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Abstract

Background: When designing an epigenome-wide association study (EWAS) to investigate the relationship
between DNA methylation (DNAm) and some exposure(s) or phenotype(s), it is critically important to assess the
sample size needed to detect a hypothesized difference with adequate statistical power. However, the complex and
nuanced nature of DNAm data makes direct assessment of statistical power challenging. To circumvent these
challenges and to address the outstanding need for a user-friendly interface for EWAS power evaluation, we have
developed pwrEWAS.

Results: The current implementation of pwrEWAS accommodates power estimation for two-group comparisons of
DNAm (e.g. case vs control, exposed vs non-exposed, etc.), where methylation assessment is carried out using the
Illumina Human Methylation BeadChip technology. Power is calculated using a semi-parametric simulation-based
approach in which DNAm data is randomly generated from beta-distributions using CpG-specific means and
variances estimated from one of several different existing DNAm data sets, chosen to cover the most common
tissue-types used in EWAS. In addition to specifying the tissue type to be used for DNAm profiling, users are
required to specify the sample size, number of differentially methylated CpGs, effect size(s) (Δβ), target false
discovery rate (FDR) and the number of simulated data sets, and have the option of selecting from several different
statistical methods to perform differential methylation analyses. pwrEWAS reports the marginal power, marginal
type I error rate, marginal FDR, and false discovery cost (FDC). Here, we demonstrate how pwrEWAS can be applied
in practice using a hypothetical EWAS. In addition, we report its computational efficiency across a variety of user
settings.

Conclusion: Both under- and overpowered studies unnecessarily deplete resources and even risk failure of a study.
With pwrEWAS, we provide a user-friendly tool to help researchers circumvent these risks and to assist in the
design and planning of EWAS.

Availability: The web interface is written in the R statistical programming language using Shiny (RStudio Inc., 2016)
and is available at https://biostats-shinyr.kumc.edu/pwrEWAS/. The R package for pwrEWAS is publicly available at
GitHub (https://github.com/stefangraw/pwrEWAS).

Keywords: DNA methylation, Microarray data analysis, Statistical power, Sample size calculation, Bioconductor
package, Illumina human methylation BeadChip
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Background
Epigenome-wide association studies (EWAS) aim to
examine the relationship between epigenetic marks and
exposure(s) or phenotype(s) on a genome-wide level.
DNA methylation (DNAm) is the most widely studied
epigenetic mechanism and involves the chemical
addition of a methyl group to the 5-carbon position of
cytosine in the context of cytosine-phosphate-guanine
(CpG) dinucleotides. The vast majority of EWAS use
microarray-based platforms for assessing DNAm, such
as the Illumina Infinium HumanMethylation BeadArrays
(Illumina Inc.), as these platforms provide a compromise
between coverage, cost, and sample throughput [1, 2]. Illu-
mina’s latest methylation microarrays, the Infinium
HumanMethylation450 and Infinium HumanMethylatio-
nEPIC, interrogate the methylation levels of over 450,000
and 850,000 CpG dinucleotides, respectively. While these
arrays differ in their coverage, both allow for the assess-
ment of methylation at single-nucleotide resolution, quan-
tified using what is referred to as the methylation β-value,
an approximately continuously-distributed measure that
reflects the methylation extent of a specific CpG locus;
ranging from 0 (unmethylated) to 1 (methylated). Interest
in studying DNAm in the context of human health and
disease has been ignited by the now numerous studies that
have reported altered patterns of DNAm across various
human diseases [3, 4] and in response to environmental
exposures [5], along with reversible nature of DNAm,
which makes it a promising target for potential treatments
and therapies [6]. To detect a hypothesized difference in
DNAm with adequate statistical power it is crucial to as-
sess the required sample size. However, the complex
nature of DNAm data [7, 8] makes a direct power assess-
ment challenging, as power depends on several factors:
planned study sample size, array technology used to pro-
file DNAm, tissue type used in assessing DNAm, propor-
tion of differentially methylated CpGs and the distribution
of their differences (Δβ), and multiplicity.
The importance of formal power assessment and sam-

ple size justification in the design of research studies has
been recognized and addressed in related omics fields,
and motivated the development of power evaluation
tools, including: “RNAseqPS” [9], “RNASeqPowerCalcu-
lator” [10] and “PROPER” [11] for RNA-Seq data, and
“CaTs” [12], “Statistical Power Analysis tool” [13],
“GWAPower” [14], and “SurvivalGWAS_Power” [15] for
GWAS data. However, surprisingly little attention has
been given to this topic in the context of EWAS and
while there has been substantial work on the develop-
ment of statistical methods and publicly available
software for the preprocessing, quality control,
normalization, and analysis of DNA methylation data
[16, 17], methods and tools for power evaluation for
EWAS are lagging. Consequently, most EWAS are

conducted in the absence of formal power analyses,
resulting in studies that are potentially under- or over-
powered [18]. To our knowledge, only three studies have
formally addressed the issue of power evaluation in the
context of EWAS [19–21]. Wang et al. [21] simulated
DNAm data for two group comparisons from
uniform-normal mixture distributions with parameter
settings that capture three general types of distributions
often seen in methylation data (methylated, unmethy-
lated, and partially methylated). Power was then assessed
and compared for two differential methylation detection
methods: proposed method by Wang et al. [21] and
t-tests. Rakyan et al. [20] generated DNAm data for two
group comparisons from single and mixture beta distri-
butions in three scenarios with four effect sizes each and
differences in methylation ranging from 1.25 to 14.4%.
Logistic regression was then applied to assess differential
methylation and power was evaluated. Finally, Tsai et al.
[19] simulated DNAm data for two group comparisons
from nine single locus DNAm distributions, again falling
into three categories: methylated, hemi-methylated and
unmethylated. The expected differences in methylation
ranged from 1 to 60%. Differential methylation was then
analyzed by t-tests and Wilcoxon rank-sum tests, and
the respective power was assessed.
All three approaches utilize a limited number of single

locus distributions, which result in a wide range of
methylation levels of CpG sites, but may lead to unreal-
istic data with a predefined fixed number of expected
differences in methylation between two groups. This is
because individual CpGs have their own unique mean
and variance depending on their genomic context and
susceptibility to become methylated and vary depending
on the tissue type used for methylation assessment [22].
Analogously, expected differences in CpG-specific
methylation between two or more groups are expected
to come from a continuous distribution instead of hav-
ing predefined discrete values [23]. In addition to the
potential limitations above, none of the previously de-
scribed methods provided accompanying software for
their methodology, limiting their application within the
epigenomics-research community. Therefore, there re-
mains an outstanding need for publicly available soft-
ware that addresses these limitations and enables
comprehensive assessments of statistical power in the
context of EWAS involving CpG-specific comparisons of
DNAm.
Inspired by PROPER [11], a publicly available tool to

assist researchers with power assessment in RNA-seq
studies, we have developed pwrEWAS for comprehen-
sive power evaluation in the context of case-control
EWAS. In pwrEWAS, power is estimated using
semi-parametric simulation-based approach. First,
DNAm data is randomly generated for each comparator
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group based on user-supplied information concerning
the expected fraction of differentially methylated CpGs
between groups and their expected effect size (Δβ). To
simulate realistic methylation data, DNAm data are gen-
erated from a beta-distribution using CpG-specific
means and variances estimated from one of several dif-
ferent publicly available DNAm data sets, chosen to span
the most common tissue-types used in EWAS. This
gives the user the flexibility to select the tissue type (e.g.,
whole blood, peripheral blood mononuclear cells
(PBMCs), etc.) that is most appropriate for the study be-
ing planned. Next, the generated data undergoes a for-
mal differential methylation analysis, the results of
which are used to estimate statistical power. In what fol-
lows, we begin by describing the statistical framework
underlying pwrEWAS, followed by its demonstration
and an assessment of its run time across different user
settings. We finish with a discussion of the limitations of
pwrEWAS and describe future extensions.

Methods
As previously mentioned, the Illumina Infinium Human-
MethylationEPIC microarray measures the methylation
status of > 850,000 CpGs throughout the genome. For a
single CpG, DNAm is quantified via the β-value, β

¼ M
MþU , where M and U are the methylated and

unmethylated signal intensities, respectively. As M and
U are typically assumed to be gamma-distributed ran-
dom variables with equal scale parameter [7], it follows

that the β-value follows a beta-distribution. As such, the
β-value ranges from 0 to 1 and represents the methyla-
tion extent for a specific CpG. Under ideal conditions, a
β-value of zero signifies that all alleles in all cells of a
sample were unmethylated at that CpG site, while a
β-value of one indicates methylation throughout all al-
leles in all cells at that CpG site [24]. A common goal of
EWAS is to identify CpG-specific differential methyla-
tion based on some phenotype or exposure. Formally,
this involves testing the null hypothesis H0 : Δβ, j = 0,

where Δβ; j ¼ μð1Þj −μð2Þj and represents the difference in

mean methylation at the jth CpG between two groups
(e.g. cases versus controls, exposed versus unexposed,
etc.), with j = {1, … , J} and J representing the number of
interrogated CpGs.
pwrEWAS is written using the R statistical program-

ming language (http://r-project.org) and is comprised of
three major steps: (1) data generation, (2) differential
methylation analysis, and (3) power evaluation (Fig. 1).
Users are required to provide input parameters, includ-
ing: tissue type to be used for methylation assessment,
assumed total sample size (can be specified as a range of
possible sample sizes), percentage of the total sample
split into two groups (50% corresponds to a balanced
study), number of CpGs to be formally tested, expected
number of differentially methylated CpGs, and the ex-
pected difference in methylation between the compara-
tor groups (Δβ) or alternatively, the standard deviation
of these differences (sd(Δβ)).

Fig. 1 Workflow for pwrEWAS. From an existing tissue-type-specific data set, J CpG-specific means and variances are estimated. Next, P CpGs are
sampled with replacement from the collection of CpGs. For two groups, the mean of one group is changed by Δβ, while the mean of the other
group remains unchanged. Δβ comes from a truncated normal distribution N(0, τ2). These parameters are then used to simulate β-values for the
two groups. A CpG with an absolute difference in mean methylation greater than a predefined detection limit (default: 0.01) is considered as
truly differentially methylated. Next, the simulated data set is used to test for differential, comparing the mean methylation signatures between
the two groups. A CpG is defined as “detected” if its corresponding FDR is smaller than a predefined threshold (default: 0.05). Each CpG can fall
into one of six categories described in Table 1. The marginal power is calculated as the proportion of True Positives among all truly differentially
methylated CpGs
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To assist users with their experimental design, pwrE-
WAS provides estimates of statistical power as a func-
tion of the assumed sample and effect size(s). Further, it
provides estimates of the marginal type I error rate, mar-
ginal FDR, false discovery cost (FDC), the distribution of
simulated Δβ ’s, and probabilities of identifying at least
one true positive. The probability of identifying at least
one true positive is beneficial in studies where either the
effect or sample size is very small (e.g. pilot or explana-
tory studies).

Data generation
Our approach to estimating statistical power begins by le-
veraging publicly available DNA methylation data sets in
order to simulate realistic methylation data. Data sets used
for the purpose of simulation were selected to represent the
most commonly used tissue types used in EWAS. To iden-
tify these tissue types, the Gene Expression Omnibus
(GEO) data repository was manually scanned and tissue
types were rank-ordered based on the number of GEO de-
posited data sets including Illumina Infinium Human
Methylation BeadChip data for that tissue type. For each of
the most common tissue types identified, a single represen-
tative data set was selected (Table 1). Representative data-
sets were selected based on a combination of the study’s
sample size (preference toward larger data sets), study de-
sign, and the inclusion of DNA methylation profiles for
healthy, non-diseased subjects.
For each selected tissue type, CpG-specific means and

variances were estimated ( μ̂ j ¼ 1
N

PN
i¼1βi; j and σ̂2j ¼ 1

N−1
PN

i¼1ðβi; j−μ̂ jÞ2 ), where βi, j represents the methylation

β-value for CpG j = {1, … , J} in subject i = {1, … ,N}.
CpG-specific parameter estimates are then used as the
basis for simulating realistic methylation data using a
semi-parametric simulation strategy. First, P pairs of
CpG-specific means and variances ðμ̂ j; σ̂

2
j Þ are sampled

with replacement from one of the tissue-type specific
reference data sets (Table 1). By default, P is set to
100,000 CpG sites, as previous studies have suggested
filtering out low-variable CpGs to offset the burden of
multiplicity [25], however in principle, P can be set ac-
cording to the user’s preference (e.g., P = 866,836 for
EWAS conducted using the EPIC array). Thus, pwrE-
WAS allows up- or down-scaling to any number of
CpGs that the investigator plans to measure and con-
ducted differential methylation analyses on. This is an
important feature since the EPIC array is the successor
to the now discontinued Infinium HumanMethyla-
tion450 array, which represents the technology used for
methylation assessment of the tissue-specific reference
data sets used as the basis of our simulation strategy. Of
the P sampled CpGs, a difference in mean DNAm (Δβ)
is imposed on K CpGs, where K ≤ P. The number of dif-
ferentially methylated CpGs, K, is selected by the user
and ideally motivated by a pilot study, previous litera-
ture, or expert knowledge about the effect of the pheno-
type(s) or exposure(s) of interest on DNA methylation.
The mean methylation of K CpGs is shifted in one of
the comparator groups by Δβ = {Δβ, 1,…Δβ, k,…Δβ, K},
while the mean methylation in the other comparator
group remains unchanged. Due to the nature of β-values
and the parameter restrictions of the beta distribution

(0 ≤ μk ≤ 1 and 0 < σ2k < 0:25), Δβ, k is bounded by 1
2−μk

�
ffiffiffiffiffiffiffiffiffiffi
1
4−σ

2
k

q
, where μk and σ2k are CpG-specific means and

variances, respectively (see Additional file 1 for add-
itional details). Due to its boundedness, Δβ, k is drawn
from a truncated normal distribution (Δβ, k~Nk(0, τ

2)).
The normal distribution was chosen based on observed
differences in DNAm of differentially methylated CpGs in
previously published EWAS (see Additional file 2: Figure
S1). The standard deviation of the simulated differences τ
can be provided by the user or be automatically be

Table 1 Curated tissue-type specific DNAm data sets used by pwrEWAS
Tissue Type Accession Number Subjects within GSE-ID limited to Reference

Saliva GSE92767 [38]

Lymphoma GSE42372 disease state: non-HIV lymphoma [39]

Placenta GSE62733 health state: Normal [40]

Liver GSE61258 diseasestatus: Control [41]

Colon GSE77718 disease state: Normal [42]

Blood (Adults) GSE42861 subject: Normal [43, 44]

Blood (Children) GSE83334 age: 5 years [45]

Blood (Newborns) GSE82273 [46]

Cord-blood (whole blood) GSE69176

Cord-blood (PBMC) GSE110128 cord blood [47]

Adult (PBMC) GSE67170 disease state: control [48]

Representative data sets for the most commonly used tissue types for EWAS with inclusion criteria for subjects
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determined based on the user-specified target Δβ and the
expected number of differentially methylated CpGs, such
that Δβ matches the target maximal difference in mean
methylation. To achieve this, an internal function simu-
lates P Δβ, k ’s (this matches the number of subsequently
simulated CpGs) 100 times, while stepwise adjusting τ.
The goal is to identify a standard deviation τ for the trun-
cated normal distribution to matches the targeted max-
imal difference in DNAm. Therefore, τ is adjusted
stepwise until the 99.99th percentile of the absolute value
of simulated Δβ, k ’s falls within a range around the tar-
geted maximal difference in DNAm. The range is equal to
the detection limit (±0.005 based on default detection
limit: 0.01). (Additional file 2: Figure S2) shows the distri-
bution of simulated Δβ, k ’s for different effect sizes and its
respective range that the 99.99th percentile of the simu-
lated Δβ, k ’s needs to fall in for τ to be accepted.
Since Δβ is simulated from a truncated normal distri-

bution, a certain proportion of Δβ are within the detec-
tion limit range around zero and thus, do not exhibit a
biologically meaningful difference in mean methylation.
To ensure that K includes the number of meaningfully
differential methylated CpGs (truly differentially methyl-
ated CpGs), K is calculated to reflect the user-supplied
target number of differentially methylated CpGs ( K

¼ 1
Percentage of truly DM CpGs � Target number of DM CpGs ).

This results in K CpGs with changed means (Δβ, k ≠ 0)
and P − K CpGs with unchanged means (Δβ, k = 0) be-
tween the two comparator groups. Variances across all P
CpGs remain unchanged in both comparator groups,
that is, comparator groups are assumed to have the same
CpG-specific variances. Next, the means and variances
of both comparator groups are used to calculate
CpG-specific shape parameters for the beta-distribution:

aj ¼ μ2j ð
1−μ j

σ2j
− 1

μ j
Þ and bj ¼ ajð 1μ j

−1Þ (see Additional file

1). The two comparator group specific matrices (P × 2)
containing the CpG-specific shape parameters are then
used to generate N1 and N2 beta-distributed observa-
tions for each CpG, for both comparator groups respect-
ively, resulting in two matrices (P x N1 and P x N2) of
β-values, which are subsequently used for the differential
methylation analysis.
Simulated CpGs fall into one of three categories: (1) not

differentially methylated (Δβ, k = 0), (2) differentially meth-
ylated with negligible difference (|Δβ, k| < 0.01), and (3)
truly differentially methylated (|Δβ, k| ≥ 0.01). The thresh-
old of 0.01 was chosen according to the detection limit of
DNAm arrays [8], but can be modified by the user.

Differential methylation detection
Following data generation, differential methylation ana-
lyses are carried out using one of several established

parametric and nonparametric approaches, including:
limma [26], CpGassoc [27], t-test, or a Wilcoxon
rank-sum test. In the first three of the above methods,
simulated β-values are first transformed to methylation

M-values using the logit-transformation (M ¼ log2ð β
1−βÞ)

due to their assumption of normality [24, 28]. Each
method reports CpG-specific p-values, which are multi-
plicity adjusted using the Benjamini and Hochberg
method [29] to control the False Discovery Rate (FDR).

Power assessment
Tested CpGs fall into one of six categories: (1) TP (True
Positive): detected CpGs with meaningful difference in
mean DNAm, (2) NP (Neutral Positive): detected CpGs
with negligible difference in mean DNAm, (3) FP (False
Positive): detected CpG with no difference in mean
DNAm, (4) TN (True Negative): undetected CpGs with
no difference in mean DNAm, (5) NN (Neutral Nega-
tive): undetected CpGs with negligible difference in
mean DNAm, and (6) FN (False Negative): undetected
CpGs with meaningful difference in mean DNAm
(Table 2).
Since it can be argued that CpGs with a negligible Δβ,

k are not biologically meaningful, we calculate the empir-
ical marginal power, defined by Wu et al. [11] as the
proportion of truly differentially methylated CpGs de-
tected at the specified FDR threshold, TP

TPþFN (Table 2).
Further, even though failing to discover differentially
methylated CpGs represents a type II error, failing to de-
tect CpGs with a negligible Δβ, k can be disregarded
(NN) due to their likely unimportance. Additionally, as
identifying CpGs with a negligible Δβ, k (NP) is not as
crucial as identifying CpGs with a biologically meaning-
ful Δβ, k (TP), we also report the false discovery cost (
FDC ¼ FP

TP) [11].
For each of the assumed sample and effect sizes we re-

port the following metrics, averaged across simulations
to obtain reliable estimates:

� Empirical classical power: The ratio of correctly
detected CpGs and all differentially methylated
CpGs

classicalPower ¼ NP þ TP
NP þ NN þ TP þ FN

� Empirical marginal power: The ratio of correctly
detected CpGs with biologically meaningful
differences and all differentially methylated CpGs
with biologically meaningful differences (excluding
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Neutral Positives and Neutral Negative with
negligible differences):

marPower ¼ TP
TP þ FN

� Empirical marginal Type I Error: The ratio of
wrongly detected CpGs and all CpGs with no
difference

marTypeI ¼ FP
FP þ TN

� Empirical False Discovery Rate (FDR): The ratio
of wrongly detected CpGs and all detected CpGs

FDR ¼ FP
FP þ NP þ TP

� Empirical False Discovery cost (FDC): The ratio
of wrongly detected CpGs and correctly detected
CpGs:

FDC ¼ FP
TP

Visualization
The pwrEWAS package contains two functions that can
be used to visualize the results (“pwrEWAS_powerPlot”
and “pwrEWAS_deltaDensity”). “pwrEWAS_powerPlot”
displays the estimated power as a function of sample size
with error bars (2.5th and 97.5th percentile calculated
across simulations). Power across different target Δβ

′ s
as a function of sample size is differentiated by different
colors (Fig. 2, Box 4). “pwrEWAS_deltaDensity”

illustrates the distribution of simulated Δβ, k
′ s for differ-

ent target Δβ
′ s as density plots (Fig. 2, Box 7). Densities

for different target Δβ
′ s are color-coded as well and

match the colors of the power curve
(“pwrEWAS_powerPlot”).

Results
Consider a hypothetical study that aims to understand
the relationship between electronic cigarettes
(e-cigarette) and DNAm derived from adult blood. The
use of e-cigarettes has increased dramatically over the
last decade, especially among young adults [30]. There
exists a common perception in the population, including
pregnant women and women in child-bearing age, that
e-cigarettes are less harmful than smoking tobacco ciga-
rettes [31]. Although, studies have reported the presence
of toxic components in e-cigarette aerosol [30], there
presently exists no study investigating the relationship
between e-cigarette and DNAm derived from adult hu-
man blood. As the effect of e-cigarette usage on DNAm
is presently unknown, but is of interest in this hypothet-
ical study, we will use the previously reported effects of
tobacco smoke on blood-derived DNAm as an upper
limit for the effect of e-cigarette usage on DNAm. Previ-
ous studies analyzing the effect of smoking tobacco ciga-
rettes on blood-derived patterns of DNA methylation
have reported CpG-specific differences up to 24% be-
tween smokers and non-smokers, with a wide range of
CpGs (724–18,760) declared as significantly differentially
methylated (FDR ≤0.05) [32–34]. Hence, we want to in-
vestigate the number of subjects required to detect
DNAm differences in 2500 CpGs (selected to be within
the range of the number of significantly differently
methylated CpGs reported between smokers and
non-smokers in previous reports) with 80% power for
three reasonable effect sizes (Δβ = {0.10, 0.15, 0.20} and
one deliberately small effect size Δβ = 0.02, representing
differences in DNAm up to ~2 % , ~10 % , ~15% and
~20%). To cover a wide range of total sample sizes, we
analyzed total sample sizes ranging from 20 to 260 indi-
viduals with increments of 40 and equal allocation be-
tween e-cigarette users and non-users, while keeping the
remaining default parameters of pwrEWAS intact:

Table 2 Differential methylation detection and terminology

Differentially Methylated Truly Differentially Methylated Detected Not Detected

Δk = 0 No No False Positive (FP) True Negative (TN)

|Δk| < 0.01 Yes No Neutral Positive (NP) Neutral Negative (NN)

|Δk|≥ 0.01 Yes Yes True Positive (TP) False Negative (FN)

Each CpG can fall into one of six following categories: False Positive (FP; detected CpG with no simulated difference in mean methylation); Neutral Positive (NP;
detected CpG with negotiable simulated difference in mean methylation); True Positive (TP; detected CpG with meaningful simulated difference in mean
methylation); True Negative (TN; not detected CpG with no simulated difference in mean methylation); Neutral Negative (NN; not detected CpG with negotiable
simulated difference in mean methylation); False Negative (FN; not detected CpG with meaningful simulated difference in mean methylation)
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Fig. 2 (See legend on next page.)
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� Tissue type: Blood adult
� Minimum total sample size: 20
� Minimum total sample size: 260
� Sample size increments: 40
� Samples rate for group 1: 0.50
� Number of CpGs tested: 100000
� Target number of DM CpGs: 2500
� Select ‘Target max Δ ’
� Target maximal difference in DNAm: 0.02, 0.10,

0.15, 0.20
� Target FDR: 0.05
� Detection Limit: 0.01
� Method for DM analysis: limma
� Number of simulated data sets: 50
� Threads: 4

The results of this power analysis can be found in Fig.
2. To detect differences up to 10, 15 and 20% in
CpG-specific methylation across 2500 CpGs between
e-cigarette users and non-users with at least 80% power,
we would need about 220, 180 and 140 total subjects, re-
spectively. As expected, 80% power was not achieved for
a difference in DNAm ≤2% for the selected total sample
size range. However, it can be observed for this target
differences of 2%, that the probability of detecting at
least one CpG out of the 2500 differentially methylated
CpGs is about 36% for 20 total patients and virtually
100% for 60 and more total patients. Because there ex-
ists no literature on the magnitude of expected differ-
ences in DNAm, a pilot study would be helpful in this
hypothetical situation to narrow the range of expected
differences to more precisely identify the required sam-
ple size to achieve 80% power.
To evaluate this broad range of sample and effect sizes

of this theoretical experiment, pwrEWAS required ~ 49
min in total. In general, the computational complexity of
pwrEWAS depends on four major components: (1) as-
sumed number and magnitude of sample size(s), (2) num-
ber of target Δβ ’s (effect sizes), (3) number of CpGs
tested, and (4) number of simulated data sets. To enhance
the computational efficiency, pwrEWAS allows users to
process simulations in parallel. While (1) and (2) are usu-
ally dictated by the study to be conducted, (3) and (4) can
be modified to either increase the precision of power esti-
mates (increased run time) or reduce the computational
burden (decreased precision of estimates). The run time
of pwrEWAS for different combinations of sample sizes
and effect sizes are provided in Table 3.

As the number of simulated data sets is one of the
major components (e.g., item (4), above) affecting the
run time of pwrEWAS, it is important to identify a de-
fault value that offers a reasonable tradeoff between run
time and precision of power estimates. To this end, the
variance of power estimates was assessed for a range of
simulated data sets (5–100), each repeated 100 times,
while keeping the remaining parameters unchanged
(Fig. 3a). We ultimately determined the default value for
the number of simulated data sets to be 50, as it appears
that simulating additional data sets reduces the variance
of power estimates only marginally (Fig. 3b).
The pwrEWAS package is accompanied by a vignette,

which provides a more detailed description of input and
output, instructions for the usage, an example, and inter-
pretations of the example results. In addition, a
user-friendly R-Shiny point-and-click interface has been
developed (Fig. 2) for researchers that are unfamiliar or
less comfortable with the R environment.

Discussion
In our hypothetical study on the effect of e-cigarette
usage on patterns of blood-derived DNAm, we found
that 140–220 total subjects would be needed, depending
on the expected effect size. However, these results
should be treated with a certain level of caution and
considered to be more of a guideline than an exact pre-
scription. Due to computational, memory and storage
burden, and simplicity considerations, pwrEWAS in-
volves the random generation methylation β-values inde-
pendently across CpGs, which might not hold in real
data given previous reports of local correlation in
DNAm of nearby CpG sites [35]. Additionally, pwrE-
WAS assumes CpG-specific homoscedasticity between

(See figure on previous page.)
Fig. 2 pwrEWAS Shiny User-Interface. (1) User-specific inputs; (2) Advanced input settings to optimize run time; (3) Link to vignette for detailed
description of inputs and outputs, instructions and an example including interpretations of the example results; (4) Power curve as a function of
sample size by effect size (Δβ); (5) Estimated power average over simulation by sample size and effect size (Δβ); (6) Probability of detection at
least one true positive; (7) Distribution of simulated differences in DNAm (Δβ) for different target Δβ ’s; (8) Log of input parameter and run time

Table 3 Run time of pwrEWAS for different combinations of
sample sizes and effect sizes

Total sample sizes Effect sizes (Δβ)

0.1 0.1, 0.2 0.1, 0.3, 0.5

10 2 min 21 s 3 min 11 s 3 min 50s

100 6 min 22 s 7 min 39 s 8 min 33 s

500 24 min 43 s 27 min 36 s 29min 22 s

10–100 (increments of 10) 9 min 40s 16 min 34 s 23min 44 s

300–500 (increments of 100) 27 min 58 s 30 min 01 s 52min 00s

In all scenarios presented the number of tested CpGs was assumed to be
100,000, number of simulated data sets was 50, and the method to perform
the differential methylation analysis as limma. A total of 6 clusters/threads
were used
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both comparator groups, that is CpG-specific variances
are assumed to be identical between both groups. How-
ever, CpG-specific variances have been reported to
change depending on exposure(s) and phenotype(s) [36,
37]. Violations of CpG-specific homoscedasticity can result
in inflated estimates of statistical power and produce overly
optimistic sample sizes, however identifying the magnitude
of changes in variances depending on exposure(s) and phe-
notype(s) in advance of the study can be very challenging.
Further, the expected difference in DNAm between both
groups (Δβ) is assumed to come from a truncated normal.
This assumption seems to hold, at least approximately,
based on observed distributions of differences in DNAm
across a variety of studies. Additional limitations of pwrE-
WAS include: two group comparison, selection of methods
for differential methylation analysis, and selection of tissue
types specific reference data.
Despite the above limitations, pwrEWAS is to our know-

ledge, the first publicly available tool to formally address
the issue of power evaluation in the context of EWAS.
Further opportunities for the extension of pwrEWAS in-
clude the implementation of additional methods for differ-
ential methylation analysis (e.g., linear regression for
continuous phenotype(s)/exposure(s), Cox-proportional
hazards models or relevant models for handling
time-to-event outcomes, etc.), allowing multiple group
comparisons, providing the opportunity for researcher to
upload different reference data (tissue type(s) specific to
their study), and addressing the potential change of CpG
dispersion due to phenotype(s) and/or exposure(s).

Conclusion
When designing an EWAS, consideration of statistical
power should play a central role in selecting the appropri-
ate sample size to address the question(s) of interest.
Under- and overpowered studies waste resources and even
risk failure of the study. With pwrEWAS we present a
user-friendly power evaluation tool with the goal of help-
ing researchers in the design and planning of their EWAS.

Availability and requirements
Project name: pwrEWAS.
Project homepage: https://github.com/stefangraw/

pwrEWAS
Operating systems: Platform independent.
Programming language: R.
License: Artistic-2.0.
Any restrictions to use by non-academics: none.

Additional files

Additional file 1: Derivation for upper and lower bound of Δ, CpG-
specific differences in mean methylation between two compared groups.
(DOCX 28 kb)

Additional file 2: Supplementary Figure 1 and Supplementary Figure 2.
(DOCX 639 kb)

Abbreviations
DNAm: DNA methylation; EWAS: Epigenome-Wide Association Study;
FDC: False Discovery Cost; FDR: False Discovery Rate

A B

Fig. 3 Empirical assessment of the number of simulations. To assess the number of simulated data sets (number of simulations) required to
obtain consistent results for power, pwrEWAS was run for a variety of number of simulations (5–100 simulations), each 100 times and each with
the same remaining input parameters. a shows the distribution of power estimates for 100 runs within each of the assumed number of
simulations. b visualizes the variance of power estimates for each of the assumed number of simulations. Given the relative stability of variance
estimates beyond 50 simulations, 50 was selected as the default value for the number of simulations in pwrEWAS
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