [0, 1]
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The probability of a longer path can then be calculated
by multiplying the connection probabilities between all
clusters along the path. The overall connection probability
is calculated by summing over the connection probabili-
ties of all possible paths. In the one clustering scenario,
the path possibilities are given by the different clusters
that can be taken, so the probability of connecting Xi and
Yk is Pik = ∑

j<n1 Iij × Ojk . In matrix notation P = IO.
For longer paths we can inductively expand this probabil-
ity matrix for any number of clusterings. Thus, the overall
probability of connecting Xi to Yk for l clusters Hk is P =
IC1C2 . . .ClO. This stepwise path-probability calculation
reduces runtime complexity to l matrix multiplications.
The matrix size does not exceed the estimated number of
repeat copies. In the multi-step calculation of connection
confidence, we analogously multiply the path-probability
in both directions and normalize, so that the confidences
of all possible connections of a flanking sequence cluster
sum to 1.0.

Results
We integrated the algorithms for realigning, detecting sig-
nificant variants, calculating drop-off consensus groups,
subsequent hierarchical subdivision, final clustering, and
connecting flanking sequences, into our repeat resolu-
tion tool. We test it on nine simulated data sets, one for
each combination of the minimal copy differences 0.1%,
0.5%, 1% and the repeat structures equidistant, distributed
and tree-like (see 2.1.1). We also conduct experiments on
17 empirical transposon data sets (see 2.1.2.). To assess
the resolution of isolated clusterings, we use the one-step
resolution algorithm introduced above. Here the ground
truth groups are used to replace both flanking cluster-
ings. That means, we calculate the connection confidence
from a ground truth cluster to itself, via the calculated
clustering. If the calculated clustering does not differenti-
ate between two ground truth groups of sequences, each
of these groups will not correctly or unambiguously be
connected to itself. We call two ground truth groups con-
nected, if for both groups the other group provides the
connection with the highest connection confidence. If this
connection is correct, that is, if the two connected groups
are identical, we say that the ground truth group or copy
group is resolved by the calculated clustering. If the con-
nected ground truth groups are different groups, we call
the connection a false positive. For the simulated data sets
we additionally calculate the connection confidences from
one flanking clustering to the other flanking clustering via
the calculated clustering in between using the multi-step
resolution algorithm. Here, we call two flanking clusters
connected, if, for both clusters, the other group provides
the connection with the highest connection confidence.
A copy group is likewise called resolved, if both flanking
clusters belonging to the copy group are connected to each

other. The multi-step resolution is necessary for the prac-
tical feasibility of our clustering algorithm. We compare
the single-step resolution of the simulated MSA sections
with the single-step resolution of the transposon MSAs.
We additionally examine the relationship between single-
step resolution results and multi-step resolution results
to assess the applicability of our algorithms to very long
repeats.

Simulated data sets
To make the single-step resolution of our simulated data
sets comparable to the transposon data sets, we divide
each MSA in six non-overlapping sections that approxi-
mately contain 5 kbp of repeat sequence. We then com-
pute clusterings for each of these sections separately. We
additionally use these six clusterings to calculate a reso-
lution for the entire repeat, that is, we determine which
flanking sequence clusters are connected by applying the
multi-step algorithm, see (2.2.5). Figure 3 shows that for
both single-step resolution and multi-step resolution the
number of resolved copies is high (≥ 95%) for all data
sets with 0.5% or 1% minimal copy differences. In fact,
only the distributed data sets show an appreciable decline
in resolved copies between the 1% and 0.5% copy differ-
ence data sets. The number of resolved copies for the
single-step resolution of the 0.1% copy difference data
sets remains high. However, with just 0.1% minimal copy
differences the clusterings are not accurate enough to sup-
port robust multi-step resolution. Only the tree-like data
set with 0.1% copy differences can still resolve more than
40% of its copies over the entire repeat length.
This failure of the multi-step resolution can be pre-

dicted from the single-step connection confidences. In
Fig. 4 we see, that for data sets with just 0.1% minimal
copy differences the connection confidences are gener-
ally very low, with the exception of the tree-like data set.
The tree-like data set however, has on average only 84%
resolved copies in the single step resolution. The fraction
of unresolved copies compounds over six resolution steps,
which explains the 44%multi-step resolved copies for that
particular data set.
The simulated data sets show that multi-step resolu-

tion results depend on two properties of the single step
resolutions: The fraction of unresolved copies and the
connection confidence. In particular, resolved copies with
a connection confidence below 0.2 seem not to support
the multi-step resolution. It is worth noting that there
were no false positives in either single-step resolutions or
multi-step resolutions.

Transposon data sets
The simulated data sets are created in a way, such that
the information necessary to obtain a full resolution is
available in each data set. Evidently, we cannot expect to
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Fig. 3 Single-step resolution for simulated data. We compare the average number of resolved copies of the single-step resolutions, the minimal
number of resolved copies of the single-step resolution and the number of resolved copies of the multi-step resolution for all simulated data sets

replicate these results for empirical data. Some transpo-
son families will be too highly conserved, while others will
contain at least some members that have only recently
diverged and did not yet accumulate sufficient differenti-
ating mutations. Moreover, the ground truth copy groups
have been obtained by clustering the unique flanking
sequences. This process is unlikely to provide a completely
accurate ground truth, as is available for the simulated
data. Instead copy groups that have not been accurately
resolved in the ground truth will add noise to the assess-
ment process, worsening the apparent results. Despite
these limitations, according to the metrics introduced
above, in all transposon data sets at least 65% of the copy
groups are resolved, while only a single data set shows
false positives. Several of the smaller data sets are perfectly
resolved, while some of the larger data sets are almost
perfectly resolved with 35 out 37, 33 out of 34, and 47
out of 49 copy groups being correctly resolved respec-
tively. The three largest groups with 89, 135 and 157 copies
respectively, are resolved by more than 84% on average.
Moreover, the initial refinement step with recursive sub-
division already resolves more than 50% of all copies. This
shows that it constitutes an essential part of the clustering
algorithm, see Fig. 5.
These are surprisingly good results, that come, however,

with a caveat. Many of these copy groups are resolved only
due to very few or just a single and noisy distinguishing

variant. The results on simulated data show that as few
as 5 differences (0.1% of 5 kbp) between repeat copies
still allow for single-step resolution. However, they also
indicate that the resulting clusterings do not necessar-
ily support the multi-step resolution that is necessary to
resolve transposons of a realistic length. To put our results
into perspective, we assess the number of statistically sig-
nificant differences between transposon copies. To this
end, we utilize the ground truth information to create
consensus signatures for each copy group, that consist of
the most common base for that copy group in each sta-
tistically significant column in the respective MSA. We
then compare these consensus signatures to each other to
obtain an estimate of the number of differences between
transposon copies.
This analysis shows that the percentage of copies that

differ from all other copies by at least n bases drops
quickly with increasing n, (see Additional file 1: Figure S2).
This decrease is mirrored by the number of resolved
copies that have a connection confidence above a spe-
cific threshold, (see Additional file 1: Figure S3). Around
45-55% of the copies exhibit sufficient differences. Con-
sequently, this is the percentage of transposon copies that
achieve a high enough connection confidence to support
multi-step resolution. This would be a relatively low num-
ber, if the copies with high connection confidence were
to be different for every resolution step. However, given
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Fig. 4 Resolution by connection confidence for simulated data. For all simulated data sets the average number of resolved copies of the single-step
resolution above a specific connection confidence

Fig. 5 Transposon resolution results. This figure compares the number of resolved copies for the dropoff subdivision algorithm and for the full
algorithm with the additional kmeans-like clustering to the total number of copies in each transposon data set
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that the number of differences is a result of the evolu-
tionary history shared by the entire sequence of a copy,
it is likely that the resolvable copies will tend to remain
unaltered for each section of the MSA. We observe this
in the transposon data, where the minimal number of dif-
ferences to other copies in the first half of a copy and
the minimal number of differences in the second half,
tend to correlate significantly for most data sets (median
Pearson correlation 0.483). This correlation, and the total
number of differences, is likely to increase with larger
MSA sections.

Comparison with competing method
In this section we compare our methods against the long
read assemblers Canu andMARVEL, and against the ded-
icated repeat resolving method split_dis that is part of the
Daccord package [23].
Full-scale long read assemblers, like Canu and MAR-

VEL, do not use repeat resolution methods that go down
to specific differences in the repeat copies. This fun-
damentally limits their repeat resolution capabilities. In
MARVEL, repeat resolution is restricted to the use of
spanning reads and the detection of unique combinations
of repeat modules [7], making the resolution of a 30 kbp
repeat family challenging for MARVEL.
Canu has a dedicated repeat resolution step that is

based on alignment score differences of corrected reads.
In the original Canu paper [5] this resolution step of
Canu and the resolution capability of FALCON are bench-
marked in a very similar fashion as we do on our simu-
lated datasets: A PacBio read datasets is simulated with
a 30 kbp repeat and subsequently assembled. For Canu,
the simulated dataset cannot be assembled contiguously
for repeat differences below 3%, for FALCON [24] this
threshold is 5%. The parameter differences between this
benchmark and our simulated data, with 2 repeat copies
versus our 100 repeat copies, 12% read error versus our
15% read error, and 3% copy differences versus the 1% or
less we use, decrease the chances of Canu resolving our
simulated data.
To adapt our simulated data sets for the requirements of

genome assemblers, we modified our simulated datasets
with 1% copy differences, to model contiguous sequences
(instead of just repeat sequence with flanking sequence),
and ran Canu on the reads sampled from these sequences.
As expected, all three types of simulated datasets were
assembled into roughly one hundred contigs, indicat-
ing an unsuccessful repeat resolution, (see Additional
file 1: S8).
We also executed MARVEL on all three simulated

datasets, similarly resulting in roughly one hundred dis-
jointed contigs, (see Additional file 1: S8 and Figure S9).
These results confirm Canu’s earlier repeat resolution
assessment and MARVEL’s methodological limitations.

However, there exists one dedicated repeat resolution
tool for PacBio data called split_dis. The split_dis tool [15]
is part of the Daccord package [23]. The Daccord pack-
age contains a suite of tools for processing long reads,
centered around the read correction program daccord.
The processing necessary for executing split_dis involves
computing local alignments with daligner [25], calling a
corrected consensus version of each read using the dac-
cord program, and computing quality values for the bases
of each read. Split_dis then filters the local alignments for
each read separately and retains only those that do not
exhibit differences that are likely to be associated with
copy differences. By finally selecting only those overlaps
of the processed read, where the retained local alignments
span almost all of the overlapping region, we generate a
list of “true” overlaps for the read. In the following we will
refer to this entire repeat resolving pipeline as Daccord,
while we refer to our pipeline as RepeatResolver.
According to its author, using Daccord is not fea-

sible for repeat families with significantly more than
10 copies (German Tischler, personal communication,
12.9.2018). Our results confirm this limitation, as the run-
time per read ranges from minutes for the transposon
data sets with fewer than 10 copies, to hours for data
sets with copy numbers between 10 and 20, and days
for transposon data sets with more than 20 copies (see
Additional file 1: Table S6 B)). For comparison, the
entire RepeatResolver pipeline takes 2 hours for trans-
poson data set 2, which has 25 repeat copies. This
amounts to 0.1 minutes per read as opposed to 1 day
and 19 hours required by Daccord. As the data sets con-
tain between 257 and 7317 reads (see Additional file 1:
Table S6 B)) this makes the application of Daccord infea-
sible for large repeat families. Accordingly, we assess per-
formance only for transposon data sets with less than
30 copies.
Daccord computes a list of overlaps for each read, while

RepeatResolver yields a clustering of reads. To compare
the results, we transform the RepeatResolver output into
Daccord-style output, by assigning to each read all the
reads in the same cluster as overlaps.
In the comparison, we only consider reads for which

ground truth information is available. We test three meth-
ods of overlap selection to achieve the highest possible
resolution accuracy for Daccord. We 1.) select the 20
longest overlaps, 2.) select the 20 longest local alignments
provided by Daccord, 3.) choose the 20 local alignments
with the best alignment score, among those local align-
ments that span more than 90% of the overlapping region.
We compare the RepeatResolver result to the best result
among these three methods for each data set.
Selecting substantially more than 20 overlaps reduces

accuracy, as more than 30 reads with ground truth infor-
mation are not always available for each repeat copy.
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Selecting less than 20 overlaps does not increase accu-
racy. The average number of reads per RepeatResolver
cluster with ground truth information varies from 14 to
62 between data sets. They cluster close to the number of
20 chosen for the Daccord overlaps, see Additional file 1:
Table S6 B).
In Fig. 6 we show the percentage of overlapping reads

that match the repeat copy of the underlying read for both
pipelines and for all transposon data sets with fewer than
30 copies. Daccord shows excellent results, slightly out-
performing RepeatResolver, in two out of ten data sets,
proving the method sound. In the other 8 data sets, how-
ever, RepeatResolver outperforms Daccord. This leads to
an average accuracy difference over all 10 data sets of
more than 30%, with an average accuracy of 82.9% for
RepeatResolver and an average accuracy of 50.6% for
Daccord.

Discussion
Overall our results indicate that, as long as sufficient sig-
nal is contained within the data, our novel algorithms
are capable of resolving repeats with extremely high copy
numbers. This even holds when the resolution has to pro-
ceed over many steps to span repeats that are several tens
of thousands bases long. While the empirical transposon
data shows that not all repeat sequences in genomes are

likely to be resolvable, it also indicates that our method is
capable of increasing accuracy of genome assemblies.
Our comparison with the Daccord-pipeline shows that

our method is superior in accuracy to a current state-
of-the-art repeat resolving method for PacBio data, while
at the same time remaining computationally feasible for
repeat families with a significantly higher number of
repeat copies.

Conclusions
Current long-read genome assemblers cannot resolve
extensive repeat regions, because they do not extract dis-
tinguishing variants of the different repeat copies. In this
paper, we showed that the variant extraction is computa-
tionally feasible as a post-processing step. Additionally, we
introduced several novel algorithmic ideas to accurately
distinguish repeat copies on the basis of the extracted
variants.
Extensive empirical assessments show that our work

opens up possibilities of substantial improvements in
assembly contiguity. Assembly contiguity is especially rel-
evant for highly repetitive plant genomes and for the
investigation of structural patterns and variants within
genomes. The integration of our repeat resolving tools
into the workflow of existing long-read assemblers is the
topic of future work.

Fig. 6 Daccord comparison. We compare the percentage of correct overlaps as provided by Daccord and RepeatResolver for all transposon data
sets with fewer than 30 repeat copies
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Additional file 1: Contains additional figures, explanations and details
about the algorithms, comparisons and data sets. (DOCX 8737 kb)
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