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Abstract

Background: Harmonization techniques make different gene expression profiles and their sets compatible and
ready for comparisons. Here we present a new bioinformatic tool termed Shambhala for harmonization of multiple
human gene expression datasets obtained using different experimental methods and platforms of microarray
hybridization and RNA sequencing.

Results: Unlike previously published methods enabling good quality data harmonization for only two datasets,
Shambhala allows conversion of multiple datasets into the universal form suitable for further comparisons. Shambhala
harmonization is based on the calibration of gene expression profiles using the auxiliary standardization dataset. Each
profile is transformed to make it similar to the output of microarray hybridization platform Affymetrix Human Gene.
This platform was chosen because it has the biggest number of human gene expression profiles deposited in public
databases. We evaluated Shambhala ability to retain biologically important features after harmonization. The same four
biological samples taken in multiple replicates were profiled independently using three and four different experimental
platforms, respectively, then Shambhala-harmonized and investigated by hierarchical clustering.

Conclusion: Our results showed that unlike other frequently used methods: quantile normalization and DESeq/DESeq2
normalization, Shambhala harmonization was the only method supporting sample-specific and platform-independent
biologically meaningful clustering for the data obtained from multiple experimental platforms.

Keywords: Transcriptome, Gene expression, Microarray hybridization, Next-generation sequencing, Harmonization of
transcriptional profiles, Comparison of multiple datasets

Background
Public repositories of gene expression data cover a rich
spectrum of normal and pathological conditions, includ-
ing all known human diseases and developmental features
[1–4]. The most popular repositories such as Gene
Expression Omnibus (GEO) [3] and Array-Express [4]
accumulate data for more than 2 million of individual
expression profiles in more than 70,000 series of experi-
ments. These transcriptional profiles were generally ob-
tained using different experimental modifications of
microarray hybridization and RNA sequencing. However,
the expression data is poorly comparable among the

different experimental datasets [5–9]. This problem is due
to both (i) technical features linked with the experimental
platforms, and (ii) so-called batch effect [10]. The latter
term means that even the experimental results obtained
using the same reagents and on the same equipment can
be significantly biased over time.
This non-comparability of gene expression data ham-

pers further levels of data analysis for the different data-
sets, e.g. finding differentially expressed genes and
assessing activation of molecular pathways [11, 12].
To solve this problem, the data must be either normal-

ized (when datasets under comparison were obtained
using one experimental platform) or harmonized (when
different platforms were used) [12]. For the normalization,
more attention is paid to mere equilibration of the scaling
factors. Contrarily, for most cases of the harmonization,
there is a need to reshape distributions for the entire gene
expression profiles.
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The normalization methods include quantile
normalization (QN) [13], frozen robust multi-array ana-
lysis for microarray hybridization data (FRMA) [14],
Empirical Bayes (EB) method also known as ComBat
[15], or Differential Expression analysis for Sequence
count data, DESeq [16]/DESeq2 [17]. The methods for
harmonization include distance-weighted discrimination
(DWD) [18, 19], cross-platform normalization (XPN)
[20, 21], Quantile Discretization (QD) [22], Normalized
Discretization (NorDi) [22], DisTran (Distribution
Transformation) [23], Gene Quantiles (GQ) [24], and
platform-independent latent Dirichlet allocation (PLIDA)
[25]. In a fundamental survey of different harmonization
techniques [20] the XPN method showed the best per-
formance. The harmonization acts by deeply restructuring
distributions of gene expression levels for the samples
under comparison. As a rule, harmonization algorithms
use data clustering to identify similarities between the
gene expression profiles obtained using different experi-
mental platforms, and then increase these similarity
regions during subsequent reshaping of the expression
profiles.
However, to our knowledge all previously published

harmonization methods have a substantial limitation
that they are capable of performing harmonization for
only two expression datasets [20]. Thus, only the data
from two experimental platforms can be simultaneously
harmonized. Moreover, the resulting hybrid data are not
further compatible with any of the existing formats for
the experimental platforms. Moreover, the published
methods show good performance only for the datasets
of a comparable sample size, therefore complicating
harmonization of the existing data.
Here, we present a new method for cross-platform

data harmonization termed Shambhala that may be
considered a more universal tool compared to the exist-
ing approaches. Unlike previous harmonizers, Shamb-
hala is independent on (i) number of harmonized
datasets and/or experimental platforms, and (ii) num-
ber of samples in every dataset. The Shambhala
harmonization protocol includes several specific fea-
tures such as the auxiliary calibration dataset that
helps to initially transform the data, and the reference
definitive dataset that defines the universal shape of the
output harmonized gene expression profile. Next, we
investigated the performance of Shambhala to
harmonize the gene expression data from multiple ex-
perimental platforms obtained from the Microarray
Quality Control (MAQC) [26] and Sequencing Quality
Control (SEQC) datasets [27]. Our data evidence that
being currently a unique tool for harmonization of mul-
tiple datasets, Shambhala provides outputs reflecting
biological origin of a biosample rather than the experi-
mental platform used. In contrast, other harmonization

tools are not applicable to this type of tasks in
principle, and the normalization tools such as QN and
DESeq/DESeq2, return low-quality platform-biased
outputs.

Results
Shambhala method rationale
We developed Shambhala method for cross-platform
comparisons of multiple datasets. In its present form, the
method was tailored for the comparison of human gene
expression data, and its application for other organism
data requires further specific data search. Let us look at
the problem of cross-platform harmonization in more de-
tail. Imagine an arbitrary set of experimental platforms
that has produced a set gene expression profiles. Our goal
is to make them all comparable. To do so, we may make
them similar to a pre-defined reference. This reference
may be taken from a set of profiles that has been obtained
at a widely used experimental platform; we can term this
set the reference definitive dataset (Q). The process of
profile transformation involves multiple iteration steps,
when the dataset P, which contains profiles under
harmonization, is altered, whereas the dataset Q remains
unchanged. Consequently, the output of such transform
has gene expression profiles like those obtained using the
same experimental platform, as for the dataset Q.
To ensure comparable harmonization results for the

datasets of different size, we developed the following
procedure. The profiles from different platforms are
sometimes completely different, and to make the gene
expression distribution comparable for each profile be-
fore transformation into the Q-shape, we should equalize
it using another pre-defined dataset called auxiliary cali-
bration dataset (P0). In other words, it means that each
individual gene expression profile under harmonization,
say i, is transformed into the Q-shape not within the ori-
ginal dataset of unharmonized profiles from certain ex-
perimental platform, but rather being taken alone, and
then merged with P0. Namely, we quantile-normalize
[13] profile i with the dataset P0, which produces the
dataset P for further transformation. This dataset P is
then transformed into the shape of the dataset Q, thus
producing the dataset P1. From this dataset P1, only the
transformed single profile i is taken for further analysis.
This procedure is then applied to all other gene expres-
sion profiles which need to be harmonized (Fig. 1).
Some features of this pipeline, which are used for

transformation of dataset P into the shape of the dataset
Q, were inspired by the XPN method [21] that showed
the best performance among the pairwise cross-platform
harmonization techniques [20]. Such features include
stochastic clustering for gene and samples using genetic
algorithms, and partially-linear iterative harmonization
of two datasets. However, the major distinctions here are
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that (i) in the Shambhala algorithm, the dataset P
changes, while Q remains constant during the iteration
steps, whereas in the XPN both are transformed iteratively;
(ii) to increase stability of the results, Shambhala uses
spherical (cosine-based) [28, 29] rather than barycentric
(as in the XPN) clustering of samples in P and Q datasets.
Importantly, the Shambhala pipeline depends on two

datasets, P0 and Q, the latter acting as the reference for
gene expression profiles after harmonization, and the
former serving for preliminary calibration of expression
level ranges. As the dataset Q for this application, we used
the mRNA expression profiles taken from the Genotype
Tissue Expression (GTEx) project [30], namely one hun-
dred samples corresponding to ten normal human tissue
types (brain, nerve, skin, adipose, muscle, heart, lung, thy-
roid, blood vessels and blood). Among the others, the
GTEx comprised profiling using microarray platform
Affymetrix Human Gene 1.1 ST (GPL16977; deposited
under accession number GSE45878) and NGS platform
Illumina HiSeq 2000 (accession number E-MTAB-5214).
We selected the microarray GTEx results as the Q dataset
because it is frequently considered the golden standard for
microarray hybridization of human tissues [31, 32], while
Affymetrix microarray-profiled expression data are the
most abundant kind of data in public databases, e.g. in the
Gene Expression Omnibus (GEO) database as for

2018-11-06. To investigate the influence of the definitive
dataset on the performance of Shambhala harmonization,
we also analyzed an alternative Q-set obtained using the
Illumina HiSeq 2000 platform.
When selecting the optimal auxiliary calibration data-

set (P0) for Shambhala implementation, we found that
our previous experimental dataset including 39 human
gene expression profiles obtained using CustomArray
microchip platform (CustomArray, USA) showed the
best performance in clustering tests compared to more
than twenty other datasets of the comparable size (data
not shown). Interestingly, our attempts to use the GTEx
dataset for both P0 and Q, have failed to produce good
sample clustering.

Shambhala method validation and harmonization quality
assessment
To investigate the robustness and quality of Shambhala
approach, we took a model of gene expression profiles
obtained for the same biosamples using different experi-
mental platforms.
We used published gene expression data from the

Microarray Quality Control [26]; GEO accession number
GSE5350) and Sequencing Quality Control, SEQC [27];
GSE47792 and GSE56457) projects (Table 1). Both
MAQC and SEQC projects investigated compatibilities

Fig. 1 Schematic representation of Shambhala pipeline for harmonization of gene expression data. Various profiles from samples (1… N) obtained
at different platforms are taken one-by-one, merged with an auxiliary calibration dataset P0 and then quantile-normalized with it. This produces the
dataset P, which is then transformed into the shape of the definitive dataset Q; during transformation, only the dataset P changes, while Q remains
constant. The result of such a conversion, dataset P1, contains the transformed profile for sample i, which is considered harmonized. Profiles from all
other samples (1,…,N) are harmonized one-by-one using the same algorithm
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of gene expression profiles obtained using various
microarray and sequencing platforms for the same set of
four sample types (named A, B, C, D), each done in mul-
tiple replicates. Type A samples were the commercially
available Stratagene Universal Human Reference RNA
specimens for all but brain human tissues; type B sam-
ples – also commercially available the Ambion Human
Brain Reference RNA. Type C and D samples were the
mixtures of A and B with the A:B ratios of 3:1 and 1:3,
respectively. Type C sample, therefore, was biologically
closer to the sample A, and type D – to the sample B.
The MAQC project investigated the expression profiles

for 14–15 technical replicates of all sample types, A to D,
for the most popular microarray platforms, including
Agilent-012391 Whole Human Genome Oligo Microarray
G4112A (GPL1708), Affymetrix Human Genome U133 Plus
2.0 Array (GPL570) and Illumina Sentrix Human-6 Expres-
sion Beadchip (GPL2507). In the SEQC project, the micro-
array expression profiles for the same biosamples were
compared with the RNA sequencing data obtained using
Illumina HiSeq 2000 platform (GPL11154), see Table 1.
To assess quality of data harmonization, we tested

whether hierarchical clustering of the harmonized
genes expression profiles will be biologically meaning-
ful or rather dependent on the experimental platforms
used. For the clustering, Euclidean distance was used
as a metric of proximity. An ideal method for data
harmonization would allow grouping of output ex-
pression profiles according to the type of biosamples
(A to D), but not according to a platform used. Simi-
lar types of biosamples (type A and C, and type B
and D) were expected to show more tight clustering.
In contrast, the platform-based clustering independent
on the biological similarities of biosamples could be
considered bad result.
To test Shambhala, we took data from three experi-

mental platforms for MAQC dataset and from four plat-
forms for SEQC. All gene expression profiles were
harmonized using three alternative methods:

1) Quantile normalization, QN [13].

2) Differential expression analysis for sequence count data,
DESeq [16]/DESeq2 [17] using the estimateSizeFactors
module. To make the microarray data formally suitable
for DESeq/DESeq2 normalization, we took an integer
part of all microarray-measured expression level values
for each gene and each sample. The intensity values for
microarray-measured signal were taken as they were
deposited in GEO repository, i.e. after device-dependent
primary background correction or equilibration but
before any cross-platform transformation or
harmonization. Although the DESeq/DESeq2 method
was designed for normalization of NGS data and
assumes that the count data follow a negative binomial
distribution, there were several examples when
DESeq/DESeq2 was formally applied to rounded
microarray data, both in model investigations based
on microarray profiles [34] and for processing human
patient’s data [35, 36]. Moreover, having applied the
negative binomial regression followed by the Pearson
chi-squared test, we found that although the MAQC
microarray gene expression values were not
distributed according to negative binomial law
(particularly for the Illumina GPL2507 and Agilent
GPL1708 platforms; Fig. 2a), the SEQC microarray
profiles (platforms Illumina GPL10558, as well as
Affymetrix GPL17930 and GPL16043) matched the
negative binomial distribution (Fig. 2b).

3) Shambhala harmonization with two different GTEx
definitive datasets (obtained using either microarray
Affymetrix or NGS Illumina HiSeq 2000 platforms).
Shambhala method was compared with other above
normalization techniques (QN, DESeq/DESeq2)
because they are popular tools used for merging
data from multiple datasets. The standard harmonization
methods such as XPN [20, 21] are not applicable
because they enable comparisons of only up to
two datasets.

Performance test for three-platform data harmonization
We tested Shambhala, QN and DESeq/DESeq2 methods
for their abilities to simultaneously harmonize data from

Table 1 MAQC and SEQC project data used for Shambhala validation

Project GEO reference Platform name Platform GEO ID Number of samples

MAQC GSE5350 Agilent-012391 Whole Human Genome Oligo Microarray G4112A () GPL1708 59

MAQC GSE5350 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 59

MAQC GSE5350 Illumina Sentrix Human-6 Expression Beadchip GPL2507 59

SEQC GSE47792 Illumina HiSeq 2000 GPL11154 1324

SEQC GSE56457 Illumina HumanHT-12 V4.0 expression beadchip GPL10558 24

SEQC GSE56457 Affymetrix Human Gene 2.0 ST Array GPL17930 16

SEQC GSE56457 Affymetrix GeneChip® PrimeView™ Human Gene Expression Array GPL16043 16
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three experimental microarray platforms (Affymetrix
GPL570, Agilent GPL1708 and Illumina GPL2507) from
the MAQC project.
The results (Fig. 3) suggest that the clustering following

QN (Fig. 3a) and DESeq/DESeq2 (Fig. 3b) both occur on a
platform-specific basis that ignores the biological nature
of biosamples under comparison. All the expression
profiles are clustered into the three major groups specific
only to the microarray platforms used (shown by cyan,
yellow and black markers on the figure). In contrast, fol-
lowing Shambhala harmonization with Affymetrix defini-
tive dataset (Fig. 3c) we observed sample type-specific
clustering where the biologically similar samples A + C
and B +D formed clear-cut separate clusters. Shambhala
harmonization with HiSeq 2000 definitive dataset
produced results of an intermediate quality between
Shambhala with Afftmetrix Q-set and QN/DESeq2
normalization (Fig. 3d). However, neither algorithm could
correctly distinguish between the samples A and C or B
and D, which is the obvious limitation of our approach.

Performance test for four-platform data harmonization
We next compared the abilities of Shambhala, QN and
DESeq/DESeq2 methods to harmonize the data obtained
using four experimental platforms. To this end we took the
gene expression profiles from the Sequencing Quality
Control (SEQC) project [33], Table 1. In this case, we har-
monized data obtained for three microarray platforms and
one RNA sequencing platforms, Illumina HumanHT-12
V4.0 (GPL10558), Affymetrix Human Gene 2.0 ST
(GPL17930), Affymetrix GeneChip PrimeView (GPL16043),
and Illumina HiSeq 2000 (GPL11154), respectively. For
RNA sequencing data, we applied filtering to remove pro-
files with low, and, therefore, unreliably measured, numbers
of mapped reads (Additional file 1). Following filtering, we
identified for further comparisons 5486 reliable genes out
of the initial set of 17,567 genes.

The results obtained (Fig. 4) suggest that as in the pre-
vious case, the QN and DESeq/DESeq2 methods provide
purely platform-specific outputs ignoring the biological
composition of biosamples tested (Fig. 4a and b, respect-
ively; platforms indicated by the lower marker), thus giv-
ing four major clusters specific to the above
experimental platforms.
However, the Shambhala algorithm outputs with micro-

array Affymetrix Q-dataset (Fig. 4c) again supported bio-
logical type-specific clustering for most of the samples,
irrespective of their experimental microarray or sequen-
cing platform. Again, the performance of Shambhala with
Illumina HiSeq 2000 Q-dataset (Fig. 4d) was better than
QN and DESeq/DESeq2 but worse than for the Affyme-
trix Q-dataset. To our knowledge, this was the first study
when the microarray and RNA sequencing data were suc-
cessfully harmonized. However, as before, the biologically
similar A + C and B +D sample types were merged on the
dendrogram, which most probably stresses natural limita-
tions of the Shambhala harmonization tool (Fig. 4c).
In should be mentioned that for all the platforms in-

vestigated, Shambhala tool produced uniformly shaped
and similarly distributed gene expression density profiles
(Fig. 5), thus confirming its ability to standardize various
types of experimental outputs; note the initial distribu-
tion profiles were highly different among the experimen-
tal platforms.

Discussion
Although attempts to develop universal cross-platform
transcriptome harmonization technique are known for
more than a decade, the acceptable performance was
shown before only for harmonization of up to two expres-
sion datasets [20, 21]. In this study, we developed a new
method termed Shambhala suitable for the universal,
platform-agnostic harmonization. Unlike previous tech-
niques, Shambhala enables simultaneous harmonization

Fig. 2 Pearson chi squared test p-value for gene expression levels. The null hypothesis was that gene expression level do not match the negative
binomial law. The optimal parameters for negative binomial distribution for every gene were first assessed using the glm.nb R function, and then
the applicability of negative binomial law was checked using the chisq.test function. Panel a: MAQC data (platforms Agilent GPL1708, Affymetrix
GPL570, Illumina GPL3507). Panel b: SEQC data (platforms Illumina HiSeq 2000 GPL11154, microarray platforms Illumina GPL10558, Affymetrix
GPL17930 and GPL16043)
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of multiple gene expression datasets, with the standard-
ized uniformly shaped gene expression output. We used
the rationale of transforming the experimental expression
profiles into the shape of a pre-selected known gene
expression platform. Transformation of different sample
profiles into the standard definitive form is done for
all profiles independently upon other profiles under
harmonization. Another distinguishing feature of
Shambhala protocol is that any single profile cannot
be transformed alone into the definitive shape. In-
stead, it should be reshaped into to the Q-form
within an auxiliary calibration dataset (P0-dataset).
In this study, we tried two sets of expression profiles

(obtained using microarray Affymetrix and Illumina HiSeq
2000 platforms) from the GTEx project [30] as the refer-
ence definitive dataset, and the MAQC [26] and SEQC
[27] datasets for validation of Shambhala algorithm. The

latter two datasets were selected because they contain
gene expression data for the same four types of biosam-
ples profiled using different experimental platforms.
The criteria for selecting the auxiliary calibration data-

set (P0-dataset) were to provide the best merging of
biologically relevant profiles after harmonization. During
the training stage, we selected the P0-dataset, which
could ensure the good-quality harmonization of the
MAQC dataset, namely for the profiles obtained using
the Affymetrix and Agilent microarray platforms. Im-
portantly, we did not observe good clustering quality
when trying the same GTEx dataset as both P0 and Q,
so we had to select another dataset (originated from the
CustomArray platfrom) as P0.
We validated Shambhala performance for three experi-

mental platforms from the MAQC and four – from the
SEQC dataset. In the latter case, three microarray

Fig. 3 Hierarchical clustering at the level of individual gene expression for MAQC project data. Panel a – results following quantile normalization
(QN); b – DESeq/DESeq2; c – Shambhala with Affymetrix microarray Q-dataset; d – Shambhala with Illumina HiSeq 2000 Q-dataset. Panel e – legend
explaining origin of biosamples A, B, C, D and experimental platform in the project. More detailed view of the dendrograms is given in Additional file 5
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platforms were merged with one RNA sequencing
platform. Shambhala could effectively convert the
transcriptomes from multiple platforms, into a stand-
ard uniformly shaped form (Fig. 5). In both cases,
we showed that Shambhala method significantly out-
performed the existing agnostic multi-platform
normalization tools, QN [13] and DESeq/DESeq2
[16, 17]. Unlike the other methods, Shambhala could
allocate biological sample type-specific clustering of
the expression profiles, even for the comparison of
microarray versus RNA sequencing data. The highly
similar biosamples A and C could be efficiently

distinguished from biosamples B and D, also highly
similar. Type C and D samples were the mixtures of
A and B. Type A, therefore, was 100% A, type B –
100% B, type C – 75% A and 25% B, type D – 25%
A and 75% B. However, in neither trial could the al-
gorithm distinguish between the A vs C, or B vs D
biosamples. Nevertheless, the method may afford
simultaneous harmonization of any number of tran-
scriptomes obtained using any number of experimen-
tal platforms; the method’s quantitative performance
is only limited by the capacity of a hardware used
and/or calculation facilities.

Fig. 4 Hierarchical clustering at the level of individual gene expression for SEQC project data. Panel a – results following quantile normalization
(QN); b – DESeq/DESeq2; c – Shambhala with Affymetrix microarray Q-dataset; d – Shambhala with Illumina HiSeq 2000 Q-dataset. Panel e – legend
explaining origin of biosamples A, B, C, D and experimental platform in the project. To facilitate the visual analysis of the hierarchical clustering
dendrogram, we selected randomly only 20 profiles out of 1324 that were obtained using the Illumina HiSeq 2000 (GPL11154) platform. More detailed
view of the dendrograms is given in Additional file 6
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The Shambhala performance with the NGS reference
definitive dataset appeared better than for QN or DESeq2
normalization, but somewhat worse than for Shambhala
with microarray Affymetrix reference dataset.
In the present form Shambhala data harmonizer tool was

implemented only for the human gene expression data,
with the species-specificity being dependent on the refer-
ence definitive and auxiliary calibration datasets. Its further
adaptation to other organisms is a technical task that would
require a representative sampling of gene expression data
to complete good quality P0 and Q datasets.
Finally, we suggest that the Shambhala approach, or its

further modifications, can be a perspective candidate for a
massive platform-agnostic harmonization technique enab-
ling direct comparisons of the data accumulated in differ-
ent laboratories using different equipment and reagents.

Conclusion
We presented here a new approach, termed Shambhala,
to universal harmonization of gene expression profiles
obtained using multiple experimental platforms, for both
microarray hybridization and RNA sequencing methods.
In this application, Shambhala algorithm was tuned and
applied for the comparisons of human gene expression
profiles. During harmonization, every single gene expres-
sion profile is transformed into the definitive shape using
the reference gene expression dataset. We showed that
unlike any previous methods, Shambhala may enable

biologically meaningful harmonization of gene expression
data obtained using three or four experimental platforms.

Methods
Shambhala harmonizer implementation
The code for Shambhala was written as further modifica-
tion and upgrade of the R package CONOR [20]. The
whole code was arranged as the R package HARMONY.
This package, as well as a code example for Shambhala ap-
plication are deposited at Github, https://github.com/onco-
box-admin/harmony.
The cluster dendrograms were built using R package

dendextend. The reliability of hierarchical clustering was
assessed with the bootstrap procedure using the R pack-
age pvclust.

Additional files

Additional file 1: Description and validation of the reliability filter for
the results of NGS gene expression profiling (DOCX 204 kb)

Additional file 2: Definitive (Q) and auxiliary calibration (P0) datasets for
the Shambhala method. (XLSX 42198 kb)

Additional file 3: Harmonized MAQC gene expression profiles.
(XLSX 45943 kb)

Additional file 4: Harmonized SEQC gene expression profiles.
(XLSX 219245 kb)

Additional file 5: A detailed view of hierarchical clustering for gene
expression levels for MAQC project data after application different
harmonization methods. (PPTX 857 kb)

Fig. 5 Averaged expression profile for samples of type A before (upper row, panels a to d) and after (lower row, panels e to h) the Shambhala
harmonization. The profiles were obtained using the platforms Illumina HiSeq 2000, GPL11154 (panels a and e), Illumina HumanHT-12 V4.0 expression
beadchip, GPL10558 (b and f), Affymetrix Human Gene 2.0 ST Array, GPL17930 (c and g), and Affymetrix GeneChip PrimeView Human Gene Expression
Array, GPL16043 (d and h)
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Additional file 6: A detailed view of hierarchical clustering for gene
expression levels for SEQC project data after application different
harmonization methods. (PPTX 647 kb)
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