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Abstract

Background: An RNA primary structure, or sequence, is a single strand considered as a chain of nucleotides from the
alphabet AUGC (adenine, uracil, guanine, cytosine). The strand can be folded onto itself, i.e, one segment of an RNA
sequence might be paired with another segment of the same RNA sequence into a two-dimensional structure
composed by a list of complementary base pairs, which are close together with the minimum energy. That list is
called RNA’s secondary structure and is predicted by an RNA folding algorithm. RNA secondary structure prediction is
a computing-intensive task that lies at the core of search applications in bioinformatics.

Results: We suggest a space-time tiling approach and apply it to generate parallel cache effective tiled code for RNA
folding using Nussinov's algorithm.

Conclusions: Parallel tiled code generated with a suggested space-time loop tiling approach outperforms known
related codes generated automatically by means of optimizing compilers and codes produced manually. The
presented approach enables us to tile all the three loops of Nussinov's recurrence that is not possible with commonly
known tiling techniques. Generated parallel tiled code is scalable regarding to the number of parallel threads —
increasing the number of threads reduces code execution time. Defining speed up as the ratio of the time taken to
run the original serial program on one thread to the time taken to run the tiled program on P threads, we achieve
super-linear speed up (a value of speed up is greater than the number of threads used) for parallel tiled code against
the original serial code up to 32 threads and super-linear speed up scalability (increasing speed up with increasing the
thread number) up to 8 threads. For one thread used, speed up is about 4.2 achieved on an Intel Xeon machine used

for carrying out experiments.
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Background

Ribonucleic acid (RNA) molecule is one of the most
important molecules in the biological systems. RNA is
typically produced as a single stranded molecule, which
then folds intramolecularly to form a number of short
base-paired stems. This base-paired structure is called the
secondary structure of the RNA. The dynamic program-
ming approach to RNA secondary structure prediction
relies on the fact that structures can be recursively decom-
posed into smaller components. In each of the decom-
position steps, only a single loop (or stacking of two
consecutive base pairs) needs to be evaluated.
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Nussinov proposed a dynamic programming algorithm
for RNA folding in 1978 [1], which maximizes the number
of non-crossing matchings between complimentary bases
of an RNA sequence of length N.

Let X = xi1,x,...,xv be an RNA sequence, where
x; € {G(guanine), A(adenine), U (uracil), C(cytosine)} is a
nucleotide. Nussinov’s dynamic programming recurrence
for N x N matrix S is given below.

NYIES | Shax ‘mliax‘(S(i, k) + Sk +1,))),
- 1I<k<j

i<j<N

Here, S(i,j) defines the maximum number of base-pair
matches of x;, ..., ; over the region1 < i <j < N and
o (i,)) is a function, which returns 1 if (x;, x;) is an AU, GC,
or GU pair and 0 otherwise.
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Listing 1 represents the triply nested affine loops with
two statements accessing the two-dimensional array S
implementing Nussinov’s algorithm.

Listing 1 Nussinov’s loop nest

1 for (i =N-1; i >= 0; i--) {

2 for (j = i+1; j < N; j++) {

3 for (k = 0; k < j-i; kt+4) {

4 S[i][j] = max(S[i][k+i] + »

; S S[k+i+1][5], S[illil): // S1

6 S[i1(5] = max(S[i1[j]. SLi+1[i-1] + 2
G sigma(i,j)); // S2

7 }

8 }

Fast Nussinov implementations for shared memory
architectures must ensure both aspects of code paral-
lelism and cache optimization. Cache optimization is not
found or limited to the memory layout optimization to
improve spatial locality in popular parallel implementa-
tions of RNA folding, for example, GTFold [2], UNAfold
[3] or RNAfold [4], which, however, implement energy
minimization.

There are several manual or empirical approaches in lit-
erature improving data locality of serial or multi-threaded
RNA folding code, e.g. [5-10], dedicated to various hard-
ware platforms including GPUs and FPGAs.

Li et al. [5] suggested a cache efficient version of Nussi-
nov’s recurrence by using the lower triangle of matrix S to
store the transpose of the computed values in the upper
triangle of S. As new S;s are computed, they are stored in
both §;; and §;; for j < i. The sum S;x + Sg41,/ is com-
puted as S;x + Sjx+1. Hence, Li’s modifications accelerate
rapidly code execution because reading values in a row is
more cache efficient than reading values in a column [5].

Zhao and Sahni developed three cache-efficient algo-
rithms without increasing the memory requirement,
ByRow, ByRowSegment, and ByBox for Nussinov’s RNA
folding [6]. They showed that presented techniques based
on a simple LRU cache model give better run time and
energy performance than Li’s approach. Unfortunately, no
parallel code is presented by the authors.

The effectiveness of automatic tiling and parallelization
of loop nests depends a lot of their dependence patterns.
The dependences of a loop nest can be classified into two
categories: uniform and non-uniform. The dependences
are uniform only when the distances between dependent
loop nest statement instances in the iteration space are
uniform, i.e., these distances are expressed by constants;
otherwise they are non-uniform. A set of distance vec-
tors represents distances between dependent loop nest
statement instances calculated as the difference between
the iteration vectors representing the destinations and
sources of dependences.

For uniform dependences, the corresponding
dependence graph is regular while for non-uniform
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dependences it is irregular. Automatic tiling and paral-
lelization of loop nests with non-uniform dependences
by means of affine transformations is much difficult than
those exposing uniform dependences. The reason is that
for such dependences, in general, constraints formed to
extract affine transformations (to be next applied to tile
and parallelize loops) are parametric and non-linear, this
considerably increases the computational complexity of
extracting affine transformations. Even when affine trans-
formations can be found, they do not guarantee efficient
loop tiling and parallelization: only some loops from all
ones in the loop nest can be tiled and/or parallelized.

The Nussinov kernel involves mathematical operations
over affine control loops whose iteration space can be
represented by the polyhedral model [11]. However, the
Nussinov RNA folding acceleration is still a challenging
task for modern compilers because that code is within
nonserial polyadic dynamic programming (NPDP), which
is a particular family of dynamic programming with non-
uniform data dependences, and it, as mentioned above, is
more difficult to be optimized [7].

Optimizing compilers usually apply loop tiling to gen-
erate cache-efficient code on multicore architectures that
maximizes data reuse in deep memory hierarchies and
reduces synchronization cost [12]. Loop tiling transfor-
mations allow for improving data locality and generate
coarse-grained parallel code that leads to improving code
performance [13]. The most popular techniques of tiling
are based on the affine-transformation framework (ATF),
which is implemented in several tools [12].

Pluto [14] is the most popular state-of-the-art source-
to-source polyhedral code generator that transforms C
programs to parallel coarse-grained code with enhanced
data locality. Pluto uses a scheduling algorithm, which
tries to find affine transformations allowing the most
efficient tiling. The main purpose is to minimize the
amount of inter-tiles communications and ensure par-
allelism among tiles. The Pluto schedule is optimal,
it reduces the number of dependences crossing tile
boundaries. Unfortunately, Pluto fails to generate a
band of loops where all multiple consecutive loops
may be interchanged while respecting the legality in
the case of rectangular tiling for NPDP kernels. Pluto
serializes the innermost loop of Nussinov’s RNA fold-
ing, which is a key of cache locality optimization
[15]. As a consequence, Pluto fails to generate 3-D
tiles that prevents achieving maximal code locality and
performance.

Mullapudi and Bondhugula introduced a dynamic
tiling technique for Zuker’s RNA secondary struc-
ture prediction [11]. Their technique overcomes
some limitations of the affine transformation frame-
work. Generated tiles are of the 3-D dimension
and they can be scheduled only at run-time, ie,
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that technique does not allow for generation of any
static code.

Wonnacott et al. suggested 3-D tiling of “mostly-
tileable” loop nests representing Nussinov’s RNA sec-
ondary structure prediction [16]. This approach extracts
non-problematic statement instances in the loop nest
iteration space, i.e., those that can be safely tiled by
means of well-known techniques. The reminding state-
ment instances should be run serially to preserve all
the dependences available in the loop nest. Unfor-
tunately, the approach allows for generation of only
serial code.

The tiling technique presented in paper [15] trans-
forms (corrects) original rectangular tiles into target ones,
which are valid under lexicographic order. Tile correc-
tion is performed by means of the transitive closure of
loop dependence graphs. Loop skewing is used to par-
allelize code. We achieved higher speed-up of generated
tiled code in comparison with that produced with state-of
the-art source-to-source optimizing compilers. However,
the correction technique generates irregular tiles, some of
them can be too large, this does not allow us to achieve
maximal code locality and performance [17].

In this paper, we present a novel approach of space-
time tiling for accelerating Nussinov’s RNA folding, which
allows for generation of tiled code with the following
features:

the dimension of generated tiles is 3-D,
generated code can be easily parallelized by means of
the skewing technique,

e target parallel code is scalable regarding to the
number of threads and the length of an RNA
sequence,

e generated parallel code is regular and compact, it
outperforms known automatically and manually
generated related codes.

The concept of space-time tiling is the following.
Scrutinizing the Nussinov loop nest, we discover that
dependences along both axis i and j spread in only the
forward direction, i.e., the two corresponding elements of
all dependence distance vectors are non-negative (taking
into account that the value of index i is decremented).
Using this fact, we split the iteration spaces of the loop
nest statements into two groups of sub-spaces of a fixed
width, which intersect axes i and j and are in parallel with
planes (j, k) and (i, k), respectively. Figure 1 presents such
sub-spaces for statement S1. Blue lines depict planes sit-
uated in parallel with plane (j, k) while red ones present
planes located in parallel with plane (i, k). Each sub-space
of the first and second groups is represented with iden-
tifiers id; and id,, respectively; integers in brackets are
the identifiers of sub-spaces; name SPACEI(j) states for
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SPACE2(1)
TILE(00) TILE(10)
SPACE2(0) > i
SPACE1(0) SPACE1(1)
Fig. 1 Spaces and tiles
the sub-space belonging to group i,i = 1,2 and its

identifierisj = 0, 1.

Then we form tiles as the intersection of sets repre-
senting the sub-spaces mentioned above, see Fig. 1. Each
such a tile is represented with an identifier (id;,id>),
where id; and id, are the identifiers of the correspond-
ing sub-spaces, in Fig. 1, they are shown in brackets.
Such tiles are valid under lexicographical order because
inter-tile dependences are spread in only the forward
directions regarding to both id; and id», i.e, the both cor-
responding elements of all dependence distance vectors
are non-negative.

The size of generated tiles is limited along axes i and j
with the width of sub-spaces, but it is not limited along
axis k that reduces code locality — see Fig. 1. To split each
tile generated as presented above into sub-tiles along axis
k, we can find any valid schedule of statement instances
allowing for forming time partitions, which are to be enu-
merated serially, while statement instances of each time
partition can be run in parallel. Let us consider Fig. 2.
It represents the iteration space of a single tile provided
that the sub-space width is equal to 3. Suppose that
dependences within that tile are characterized with the
following set of distance vectors.

{(0,0,1), (0, 1,0), (1,0, —1)}.

Distance vectors allow us to generate all dependences
in the iteration space shown in Fig. 2. To find the desti-
nation of a dependence with a given dependence source
within the iteration space, we add a distance vector to this
source and if the resulting iteration is within the iteration
space, we conclude that there is the dependence in that
iteration space.
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Fig. 2 Time slices

In Fig. 2, we show with red arrows some dependences
corresponding to the distance vectors above. Valid time
partitions, ti, can be represented with the following sets,
each including iterations, which can be run in parallel.

t0:={(0,0,0)},

t1:=1{(0,0,1),(0,1,0)},

t2:=1{(0,0,2),(0,1,1),(0,2,0),(1,0,0) },

t3:=1{(0,1,2),(0,2,1),(1,0,1),(1,1,0) },
t4:={(0,2,2),(1,0,2),(1,1,1),(1,2,0),(2,0,0) },
t5:={(1,1,2),(1,2,1),(2,0,1),(2,1,0) },
t6:=1{(1,2,2),(2,0,2),(2,1,1),(2,2,0) },
t7:=1{(2,1,2),(2,2,1) },

18:=1{(2,2,2)}.

Each time partition comprises independent iterations,
which can be executed in parallel while time partitions
should be enumerated in lexicographical order. In Fig. 2,
labels ti,i = 0,1,2,...,8 mark a time partition comprising
the corresponding iteration.

Next we combine time partitions into time slices each
including a fixed number of time partitions. Provided that
the number of time partitions in a slice is equal to 3, we
get the following time slices, TIMEi, i = 1,2,3.

TIME1 :=t0 U ¢1 U t2 = {(0,1,2),(0,2,1),(1,0,1),
0,0,1),(1,1,0),(0,1,0),(0,0,0) },

TIME2 := 3 U t4 U t5 = {(0,2,2),(1,1,2),(0,1,2),
(1,0,2),(1,2,1),(0,2,1), (1,1,1),(2,0,1), (1,0,1), (1,2,0),
(2,1,0),(1,1,0),(2,0,0) },

TIME3 := t6 U t7 U 8 = {(2,2,2),(1,2,2),(2,1,2),
(2,0,2),(2,2,1),(2,1,1),(2,2,0) }.

Enumerating time slices is valid under lexicographic
order because before executing the next slice all data nec-
essary are already calculated in the previous slices. So,
within a single tile, we form sub-tiles represented with
time slices whose execution in serial order increases code
locality because instead of execution of one larger tile,
multiple smaller sub-tiles will be executed.

To generate target tiles, we apply the intersection
operation to sets representing sub-spaces and time slices.
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In the following section, we prove that for the Nussinov
loop nest, resulting tiles are valid under lexicographical
order and demonstrate how parallel target code can be
generated.

Methods

In compiler research, polytopes and related mathemat-
ical objects have been successfully applied to represent
and manipulate an important class of compute- and
data-intensive programs in an approach that has become
known as the polyhedral model. It formalizes analyzing,
parallelizing, and transforming program fragments con-
sisting of (sequences of) arbitrarily nested loops (like
dynamic programming loops), where the loop bounds,
statements conditions and array accesses are affine com-
binations of symbolic constants and loop iterators.

The polyhedral method treats each iteration of a loop
statement within the loop nest as an integral point inside
mathematical objects called polyhedra that contains all
iterations of the statement. A convex polyhedron can be
formally defined as the set of solutions to a system of
linear inequalities of the form Mx < b.

The polyhedral model of a loop nest includes i) a set rep-
resenting an iteration space for each statement, ii) access
relations (read and write) for each array available in the
loop nest body, iii) relations describing a global schedule
for each statement — a discrete time when a statement
instance is executed according to the original iteration
execution order.

A mathematical representation of a set is the following.

S := PARAMS — {NAME() | constraints}, where S is
the set name, "PARAMS —" means that the constraints
include parameters PARAMS, each parameter is an arbi-
trary integer whose value defines an upper loop bound,
NAME(I) is the named tuple with name NAME and vec-
tor I whose elements are loop indices or expressions
including loop indices; constraints are comprised of affine
equations and inequalities including vector I and param-
eters PARAMS combined through the conjunction (A),
disjunction (V), projection (3), and negation (—) opera-
tors. For example, S := N — {S1(,))| 1 <= i <=
N A 1 <= i <= N} denotes a parametric set (regard-
ing to parameter N) with name S, named tuple S1(;, /), and
constraints 1 <=i<=N A 1 <=i<=N.

Relations are defined in a similar way as sets, except that
a single tuple is replaced with a pair of tuples separated by
the arrow sign " — ", i.e, the mathematical representation
of a relation is the following.

R := PARAMS — {NAME1(I) — NAME2())|
constraints},
where R is the relation name, NAME1(I) and NAME2(])
are the named tuples with names NAME1 and NAME?2
including vectors I and J, respectively. For example, R :=
N — {S1(il,j1) — §2(i1,j2)| 1 <= il,i2 <=N A 1 <=
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i1,j2 <= N} denotes the parametric relation with name R,
tuples S1(i1,,2), 52(i2,;2) and the constraints 1 <=i <=
N1 <=1il,i2 <= N A 1 <= il1,j2 <= N. A relation
maps elements represented with the first tuple to elements
of the second one.

To extract the polyhedral model for a C program (all
its three components), the PET (Polyhedral Extraction
Tool) tool can be applied [18]. To extract dependences
available in a loop nest, we use the polyhedral model
returned with PET and apply the iscc calculator [19]
to implement calculations on polyhedral sets and rela-
tions in a way presented in paper [20]. Iscc is an inter-
active interface to the barvinok counting library [21]
and PET.

To optimize code, we use the following operations on
relations and sets: intersection (N), union (U), difference
(-), domain (dom R), range (ran R), relation application
(8" =R(S): € €S iff exists e s.t. e—¢€’ €R,ecS) [21].

Given the loop nest, the iteration i is lexicographically
less than iteration j, denoted as i < j, if the following
conditions are true i1 < j1 VIk > 1 : i < jxr ANy =
jefor t< k.

The iteration domain of the Nussinov loop nest in List-
ing 1) is represented with the following parametric set
comprising all the statement instances executed for state-
ments S1 and S2.

Iteration Domain :== N — {S1(5,,k) |0 <i < N——1A
i+1<j<N——-1A0<k<j—i—182(,))|0<i<
N—-——-1Ai+1<j<N--1},

where S1(i, j, k), S2(i,j) are the tuples defining the iter-
ation domain of the first and second statements of
the Nussinov loop nest, respectively; the constraints of
the tuples specify the value range of indices i/, k in the
loop nest.

The relation representing dependences available in the
examined loop nest is the following.

R:=N — {S1(i,jk) — S2({,i+j—i) |0 < k <
—itjAi > —1+4ini>0A-N+i+j<i <i}UN —
{S1(,j,k) = S1G, k) | i =0Aj < NAk>0Ak <
k' < —i+jYUN — {S1(,j,k) — S1(3,j,—i+)) | i >
OANO<k<—i+jAnj<j <N}UN — {S1(G,j,k) —
S1(/,j,—1+i—1)|j<NAO<k < —i+jA0<i <
iYUN — {S2(i,j) = S1G,j,—i+)) | i > 0Aj>inj<
/< NYUN — {S2(3i,j) — S1(i,j,—1+i—1i) |i<j<
NAO</{ <i}UN — {S2(G,)) > S2(-1+i1+4)) | i>
ONi<j<—-2+4+N},
where "N — " means that N is a parameter, i.e., an arbi-
trary constant whose value defines loop upper bounds in
the relation constraints. Relation R is represented with a
union (U) of simpler relations included in curly braces.
Each simple relation includes two named tuples, for exam-
ple, S1(...)—>S2(...) and constraints. Elements of tuples
are loop iterators or affine expressions whose components
are loop iterators. The left tuple defines dependence
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sources while the right one states for the correspond-
ing dependence destinations. Name S1 of the left tuple
means that dependence sources are originated with state-
ment S1 while S2 marks that dependence destinations are
descended with statement S2. Each constraint includes
affine inequalities whose elements are loop iterators and
parameter N, for example , 0 < k < —i + j, multiple
inequalities are combined by means of the conjunction
operator (A).

Using relation R, we can discover the maximal number
of rectangular sub-space types to be formed, this number
is defined with the maximal number of the outer loops
for which all elements of all distance vectors (formed as
the differences between the range and domain of relation
R) are non-negative. Such subspaces can be enumerated
in lexicographical order because there is no cycle among
them (the two corresponding elements of all distance
vectors are non-negative).

Because statements S1 and S2 have different iteration
spaces, we should form a global iteration space common
for both statements S1 and S2. With this purpose, we
apply the global schedule of the statements of the exam-
ined loop nest. It is a part of the loop nest polyhedral
model and represented with a relation, which maps an
iteration vector of a statement to a corresponding mul-
tidimensional timestamp, i.e., a discrete time when the
statement instance has to be executed in the common iter-
ation space. PET returns the following global schedule for
the examined loop nest.

SCHED_GLOB := N — {S2(i,j) = (i,j,1,0)}UN —
{S1(,j, k) — (i,/,0,k) }.

Next, we form relation, R_GLOB, by means of replac-
ing each named tuple of relation R with the tuple resulting
due to applying relation SCHED_GLOB to named tuples
S1 and Sp. That relation describes dependences in the
common iteration space and it is as follows.

R_GLOB:=N — {(i,j,0,k) = (i,j,k’,1,0) | i = OAj <
NAk=>=0Ak <k < —-i+j}UN — {0,k —
@ i+j—i,1L,0|0<k<—i+jni>-1+ini >
OA—=N+i+j < i <i}UN — {(i,j,0,k) = (i,/,0, —i+)) |
i>0A0<k<—i+jAj<j <NYUN — {(i,j,0,k) —
(i,j,0,—14+i—i)|j<NAO<k<—i+jA0<i <
iYUN = {(5,j,1,0) = (i,/,0,—i+)) | i=0Aj > iAj <
j <NYUN = {(i,j,1,0) > (/,j,0,—1+i—i) |i<j<
NAO<i <i}UN = {(i,j,1,0) > (=1 4i,1+/,1,0) |
i>0Ai<j<—-2+N}

Then we apply the deltas operator of the iscc calculator
to relation R_GLOB and get the following distance vectors
in the global (common) iteration space.

N—->{(—-i,1L,k]|-1<i<0A2—-N-2i<k=<0}U
N — {(,0,0k)|i<OA-N—-2i<k<—i}UN —
{(0,j,0,6)|j>0A0<k <N—j}UN— {(0,j,—1,i3)
|j>0A0<i3<N—-j} UN — {(,0,—1,—-1—1i) |
2-N<i<0}UN— {(-1,1,0,0) | N > 4}.
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Taking into account that the value of iterator i is decre-
mented, we conclude that only the third element of each
distance vector is negative. This allows us to state that
sub-spaces located in parallel with plane (j, k) and inter-
secting axis i as well as sub-spaces located in parallel
with plane (i, k) and intersecting axis j, can be enumer-
ated in lexicographical order because the both elements
of all the corresponding dependence distance vectors are
non-negative.

We split the iteration spaces of statements S1 and S2
into sub-spaces of width 16 (any other constant width
can be chosen). For statement S1, sets SPACE;; and
SPACE;; below represent sub-spaces intersecting axes i
and j, respectively.

SPACEj := (ii, N) — {S1(i,j,k) | ii > OAN > 0 A i >
OAN—-16—-16ii+N <i< —-16ii+ NANi<-24+NAi<
j<NAO<k<—i+j},

SPACE1, = (ji, N) = {S1(5,j,k) | jj = 0AN > 0A0 <
i < =24NAj > 16jj+ini <j < NAj < 16416jj+in0 <
k<—i+j}.

For statement S2, sets SPACE;; and SPACE;; below
represent sub-spaces intersecting axes i and j, respectively.

SPACEy; := (ii,N) — {S2(;,)) | ii > OAN > OAi > OA
—16—16ii+N <i < —16ii+NAi < —24+NAi<j <N},

SPACEs; = (ji,N) — {S2(5,/)) | > 0AN >0A0 <
i< —2+NAj>16j+ini<j<NAj<16+16j+i}.

Variables ii and jj are the parametric identifiers of sub-
spaces. The intersection of the union of sets SPACE11,
SPACE;5 and the union of sets SPACE>;, SPACE>; results
in tiles whose size is limited along axes i and j with the
width of sub-spaces (16), but the size of those tiles is not
limited along axis k. Fig. 1 presents such sub-spaces and
tiles for statement S1, integers in brackets are the iden-
tifiers of sub-spaces and tiles. Blue lines depict planes
situated in parallel with plane (j, k) while red ones present
planes located in parallel with plane (i, k).

For large N, the entire data associated with each such a
tile cannot be held at cache, this leads to decreasing code
locality. To improve code locality, we form time slices each
including a constant number of time partitions. Each time
partition holds statement instances that can be run in par-
allel for a given schedule. For a time slice, the number of
statement instances within axes k is limited with a con-
stant number of time partitions within that slice. Let us
suppose that a time slice is represented with a parametric
set, TIME, while a set representing the results of the inter-
section of above mentioned sets is named as SPACE. Then
the intersection of sets TIME and SPACE results in a para-
metric set describing tiles whose size is limited along all
axes: ,, and k. Choosing the proper width of sub-spaces
and the proper number of time partitions within a time
slice, we may obtain tiles for which the entire data asso-
ciated with each of them can be held at cache, this can
improve significantly code locality.
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To form time partitions, we apply the loop skew-
ing transformation [22]. It is a convenient method to
implement the wavefront method of executing a loop nest
in parallel, which creates a “wave” that passes through the
iteration space. Skewing changes the iteration vectors for
each iteration by adding the outer loop index value to the
inner one, for example, for a loop nest of depth 2 with iter-
ators i and j, iteration (i,j) becomes relabeled as (i, i + j).
If all distance vectors of a new loop nest with iterators i
and i+j comprise only non-negative elements, interchang-
ing those iterators, i.e., forming new iterators i + j and i
allows for generation of a new loop nest, where the out-
ermost loop i + j is serial while i is parallel. In general,
for a loop nest of depth d, a new loop nest with iterators
(i1 +iy+...4+ig01,02,...,iz—1) is valid if all distance vec-
tors comprise only non-negative elements; the first loop is
serial while the reminding ones are parallel [22].

For the Nussinov loop nest, we first form the following
schedule.

SCHED := N — {S1(i,j,k) — (—i+j,k) | N > 0A0 <
i< -24+4NAi<j<NAO<k<—-i+j}UN —
{S2(G,)) > (—i+j, ) IN>0A0<i<-24+NAi<j<
N}.

That schedule maps each instance of statements S1
and S2 to two-dimensional time (—i + j, k) and (—i +
j,j), respectively. To check whether that schedule is
valid, we apply the way suggested in paper [23], which
envisages checking whether the following inequality
8((SCHED™') . R . SCHED) > 0 is true, where R is the
relation describing all the dependences available in the
examined loop nest, it is presented above; “” is the iscc join
(composition) operator of two relations; § is the deltas iscc
operator that maps a relation to the differences between
image and domain elements.

Using such a checking, we conclude that relation
SCHED above is valid. By means of relation SCHED, we
form set TIME representing time slices each including 16
time partitions (any other constant value can be chosen).
With this purpose, we first calculate the inverse relation,
SCHED™!, of relation SCHED.

SCHED™! := N — {(i0,i1) — S10(i,i0 + i,il1) | N >
ONip >0AN0<1i <iI0OAND <i< N-i0OAi <
—2+NJUN — {(ip,i1) — SI12(—i0 + il,il) | N >
ONip>0ANiI0<ii <NAij] <-24+N+i0}.

In the relation above, variables i0,il represent two-
dimensional time. To form set TIME, we i) make i0
to be the parameter of set TILE, ii) make the right
tuple and the constraints of relation SCHED™! to be
the tuple and constraints of set TIME, iii) introduce
parameter ¢t of set TIME and add the constraints of
the form i1 > 16t A0 < i1 < 15 4+ 16¢t to the
constraints of set TIME, those constraints mean that
the width of a time slice is 16 (any other constant
value can be chosen) and time partitions within a time
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slice are dependent on parameter #¢. This results in the
following set.

TIME := (i0, tt, N) — {S1(i,i0 +i,il) | i0 > 0 AN >
OANO<i< —-I0+NAIi<-24NAIl>16tt A0 <
i1 < 15+ 16t A il < i0} U (i0, ¢, N) — {S2(i, i0 + i) |
i0>0AN>0Ai>0A—-i0+16t <i<—i0+NAIi=<
15—-i0+16ttni< -2+ N}

We calculate set TILE, which represents target tiles, as
follows

TILE := TIME . (SPACE1; U SPACE13) . (SPACEy U
SPACE»)=(N, jj, ii, i0,tt) — {S2(5,i0 4+ i) | jj > OAN >
ONii>0Nni0>16jjA0 <i0 <16+ 16jjAi> —16+
N—-16iiAi>0A—-i0+16tt <i<15—-i0+ 168t Ni <
N —-16iini<N—-iOANi < -2+ N}U(j,N,iii0, tt) —
{S1(,i0 +i,k) | ji = OAN > OAii > 0 Ai0 > 16 A0 <
i0 <16+16jiAi > —16+N—16iiA0 <i < N—16iiAi <
N—iOAi < —2+NAk > 16ttA0 < k < 15+16ttAk < i0}.

To find out what is the number of statement instances
within a tile represented with the set above, we applied
the iscc card operator to set TILE, which calculates the
number of elements within a set. The analysis of the result
returned with that operator allows us to conclude that the
size of each tile is not parameterized, i.e., the number of
elements within each tile does not depend on the parame-
ter N defining the upper bounds in the Nussinov loop nest
as it takes place when the tile correction technique [15] is
applied to generated target tiles.

Let us re-write set TILE in the following form.

TILE := (N,jj,i;,i0,tt) — {S1(,i0 + i,k) |
constraintsy; S2(i,i0 + i) | constraintsy }.

To generate parallel code on the tile level, we apply the
skewing transformation (ii + jj) to form the following
schedule allowing for parallel code generation.

SCHED_PAR = N — {S1(,i0 + i,k) — (i +
Ji,jj»i0, tt,i,i0 + i, k) | constraintsy; S2(i, i0 + i) — (i +
ji,jj,i0,tt,i,i0 + i) | constraints,},
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where constraints; and constraints, are the constraints of
set TILE above.

That schedule maps each instance of statements S1
and S2 to a time partition whose all tiles can be exe-
cuted in parallel. To check the validity of that schedule
we again apply the technique presented in paper [23] and
explained above to relation SCHED_PAR, and confirm
that the schedule is valid.

Applying the iscc codegen operator to relation
SCHED_PAR, we generate pseudocode and postprocess
it to the parallel tiled code presented in Listing 2. In that
code, the outermost loop ¢0 enumerates serially time par-
titions including tiles, loop cl scans tiles to be executed
in parallel for each time partition, loops ¢3,c4, and c6
enumerate serially statement instances within each tile,
pragma omp parallel for makes loop c1 parallel [24].

Results

We conducted experiments on RNA secondary struc-
ture prediction using a machine with 2 x Intel Xeon
processors E5-2695 v2, 2.4 GHz, 12 cores/24 threads,
256KB L2 Cache and 30MB L3 Cache, and 128 GB RAM.
All programs were compiled with using of the Intel C++
Compiler (icc 17.0.1) with the -O3 flag of optimization.
The code parallelism is presented with the OpenMP pro-
gramming interface [24].

At the address traco.sourceforge.net/nuss.tar.gz, all
source codes used for carrying out experiments can be
found as well as a program allowing us to run each paral-
lel program for a prepared sequence in the FASTA format
and obtain a target Nussinov table.

To carry out experiments, we used randomly gener-
ated RNA strands of length from 2500 to 15000. Papers
[5, 6, 15] show that cache efficient code performance does
not change based on strings themselves, but it depends on
the size of a string.

Listing 2 Parallel tiled code generated with the space-time approach and implementing Nussinov’s algorithm.

1 for( cO = 0; c0 <= floord(N - 2, 8); cO += 1)
2 #pragma omp parallel for
3 for( c1 = (cO + 1) / 2; c1 <= min(cO, (N - 1) / 16); c1 += 1)
4 for( c3 = 16 * c0O - 16 * c1 + 1; ¢c3 <= min(min(N - 1, 16 * c1 + 15), 16 * c0O - 16 * /
G cl + 16); c3 += 1) {
5 for( c4 = 0; c4 <= c0 - cl; c4 += 1)
6 for( c6 = max(-N + 16*cl + 1, -N + c3 + 1); c6 <= min(0, -N + 16*cl + 16); c6++) {
7 for( c10 = 16 * c4; c10 <= min(c3 - 1, 16 * c4 + 15); cl10 += 1)
8 S[-c6]1[(c3-c6)] = MAX(S[-c6]1[c10-c6] + S[c10-c6+1]1[(c3-c6)], S[-c6]1[(c3-c6)1);
9 if (cl + c4 == cO && 16 * cO + c6 + 15 >= 16 * c1 + c3)
10 S[-c6]1[(c3-c6)] = MAX(S[-c6]1[(c3-c6)], S[-c6+1]1[(c3-cB6)-1]1 +
& sigmal[-c6]1[(c3-c6)] );
11 }
12 for( c4 = max(cO - ¢c1 + 1, -c1 + (N + ¢c3) / 16 - 1); c4 <= min((N - 1) / 16, -cl + ¢/
G (N + ¢c3 - 1) / 16); c4 += 1)
13 for( c6 = max(max(-N + 16 * c1 + 1, -N + c3 + 1), c3 - 16 * c4 - 15); c6 <= ¢

G min(-N + 16 * c1 + 16,
14 S[-c6]1[(c3-c6)] =
15 }

c3 - 16 * c4);
MAX(S[-c6]1[(c3-c6)],

c6 += 1)
S[-c6+1]1[(c3-c6)-1]+sigmal-c6][(c3-c6)]);
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Table 1 Execution times of the examined codes depending on the thread number for N = 5000

N = 5000 Original Tile correction Tile correction Pluto (ATF) Space-Time Tiling Li (Transpose)
Threads 16x16%x16 1x128%x16 16x16x%1 16x16%x16

1 2434322 1323891 77.4809 130.748 57.7063 66.56

4 575215 19.5745 64.9885 21.634 21.24

8 384351 11.8201 32.2481 12563 14.05

16 18455 7.8852 18.662 71172 12.39

32 17.3659 7.9378 23.1456 6.8839 1244

48 16.0771 8.7662 19.0443 57779 13.72

We compared the performance of code generated with
the presented approach with that of i) Pluto parallel tiled
code (based on affine transformations), ii) tiled code based
on the correction technique [15, 17], and iii) the Li man-
ual cache efficient implementation [5] of Nussinov’s RNA
folding. The tile size 16x16x1 for Pluto code [14] was
chosen empirically (Pluto does not tile the most inner
loop) as the best among many sizes examined. For the
code generated with the presented approach, the tile size
16x16x16 was chosen from many different tile sizes,
examined by us, as one exposing the highest code perfor-
mance. We used this tile size also for tiled code generated
with the tile correction technique based on the transi-
tive closure of dependence graphs. We experimented with
tiled code based on correction also for the best tile size
demonstrated in paper [17], 1x128x16.

The results in Table 1, including the execution time of
the examined programs and Fig. 3 graphically present-
ing the corresponding code speed up against the origi-
nal code, demonstrate that only the code generated with

the suggested approach is scalable up to 48 threads, i.e.,
increasing the number of threads reduces the time of
code execution. The results in Table 1 show that space-
time tiled code implementing Nussinov’s algorithm with
the tile size [16x16x16] outperforms all examined imple-
mentations for a larger number of threads (equal or
greater than 16) for N=5000.

Table 2 and Fig. 4 present execution time and speed
up for various RNA sequence lengths, respectively. We
can see that the presented approach allows for obtaining
cache efficient tiled code, which outperforms the other
examined implementations for each length.

Discussion

In paper [17], we showed that tile correction allows for
generation code of the best performance when the outer-
most loop is serial. We revealed that the best tile size (for
tile correction) is not optimal for the code generated with
the suggested approach in that case, tiling all loops is a
better solution.

Speed-up

1 4 8

50 : :
I Correction tiling 16x16x16
I Correction tiling 1x128x16
- M [ Pluto (ATF) 16x16x16
40} [ Space-Time Tiling 16x16x16 ||

I Li (Transponse)

16 32

Threads
Fig. 3 Speed up of the examined codes implementing Nussinov's RNA folding depending on the number of threads
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Table 2 Execution times of the examined codes depending on the RNA sequence length for 48 threads used

48 Threads Original Tile correction Tile correction Pluto (ATF) Space-Time Tiling Li (Transpose)
Seq. length 16x16%16 1x128%x16 16x16x%1 16x16%x16

2500 21.06 239 1.74 1.99 0.80 0.97

5000 24343 18.08 8.77 19.04 5.78 13.72

7500 812.10 60.72 26.72 69.49 18.62 50.50

10000 1709.43 145.66 60.86 169.76 50.52 119.82

12500 3450.01 302.01 105.50 331.21 99.35 215.20

15000 5863.83 476.65 192.01 577.76 166.29 349.76

Space-time tiled code achieves super-linear speed up
(greater than the number of threads used) of serial and
parallel tiled code against the original serial code up to
32 threads. However super linear speed up scalability
(increasing speed-up with increasing the thread number)
is observed only from one to eight threads. Code regu-
larity and lack of parametric large tiles allow us to use
the entire power of the multi-processor machine with the
maximal number of threads while the speed up of Li’s code
and that based on tile correction is significantly limited in
this case.

The transposition of the Nussinov array [5] is effective
only for short RNA strands with the length equal to 2500.
For longer sequences (greater than 7500), only the perfor-
mance of code based on applying transitive closure with
the best tile size is comparable, but it is still worse than
the performance of code generated with the approach
presented in this paper.

Summing up, we may conclude that the parallel tiled
code generated by means of the presented space-time
approach is the fastest implementation among all exam-
ined ones including the manual generated Li code. Code
regularity and fixed tiles are dominant factors in achiev-
ing high code performance and scalability in comparison
to our previous implementation based on tile correction.
We achieved the best code performance for each RNA
sequence length using all cores/threads on the studied
Intel Xeon machine.

Conclusion

In this paper, we introduced a space-time tiling approach
for the loop nest implementing Nussinov’s folding. It
allows us to generate parallel tiled code, which outper-
forms known related codes generated automatically by
means of affine transformations, tile correction based on
the transitive closure of dependence graphs, and manually

50

40

Speed-up

Tile correction 16x16x16
Tile correction 1x128x16
Pluto (ATF) 16x16x16

Space-Time Tiling 16x16x16 ||
Li (Transponse)

10001

7500
RNA sequence length

10000

Fig. 4 Speed up of the examined codes depending on the RNA sequence length for 48 threads used
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generated Li’s transposition code. The presented approach
enables us to tile all three loops of Nussinov’s recurrence
that is not possible with commonly known optimizing
compilers based on affine transformations. The approach
generates 3-D tiles for the Nussinov loop nest.

The results of an experimental study allow us to con-
clude that the generated code based on the space-time
approach i) outperforms known related codes, ii) is scal-
able regarding to the number of parallel threads (execu-
tion time decreases with increasing the thread number up
to 48 threads); iii) allows for achieving super-linear speed
up (greater than the number of threads used) of serial and
parallel tiled code against the original serial code up to
32 threads and super-linear speed up scalability (increas-
ing speed up with increasing the thread number) up to 8
threads, for one thread, speed up is about 4.2.

The presented code optimization can be applied to
other dynamic programming kernels, for example, DNA
sequence alignment or energy minimization for RNA fold-
ing. In the future, we plan to apply space-time tiling to
Zuker’s algorithm allowing for energy minimization. It
is much complex than the algorithm examined in this
paper — there are four nested loops and multiple com-
plicated statements within the corresponding loop nest.
However that code is still within the polyhedral model,
so space-time tiling can be applied to that code to tile
all loops.
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