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Abstract

Background: The analysis of single-cell RNA sequencing (scRNAseq) data plays an important role in understanding
the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area
is the detection of differentially expressed (DE) genes. scRNAseq data, however, are highly heterogeneous and have
a large number of zero counts, which introduces challenges in detecting DE genes. Addressing these challenges
requires employing new approaches beyond the conventional ones, which are based on a nonzero difference in
average expression. Several methods have been developed for differential gene expression analysis of scRNAseq
data. To provide guidance on choosing an appropriate tool or developing a new one, it is necessary to evaluate
and compare the performance of differential gene expression analysis methods for scRNAseq data.

Results: In this study, we conducted a comprehensive evaluation of the performance of eleven differential gene
expression analysis software tools, which are designed for scRNAseq data or can be applied to them. We used
simulated and real data to evaluate the accuracy and precision of detection. Using simulated data, we investigated
the effect of sample size on the detection accuracy of the tools. Using real data, we examined the agreement among
the tools in identifying DE genes, the run time of the tools, and the biological relevance of the detected DE genes.

Conclusions: In general, agreement among the tools in calling DE genes is not high. There is a trade-off
between true-positive rates and the precision of calling DE genes. Methods with higher true positive rates
tend to show low precision due to their introducing false positives, whereas methods with high precision
show low true positive rates due to identifying few DE genes. We observed that current methods designed
for scRNAseq data do not tend to show better performance compared to methods designed for bulk RNAseq
data. Data multimodality and abundance of zero read counts are the main characteristics of scRNAseq data,
which play important roles in the performance of differential gene expression analysis methods and need to
be considered in terms of the development of new methods.
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Background
Next generation sequencing (NGS) [1] technologies
greatly promote research in genome-wide mRNA ex-
pression data. Compared with microarray technologies,
NGS provides higher resolution data and more precise
measurement of levels of transcripts for studying gene
expression. Through downstream analysis of RNA se-
quencing (RNAseq) data, gene expression levels reveal

the variability between different samples. Typically, in
RNAseq data analysis, the expression value of a gene
from one sample represents the mean of all expression
values of the bulk population of cells. Although it is
common to use expression values on such a bulk scale
in certain situations [2–4], it is not sufficient to employ
bulk RNAseq data for other biological research that in-
volves, for example, studying circulating tumor cells [5]
and stem cells. Consequently, analyzing gene expression
values on the single-cell scale provides deep insight into
the interplay between intrinsic cellular processes and
stochastic gene expression in biological and biomedical
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research [6–9]. For example, single-cell data analysis is
important in cancer studies, as differential gene expres-
sion analysis between different cells can help to uncover
driver genes [10].
Tools developed for differential gene expression ana-

lysis on bulk RNAseq data, such as DESeq [11] and
edgeR [12], can be applied to single-cell data [11–20].
Single-cell RNAseq (scRNAseq) data, however, have dif-
ferent characteristics from those of bulk RNAseq data
that require the use of a new differential expression ana-
lysis definition, beyond the conventional definition of a
nonzero difference in average expression. In scRNAseq
data, due to the tiny number and low capture efficiency
of RNA molecules in single cells [6], many transcripts
tend to be missed during the reverse transcription. As a
result, we may observe that some transcripts are highly
expressed in one cell but are missed in another cell. This
phenomenon is defined as a “drop-out” event [21]. Re-
cent studies have shown that gene expression in a single

cell is a stochastic process and that gene expression
values in different cells are heterogeneous [22, 23],
which results in multimodality in expression values in
different cells. For example, cells from the same brain
tissue or the same tumor [24] pose huge heterogeneity
from cell to cell [24–28]. Even though they are from the
same tissue, these cells are different in regard to cell
types, biological functions, and response to drugs.
Therefore, unlike bulk RNAseq data, scRNAseq data
tend to exhibit an abundance of zero counts, a compli-
cated distribution, and huge heterogeneity. Examples of
distributions of scRNAseq expression values between
two conditions are shown in Fig. 1. Consequently, the
heterogeneity within and between cell populations mani-
fests major challenges to the differential gene expression
analysis in scRNAseq data.
To address the challenges of multimodal expression

values and/or drop-out events, new strategies and
models [21, 29–37] have been proposed for scRNAseq

Fig. 1 Distributions of gene expression values of total 92 cells in two groups (ES and MEF) using real data show that scRNAseq data exhibit a
different types of multimodality (DU, DP, DM, and DB) and b large amounts of zero counts. X axis represents log-transformed expression values.
To clearly show the multimodality of scRNAseq data, zero counts are removed from the distribution plots in (a)
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data. Single-cell differential expression (SCDE) [21] and
model-based analysis of single-cell transcriptomics
(MAST) [29] use a two-part joint model to address zero
counts; one part corresponds to the normal observed
genes, and the other corresponds to the drop-out events.
Monocle2 [38] is updated from the previous Monocle
[32] and employs census counts rather than normalized
transcript counts as input to better normalize the counts
and eliminate variability in single-cell experiments. A re-
cent approach, termed scDD [39], considers four different
modality situations for gene expression value distributions
within and across biological conditions. DEsingle employs
a zero-inflated negative binomial (ZINB) regression model
to estimate the proportion of the real and drop-out zeros
and classifies the differentially expressed (DE) genes into
three categories. Recently, nonparametric methods,
SigEMD [37], EMDomics [31], and D3E [33], have been
proposed for differential gene expression analysis of
heterogeneous data. Without modeling the distribu-
tions of gene expression values and estimating their
parameters, these methods identify DE genes by
employing a distance metric between the distributions
of genes in two conditions.
A few studies have compared differential expression

analysis methods for scRNAseq data. Jaakkola et al. [40]
compared five statistical analysis methods for scRNAseq
data, three of which are for bulk RNAseq data analysis.
Miao et al. [41] evaluated 14 differential expression ana-
lysis tools, three of which are newly developed for
scRNAseq data and 11 of which are old methods for
bulk RNAseq data. A recent comparison study [42]
assessed six differential expression analysis tools, four of
which were developed for scRNAseq and two of which
were designed for bulk RNAseq. In this study, we con-
sider all differential gene expression analysis tools that
have been developed for scRNAseq data as of October
2018 (SCDE [21], MAST [29], scDD [39], D3E [33],
Monocle2 [38], SINCERA [34], DEsingle [36], and
SigEMD [37]). We also consider differential gene expres-
sion analysis tools that are designed for heterogeneous
expression data (EMDomics [31]) and are commonly
used for bulk RNAseq data (edgeR [4], DESeq2 [43]).
The goal of this study is to reveal the limitations of the

current tools and to provide insight and guidance in re-
gard to choosing a tool or developing a new one. In this
work, we discuss the computational methods used by
these tools and comprehensively evaluate and compare
the performance of the tools in terms of sensitivity, false
discover rate, and precision. We use both simulated and
real data to evaluate the performance of the above-noted
tools. To generate more realistic simulated data, we
model both multimodality and drop-out events in simu-
lated data. Using gold standard DE genes in both
simulated and real data, we evaluate the accuracy of

detecting true DE genes. In addition, we investigate the
agreement among the methods in identifying signifi-
cantly DE genes. We also evaluate the effect of sample
size on the performance of the tools, using simulated
data, and compare the runtimes of the tools, using real
data. Finally, we perform gene-set enrichment and path-
way analysis to evaluate the biological functional rele-
vance of the DE genes identified by each tool.

Methods
As of October 2018, we have identified eight software
tools for differential expression analysis of scRNAseq
data, which are designed specifically for such data [21,
29, 30, 33, 34, 36–38] (SCDE, MAST, scDD, D3E, Mon-
ocle2, SINCERA, DEsingle, and SigEMD). We also con-
sidered tools designed for bulk RNAseq data that are
widely used [4, 43] (edgeR, and DESeq2) or can apply to
multimodal data [31] (EMDomics). The general charac-
teristics of the eleven tools are provided in Table 1.
MAST, scDD, EMDomics, Monocle2, SINCERA, and
SigEMD use normalized TPM/FPKM expression values
as input, while SCDE, D3E, and DEsingle use read
counts obtained from RSEM as input. D3E runs on Py-
thon, while all other methods are developed as an R
package. In the following sections, we provide the details
of the tools.

Differential gene expression analysis methods for
scRNAseq data
Single-cell differential expression (SCDE)
SCDE [21] utilizes a mixture probabilistic model for
gene expression values. The observed read counts of
genes are modeled as a mixture of drop-out events by a
Poisson distribution and amplification components by a
negative binomial (NB) distribution:

rc � NB eð Þ for normal amplified genes
rc � Possion λ0ð Þ for drop−out genes

�
;

where e is the expected expression value in cells when
the gene is amplified, and λ0 is always set to 0.1. The
posterior probability of a gene expressed at level x in cell
c based on observed rc and the fitted model Ωc is calcu-
lated by:

p xjrc;Ωcð Þ ¼ pd xð ÞpPossion xjrcð Þ þ 1−pd xð Þð ÞpNB xjrcð Þ;

where pd is the probability of a drop-out event in cell c
for a gene expressed at an average level x, and ppoisson(x|
rc) and pNB(x|rc) are the probabilities of observing ex-
pression value rc in the cases of drop-out (Poisson) and
successful amplification (NB) of a gene expressed at level
x in cell c, respectively. Then, after the bootstrap step,
the posterior probability of a gene expressed at level x in
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a subpopulation of cells S is determined as an expected
value:

ps xð Þ ¼ E
Y

c∈B
p xjrc;Ωcð Þ

h i
;

where B is the bootstrap samples of S. Based on the pos-
terior probabilities of gene expression values in cells S
and G, pS(x) and pG(x), SCDE uses a fold expression dif-
ference f in gene g for the differential expression analysis
between subgroups S and G, which is determined as:

p fð Þ ¼
X

x∈X
pS xð ÞpG xð Þ;

where X is the expression range of the gene g. An empir-
ical p-value is determined to test the differential
expression.

Model-based analysis of single-cell transcriptomics (MAST)
MAST [29] proposes a two-part generalized linear
model for differential expression analysis of scRNAseq
data. One part models the rate of expression level, using
logistic regression:

logit p Zig ¼ 1
� �� � ¼ Xiβ

D
g ;

where Z = [Zig] indicates whether gene g is expressed in
cell i.
The other part models the positive expression mean,

using a Gaussian linear model:

p Y ig ¼ yjZig ¼ 1
� � ¼ N Xiβ

C
g ; σ

2
g

� �
;

where Y = [yig] is the expression level of gene g in cell i
observed Zig = 1. The cellular detection rate (CDR) for
each cell, defined as CDRi = (1/N)∑g = 1Zig (N is the total
number of genes), is introduced as a column in the de-
sign matrix Xi of the logistic regression model and the
Gaussian linear model. For the differential expression
analysis, a test with asymptotic chi-square null distribu-
tion is utilized, and a false discovery rate (FDR) adjust-
ment control [44] is used to decide whether a gene is
differentially expressed.

Bayesian modeling framework (scDD)
scDD [39] employs a Bayesian modeling framework to
identify genes with differential distributions and to clas-
sify them into four situations: 1—differential unimodal
(DU), 2—differential modality (DM), 3—differential pro-
portion (DP), and 4—both DM and DU (DB), as shown
in Additional file 1: Figure S1. The DU situation is one
in which each distribution is unimodal but the distribu-
tions across the two conditions have different means.
The DP situation involves genes with expression values
that are bimodally distributed. The bimodal distribution
of gene expression values in each condition has two
modes with different proportions, but the two modes
across the two conditions are the same. DM and DB sit-
uations both include genes whose expression values

Table 1 Software tools for identifying DE genes using scRNAseq data

Tool Prog.
Language

Input format Model Year/ version URL

SCDE R Read counts Poisson and negative binomial
model

2014/2.2.0 http://bioconductor.org/packages/release/bioc/html/
scde.html

MAST R TPM/FPKM Generalized linear model 2015/1.0.5 http://bioconductor.org/packages/release/bioc/html/
MAST.html

scDD R TPM/FPKM Conjugate Dirichlet process mixture 2016/0.99.0 http://bioconductor.org/packages/devel/bioc/html/
scDD.html

EMDomics R TPM/FPKM Non-parametric earth mover’s
distance

2016/2.4.0 https://www.bioconductor.org/packages/release/
bioc/html/EMDomics.html

D3E Python Read counts Cramér-von Mises test, Kolmogorov-
Smirnov test, likelihood ratio test

2016/ https://github.com/hemberg-lab/D3E

Monocle2 R TPM/FPKM Generalized additive model 2014/2.2.0 http://bioconductor.org/packages/release/bioc/html/
monocle.html

SINCERA R TPM/FPKM/Read
counts

Welch’s t-test and Wilcoxon rank sum
test

2015/ https://research.cchmc.org/pbge/sincera.html

edgeR R Read counts Negative binomial model, Exact test 2010/3.16.5 http://bioconductor.org/packages/release/bioc/html/
edgeR.html

DESeq2 R Read counts Negative binomial model, Exact test 2014/1.14.1 http://bioconductor.org/packages/release/bioc/html/
DESeq2.html

DEsingle R Read counts Zero inflated negative binomial 2018/1.2.0 https://bioconductor.org/packages/release/bioc/
html/DEsingle.html

SigEMD R TPM/FPKM Non-parametric earth mover’s
distance

2018/0.21.1 https://github.com/NabaviLab/SigEMD
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follow a unimodal distribution in one condition but a bi-
modal distribution in the other condition. The difference
is that, in the DM situation, one of the modes of the bi-
modal distribution is equal to the mode of the unimodal
distribution, whereas in the DB situation, there is no
common mode across the two distributions.
Let Yg be the expression value of gene g in a collection

of cells. The non-zero expression values of gene g are
modeled as a conjugate Dirichlet process mixture
(DPM) model of normals, and the zero expression values
of gene g are modeled using logistic regression as a sep-
arate distributional component:

nonzero Y g � conjugate DPM of normals
zero Y g � logistic regression

�

For detecting the DE genes, a Bayes factor for gene g
is determined as:

BFg ¼
f Y g jMDD
� �
f Y g jMED
� � ;

where f(Yg|MDD) is the predictive distribution of the ob-
served expression value from gene g under a given hy-
pothesis, MDD denotes the differential distribution
hypothesis, and MED denotes the equivalent distribution
hypothesis that ignores conditions. As there is no solu-
tion for the Bayes factor BFg, a closed form is calculated
to present the evidence of whether a gene is differen-
tially expressed:

Scoreg ¼ log
f Y g ;Zg jMDD
� �
f Y g ;Zg jMED
� �

¼ log
f C1 YC1

g ;ZC1
g

� �
f C2Y

C2
g ;ZC2

g

� �
f C1;C2 Y g ;Zg

� � ;

where Zg is the vector of the mean and the variance for
gene g, and C1 and C2 represent the two conditions.

EMDomics
EMDomics [31], a nonparametric method based on Earth
Mover’s Distance (EMD), is proposed to reflect the overall
difference between two normalized distributions by
computing the EMD score for each gene and determining
the estimation of FDRs. Suppose P = {(p1,wp1)
,(p2,wp2)…(pm,wpm)} and Q= {(q1,wq1),(q2,wq2)… (qn,wqn)}
are two signatures, where pi and qj are the centers of each
histogram bin, and wpi and wqj are the weights of each
histogram bin. The COST is defined as the summation of
the multiplication of flow fij and the distance dij:

COST P;Q; Fð Þ ¼
Xm

i¼1

Xn

j¼1
f ijdij;

where dij is the Euclidean distance between pi and qj,
and fij is the amount of weight that need to be moved

between pi and qj. An optimization algorithm is used to
find a flow F = [fij] between pi and qj to minimize the
COST. After that, the EMD score is calculated as the
normalized minimum COST.

EMD P;Qð Þ ¼
Pm

i¼1

Pn
j¼1 f ijdijPm

i¼1

Pn
j¼1 f ij

A q-value, based on the permutations of FDRs, is in-
troduced to describe the significance of the score for
each gene.

Monocle2
Monocle2 [38] is an updated version of Monocle [32], a
computational method used for cell type identification,
differential expression analysis, and cell ordering. Mon-
ocle applies a generalized additive model, which is a gen-
eralized linear method with linear predictors that
depend on some smoothing functions. The model relates
a univariate response variable Y, which belongs to the
exponential family, to some predictor variables, as
follows:

h E Yð Þð Þ ¼ β0 þ f 1 x1ð Þ þ f 2 x2ð Þ þ…þ f m xmð Þ;
where h is the link function, such as identity or log func-
tion, Y is the gene expression level, xi is the predictor
variable that expresses the cell categorical label, and fi is
a nonparametric function, such as cubic splines or some
other smoothing functions. Specifically, the gene expres-
sion level Y is modeled using a Tobit model:

Y ¼ Y � if Y � > λ
λ if Y �≤λ

�
;

where Y* is a latent variable that corresponds to pre-
dictor x, and λ is the detection threshold. For identifying
DE genes, we use an approximate chi-square (χ2) likeli-
hood ratio test.
In Monocle2, a census algorithm is used to estimate

the relative transcript counts, which leads to an im-
provement of the accuracy compared with using the nor-
malized read counts, such as TPM values.

Discrete distributional differential expression (D3E)
D3E [33] consists of four steps: 1—data filtering and
normalization, 2—comparing distributions of gene ex-
pression values for DE genes analysis, 3—fitting a
Poisson-Beta model, and 4—calculating the changes in
parameters between paired samples for each gene. For
the normalization, D3E uses the same algorithm as used
by DESeq2 [11] and filters genes that are not expressed
in any cell. Then, the non-parametric Cramer-von Mises
test or the Kolmogorov-Smirnov test is used to compare
the expression values’ distributions of each gene for
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identifying the DE genes. Alternatively, a parametric
method, the likelihood ratio test, can be utilized after fit-
ting a Poisson-Beta model:

PB njα; β; γ; λð Þ ¼ Poisson nj γx
λ

� �
⋀
x
Beta xjα; βð Þ

¼
γne−

γ
λΓ

α
λ
þ β

λ

� �

λnΓ nþ 1ð ÞΓ α
λ
þ β

λ
þ n

� �
Γ

α
λ

� �Φ
α
λ
;
α
λ
þ β

λ
þ n;

γ
λ

� � ;

where n is the number of transcripts of a particular
gene, α is the rate of promoter activation, β is the rate of
promoter inactivation, γ is the rate of transcription when
the promoter is in the active state, λ is the transcript
degradation rate, and x is the auxiliary variable. The pa-
rameters α, β, and γ can be estimated by moments
matching or Bayesian inference method, but λ should be
known and assumed to be constant.

SINCERA
SINCERA [34] is a computational pipeline for single cell
downstream analysis that enables pre-processing,
normalization, cell type identification, differential ex-
pression analysis, gene signature prediction, and key
transcription factors identification. SINCERA calculates
the p-value for each gene from two groups based on a
statistical test to identify the DE genes. It provides two
methods: one-tailed Welch’s t-test for genes, assuming
they are from two independent normal distributions,
and the Wilcoxon rank sum test for small sample sizes.
Last, the FDRs are adjusted, using the Benjamini and
Hochberg method [44].

edgeR
edgeR [4] is a negative binomial model-based method to
determine DE genes. It uses a weighted trimmed mean
of the log expression ratios to normalize the sequencing
depth and gene length between the samples. Then, the
expression data are used to fit a negative binomial
model, whereby the mean μ and variance ν have a rela-
tionship of ν = μ + αμ2, and α is the dispersion factor.
To estimate the dispersion factor, edgeR combines a
common dispersion across all the genes, estimated by a
likelihood function, and a gene-specific dispersion, esti-
mated by the empirical Bayes method. Last, an exact test
with FDR control is used to determine DE genes.

DESeq2
DESeq2 [43] is an advanced version of DESeq [11],
which is also based on the negative binomial distribu-
tion. Compared with the DESeq, which uses a fixed
normalization factor, the new version of DESeq2 allows
the use of a gene-specific shrinkage estimation for

dispersions. When estimating the dispersion, DESeq2
uses all of the genes with a similar average expression.
The fold-change estimation is also employed to avoid
identifying genes with small average expression values.

DEsingle
DEsingle [36] utilizes a ZINB regression model to esti-
mate the proportion of the real and drop-out zeros in
the observed expression data. The expression values of
each gene in each population of cells are estimated by a
ZINB model. The probability mass function (PMF) of
the ZINB model for read counts of gene g in a group of
cells is:

P Ng ¼ njθ; r; p� � ¼ θ∙I n ¼ 0ð Þ þ 1−θð Þ∙ f NB r; pð Þ
¼ θ∙I n ¼ 0ð Þ þ 1−θð Þ∙ nþ r−1

n

� �
pn 1−pð Þr ;

where θ is the proportion of constant zeros of gene g in
the group of cells, I(n = 0) is an indicator function, fNB is
the PMF of the NB distribution, r is the size parameter
and p is the probability parameter of the NB distribu-
tion. By testing the parameters (θ, r, and p) of two ZINB
models for the two different groups of cells, the method
can classify the DE genes into three categories: 1—differ-
ent expression status (DEs), 2—differential expression
abundance (DEa), and 3—general differential expression
(DEg). DEs represents genes that they show significant
different proportion of cells with real zeros in different
groups (i.e. θs are significantly different) but the expres-
sion of these genes in the remaining cells show no
significance (i.e. r, and p show no significance). DEa rep-
resents genes that they show no significance in the pro-
portion of real zeros, but show significant differential
expression in remaining cells. DEg represents genes that
they not only have significant difference in the propor-
tion of real zeros, but also significantly expressed differ-
entially in the remaining cells.

SigEMD
SigEMD [37] employs logistic regression to identify the
genes that their zero counts significantly affect the distri-
bution of expression values; and employs Lasso regres-
sion to impute the zero counts of the identified genes.
Then, for these identified genes, SigEMD employs EMD,
similar to EMDomics, for differential analysis of expres-
sion values’ distributions including the zero values; while
for the remaining genes, it employs EMD for differential
analysis of expression values’ distributions ignoring the
zero values. The regression model and data imputation
declines the impact of large amounts of zero counts, and
EMD enhances the sensitivity of detecting DE genes
from multimodal scRNAseq data.
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Datasets
In this work, we used both simulated and real data to
evaluate the performance of the differential expression
analysis tools.

Simulated data
As we do not know exactly the true DE genes in real
single-cell data, we used simulated data to compute the
sensitivities and specificities of the eleven methods. Data
heterogeneity (multimodality) and sparsity (large num-
ber of zero counts), which are the main characteristics
of scRNAseq data, are modeled in simulated data. First,
we generated 10 datasets, including simulated read
counts in the form of log-transformed counts, across a
two-condition problem by employing a simulation func-
tion from the scDD package [30] in R programing lan-
guage [45]. For each condition, there were 75 single cells
with 20,000 genes in each cell. Among the total 20,000
genes, 2000 genes were simulated with differential distri-
butions, and 18,000 genes were simulated as non-DE
genes. The 2000 DE genes were equally divided into four
groups, corresponding to the DU, DP, DM, and DB sce-
narios (Additional file 1: Figure S1). Examples of these
four situations from the real data are shown in Fig. 1a.
From the 18,000 non-DE genes, 9000 genes were gener-
ated, using a unimodal NB distribution (EE scenario),
and the other 9000 genes were simulated using a bi-
modal distribution (EP scenario). All of the non-DE
genes had the same mode across the two conditions.
Then, we simulated drop-out events by introducing large
numbers of zero counts. To introduce zero counts, first,
we built the cumulative distribution function (CDF) of
the percentage of zeros of each gene, using the real data,
FX(x). Then, in the simulated data for each gene, we ran-
domly selected c (c~ FX(x)) cells from the total cells for
half of the genes in each scenario and forced their ex-
pression values to zero (10,000 genes in total). Thus, the
CDF of the percentage of zeros of each gene is similar
between the simulated and real data (Additional file 1:
Figure S2). This way, the distribution of the total counts
in the simulated data is more similar to real data, which
enables us to assess the true positives (TPs) and false
positives (FPs) more accurately.

Real data
We used the real scRNAseq dataset provided by Islam et
al. [46] as the positive control dataset to compute TP
rates. The datasets consist of 22,928 genes from 48 mouse
embryonic stem cells and 44 mouse embryonic fibroblasts.
The count matrix is available in the Gene Expression
Omnibus (GEO) database with Accession No. GSE29087.
To assess TPs, we used the already-published top 1000
DE genes that are validated through qRT-PCR experi-
ments [47] as a gold standard gene set [21, 40, 42].

We also used the dataset from Grün et al. [48] as the
negative control dataset to assess FPs. We retrieved 80
pool-and-split samples that were obtained under the
same condition from the GEO database with Accession
No. GSE54695. By employing random sampling from
the 80 samples, we generated 10 datasets to obtain the
statistical characteristics of the results. For each gener-
ated dataset, we randomly selected 40 out of the 80 cells
as one group and considered the remaining 40 cells as
the other group [42]. Because all of the samples are
under the same condition, there should be no DE genes
in these 10 datasets.
In the preprocessing of the real datasets, we filtered

out genes that are not expressed in all cells (zero read
counts across all cells), and we used log-transformed
transcript per millions (TPM) values as the input.

Results
Accuracy of identification of DE genes
Results from simulated data
We used simulated data to compute true sensitivities
and precision of the tools for detecting DE genes. The
receiver operating characteristic (ROC) curves, using the
simulated data, are shown in Fig. 2. As can be seen in
the figure, the tools show comparable areas-under-the--
curve (AUC) values.
The average true positive rates (TPRs, sensitivities),

false positive rates (FPRs), precision, accuracy, and F1
score of the tools under the adjusted p-value of 0.05 are
given in Table 2. We defined TPs as the truly called DE
genes, and FPs as the genes that were called significant
but were not true DE genes. Similarly, true negatives
(TNs) were defined as genes that were not true DE and
were not called significant, and false negatives (FNs)

Fig. 2 ROC curves for the eleven differential gene expression analysis
tools using simulated data
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were defined as genes that were true DE but were not
called significant. We computed TPRs as the number of
TPs over the 2000 ground-truth DE genes, FPRs as the
number of FPs genes over the 18,000 genes that are not
differentially expressed, precision as the number of TPs
over all of the detected DE genes, and accuracy as the
sum of TPs and TNs over all of the 20,000 genes.
As seen in Table 2, Monocle2 identified the greatest

number of true DE genes but also introduced the great-
est number of false DE genes, which results in a low
identification accuracy, at 0.824. The nonparametric
methods, EMDomics and D3E, identified more true DE
genes compared to parametric methods (2465.8 and
1683.4 true DE genes, respectively). They also, however,
introduced many FPs, resulting in lower accuracies (0.91
and 0.929, respectively) than did parametric methods. In
contrast, tools with higher precisions, larger than 0.9
(MAST, SCDE, edgeR, and SINCERA), introduce lower
numbers of FPs but identify lower numbers of TPs.
Interestingly, F1 scores show that DESeq2 and edgeR,
which are designed for traditional bulk RNAseq data, do
not show poor performance compared to the tools that
are designed for scRNAseq data. DEsingle and SigEMD
performed the best in terms of accuracy and F1 score
since they identified high TPs and did not introduce
many FPs.
A bar plot of true detection rates of the eleven tools

under the four scenarios for DE genes (i.e., DU, DM, DP,
and DB) and the two scenarios for non-DE genes (i.e.,
EP and EE), are shown in Fig. 3. As shown in the figure,
all of the methods could achieve a TPR near to or larger
than 0.5 for the DU and DM scenarios, where there is
no multimodality (DU scenario) or the level of multi-
modality is low (DM scenario). For scenarios with a high
level of multimodality (DP and DB), however, some of
the tools, except EMDomics, Monocle2, DESeq2, D3E,

DEsingle, and SigEMD, perform poorly. In the DP sce-
nario, only EMDomics and Monocle2 exhibited TPRs
larger than 0.5, and SCDE fails for this multimodal sce-
nario. Similarly, for the DB scenario, Monocle2, DESeq2,
and DEsingle have a TPR larger than 0.5; however,
MAST and SINCERA completely fail. SigEMD exhibited
a TPR around 0.5 for both DP and DB scenarios. DEsin-
gle performed the best for the DB scenario but exhibited
a low TPR for the DP scenario. We showed the TPRs
and true negative rates, using the simulated data with
and without large numbers of zeros separately in
Additional file 1: Figures S3 and S4. All of the tools have
a better performance for the four scenarios when there
are not large numbers of zero counts. We also showed
the ROC curve for the data with and without large num-
bers of zeros in Additional file 1: Figures S5 and S6.
It is important to notice that, even though simulated

data contain multimodality and zero counts, they cannot
capture the real multimodality and zero count behaviors
of real data. Therefore, as seen in the following, we eval-
uated the detection accuracy of detecting DE genes,
using real data.

Results from positive control real data
We used the positive control real dataset to evaluate the
accuracy of the identification of DE genes. We employed
the validated 1000 genes as a gold standard gene set. We
defined true detected DE genes as DE genes that are
called by the tools and are among the 1000 gold stand-
ard DE genes. The number of detected DE genes and
the number of true detected DE genes over the 1000
gold standard genes (defined as sensitivity) for each tool,
using an FDR or adjusted p-value of 0.05, are given in
Table 3.
The tools can be ranked in three levels based on their

sensitivities: Monocle2, EMDomics, SINCERA, D3E, and

Table 2 Numbers of the detected DE genes, sensitivities, false positive rates, precisions, and accuracies of the nine tools using
simulated data for an adjusted p-value or FDR of 0.05

Number of detected DE genes Sensitivity
( TP
TPþFN)

False positive rate
( FP
FPþTN)

Precision
( TP
TPþFP)

Accuracy
(TPþTN
PþN )

F1 score
( 2TP
2TPþFPþFN)

Monocle2 4664.6 0.785 0.172 0.337 0.824 0.472

EMDomics 2465.8 0.666 0.063 0.540 0.910 0.596

DESeq2 2182.6 0.739 0.039 0.677 0.939 0.707

D3E 1683.4 0.565 0.031 0.671 0.929 0.613

scDD 1155.8 0.505 0.008 0.875 0.943 0.640

MAST 954.4 0.470 0.001 0.986 0.946 0.637

edgeR 1161.2 0.557 0.003 0.959 0.953 0.705

SCDE 842 0.419 0.0003 0.994 0.942 0.590

SINCERA 633.6 0.312 0.001 0.984 0.931 0.474

DEsingle 1448.8 0.697 0.003 0.962 0.967 0.808

SigEMD 1456 0.682 0.005 0.937 0.964 0.790
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DEsingle rank in the first level, with sensitivities more
than 0.7; edgeR, DESeq2, and SigEMD rank in the sec-
ond level, with sensitivities between 0.4 and 0.7; and
SCDE, scDD, and MAST rank in the third level with
sensitivities below 0.4. The methods that show better
sensitivities, however, also called more than 7000 genes
as significantly DE genes. In Fig. 4, the blue bars show
the intersection between the gold standard genes and
the DE genes called by the methods (true detected DE
genes), whereas the yellow bars show the number of sig-
nificantly DE genes that are not among the gold stand-
ard genes.
We need to note that we do not have all of the true

positive DE genes for the positive control dataset. The
1000 gold standard genes are a subset of DE genes from
the dataset that are validated through qRT-PCR experi-
ments [47]. In addition, the datasets that we used in this
study have been generated under similar conditions as

those of the positive control datasets; however, they are
not from the same assay and experiment. Therefore, the
results we present here provide information about sensi-
tivities to some degree.

Results in negative control real data
Because all of the real true DE genes in the positive con-
trol real dataset are unknown, we can test only the TPs,
using the 1000 gold standard genes but not the FPs. To
validate the FPs, we applied the methods to 10 datasets
with two groups, randomly sampled from the negative
control real dataset. Because cells in the two groups are
from the same condition, we expect the methods to not
identify any DE gene. Using an FDR or adjusted p-value
of 0.05, MAST, SCDE, edgeR, and SINCERA did not call
any gene as a DE gene, as we expected, whereas DEsin-
gle, scDD, DESeq2, SigEMD, D3E, EMDomics, and
Monocle2 identified 4, 5, 19, 50, 160, 733, and 917 sig-
nificantly DE genes, respectively, out of 7277 genes in

Fig. 3 True detection rates for different scenarios of DE genes and non-DE genes using simulated data. a true positive rates for DE genes under
DU, DP, DM, DB scenarios b true negative genes for non-DE genes under EP and EE scenarios

Table 3 Number of detected DE genes, and sensitivities of the
eleven tools using positive control real data for an adjusted
p-value or FDR of 0.05

Number of detected
DE genes

Sensitivity (TP/1000
gold standard)

Monocle2 8674 0.765

EMDomics 8437 0.762

DESeq2 7612 0.695

D3E 8401 0.722

scDD 2638 0.351

MAST 734 0.198

edgeR 4447 0.58

SCDE 2414 0.392

SINCERA 8366 0.73

DEsingle 9031 0.797

SigEMD 3702 0.488

Fig. 4 Tools’ total numbers of detected significantly DE genes with
the p-value or FDR threshold of 0.05 and their overlaps with the
1000 gold standard genes
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average over the 10 datasets. The number of detected
DE genes and FPRs are shown in Table 4. EMDomics
and Monocle2, which show the best sensitivities, using
the positive control datasets, introduce the most FPs.

Agreement among the methods in identifying DE genes
In general, agreement among all of the tools is very low.
Considering the top 1000 DE genes detected by the
eleven tools in the positive control real data, there are
only 92 common DE genes across all of the tools. Of
these 92 DE genes, only 41 intersect with the gold stand-
ard 1000 DE genes.
We investigated how much the tools agreed with each

other on identifying DE genes by examining the number
of identified DE genes that were common across a pair
of tools, which we called common DE genes. First, we
ranked genes by their adjusted p-values or FDRs, and
then we selected the top 1000 DE genes. We defined
pairwise agreement as the number of common DE genes
identified by a pair of tools. The numbers of common
DE genes between pairs of tools are between 770 and
1753 for simulated data (Additional file 1: Figure S7),
and 142 and 856 for real data (Fig. 5). We observed that
the methods do not have high pairwise agreement in ei-
ther the simulated data or the real data.
In addition, we used significantly DE genes under a

p-value or FDR threshold of 0.05 to investigate the pair-
wise agreement among the tools. The pairwise agree-
ment varies from 432 to 7934 for the real data (Fig. 6)
and from 444.8 to 1878 for the simulated data (Add-
itional file 1: Figure S8). In the real data, MAST identi-
fied fewer significantly DE genes under the 0.05 cut-off
adjusted p-value, but the majority of its significantly DE
genes overlapped with the significantly DE genes from
other tools.

Effect of sample size
We investigated the effect of sample size on detecting
DE genes in terms of TPR, FPR, precision, and accuracy,
using the simulated data. Precision was defined as TP/
(TP + FP) and accuracy as (TP + TN)/(TP + TN + FP +
FN). We generated eight cases: 10 cells, 30 cells, 50 cells,
75 cells, 100 cells, 200 cells, 300 cells, and 400 cells for
each condition. We noticed that the number of identi-
fied DE genes and the TPRs of detection under a default
FDR or adjusted p-value (< 0.05) tend to increase when
the sample size increases from 10 to 400 (Fig. 7) for all
tools.
The results show that sample size is very important, as

the tools’ precision increases significantly by increasing
the sample size from 10 to 75. The FPRs tend to be steady
when the sample size is > 75, except for DEsingle. DEsin-
gle works well for a large number of zero counts in a lar-
ger dataset. These results also show that Monocle2,
EMDomics, DESeq2, DEsingle, and SigEMD can achieve
TPRs near 100% by increasing the sample size, while the
other methods cannot. Monocle2, EMDomics, DESeq2,
and D3E, however, introduce FPs (FPR > 0.05%), whereas
FPRs for other methods are very low (close to zero). All of
the tools similarly perform poorly for a sample size of <
30. When the sample size exceeded 75 in each condition,
the tools achieved better accuracy in detection.

Enrichment analysis of real data
To examine whether the identified DE genes are mean-
ingful to biological processes, we conducted gene set en-
richment analysis through the “Investigate Gene Sets”
function of the web-based GSEA software tool (http://
www.broadinstitute.org/gsea/msigdb/annotate.js). We in-
vestigated the KEGG GENES database (KEGG; contains
186 gene sets) from the Molecular Signatures Database
(MSigDB) for the gene set enrichment analysis (FDR
threshold of 0.05). We used the same number of identi-
fied DE genes (top n = 300 genes) of each tool as the in-
put for KEGG pathway enrichment analysis. The results
are shown in Table 5. We observed that the 300
top-ranked DE genes identified by nonparametric
methods (EMDomics and D3E) were enriched for more
KEGG pathways compared to other methods. We also
used a box plot to compare the FDRs of the top 10 most
significant gene sets enriched by the top-ranked DE
genes from the tools (Additional file 1: Figure S9). It
can be observed that pathways enriched by the
top-ranked DE genes from edgeR and Monocle2 have
the highest strength. The 10 top-ranked KEGG path-
ways for the eleven tools are listed in Additional file
1: Tables S1 to S11.
We also used DAVID (https://david.ncifcrf.gov/sum-

mary.jsp) for the Gene Ontology Process enrichment
analysis of the 300 top-ranked DE genes identified by

Table 4 Number of the detected DE genes and false positive
rates of the eleven tools using negative control real data for an
adjusted p-value or FDR of 0.05

Number of detected
DE genes

False positive rate
(FP/FP + TN)

Monocle2 917 0.126

EMDomics 733 0.101

DESeq2 19 0.003

D3E 160 0.022

scDD 5 0.0007

MAST 0 0

edgeR 0 0

SCDE 0 0

SINCERA 0 0

DEsingle 4 0.0005

SigEMD 50 0.007
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Fig. 5 Numbers of pairwise common DE genes tested by top 1000 genes in real data

Fig. 6 Numbers of pairwise common DE genes tested by adjusted p-value< 0.05 in real data
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each tool. The numbers of gene ontology (GO) terms
under a cutoff FDR of 0.05 are shown in Table 5. Top
DE genes identified by EMDomics, D3E, Monocle, and
DESeq2 are enriched in more KEGG pathways and/or
GO terms compared to those of other tools.

Finally, although the quantitative values of terms re-
covered from gene set enrichment analysis is inform-
ative with regard to the relative statistical power of
calling biologically meaningful genes of these tools, very
different gene lists can result in very similar quantita-
tive performance values. To perform a qualitative as-
sessment of the biological relevance of the differentially
expressed gene lists recovered by each tool, we ranked
the performance of each tool in recovering stem
cell-relevant GO terms from the 300 top-ranked DE
genes. Each gene list was subjected to gene set enrich-
ment against the Biological Process portion of the Gene
Ontology Process, and all significant enriched terms
were recovered. The results of the Gene Ontology
Process enrichment analysis of the 300 top-ranked DE
genes and the list of the 300 top-ranked genes for each
tool are given in Additional file 2. Significant GO terms
with their negative log transform of their q-values for
each tool are given in Additional file 3. To consolidate
closely related processes recovered in this step, we sub-
jected each list of GO terms to word and phrase signifi-
cance analysis, using world cloud analysis, whereby
negative log transform q-values are considered as
frequencies in this analysis. The phrase significance of

Fig. 7 Effect of sample size (number of cells) on detecting DE genes. The sample size is in horizontal axis, from 10 to 400 cells in each condition.
Effect of sample size on a TPR, b FPR, c accuracy (=(TP + TN)/(TP + FP + TN + FN)), and precision (=TP/(TP + FP)). A threshold of 0.05 is used for
FDR or adjusted p-value

Table 5 Number of KEGG gene sets and GO terms enriched
by the top 300 DE genes identified by each tool under an FDR
threshold of 0.05

Methods KEGG GO Term

EMDomics 53 19

MAST 10 5

D3E 49 10

SCDE 21 9

Monocle2 42 24

SINCERA 39 16

scDD 26 1

DESeq2 39 19

edgeR 39 17

SigEMD 23 15

DEsingle 41 21
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each tool, in the form of word clouds, is shown in
Additional file 1: Figures S10–S20, and the word signifi-
cance, in the form of word clouds, is shown in
Additional file 1: Figures S21–S31. In these plots, the
font size represents the significance of the word/phrase.
This provides a readily interpretable visualization of the
biologically relevant GO terms.
Several stem cell biologists were then asked to rank the

performance of each algorithm in terms of its ability to re-
cover the GO terms most relevant to the experiment that
provides the real dataset used in this study. Each algorithm
was scored on a 1–3 scale, with 3 as the best recovery of
biologically relevant terms and phrases; then, the scores for
terms and phrases were added to give an overall perform-
ance score from 2 to 6 (Table 6). As expected, many of these
tools recovered, at high significance, several terms strongly
related to stem cell biology, including development, differen-
tiation, morphogenesis, multicellular, and adhesion as well
as many others. Interestingly, scDD and SCDE failed to re-
cover stem cell-relevant terms at high significance. Instead,
these approaches appeared to yield terms and phrases re-
lated to cellular housekeeping processes. Monocle2 and
MAST performed the best at recovering stem cell-relevant
terms. Following them, EMDomics, DESeq2, D3E, DEsingle,
SigEMD, edgeR, SINCERA all performed well. This result
strongly suggests not only that the methods used for identi-
fying DE genes may yield non-overlapping and quantitatively
different gene sets but that some methods are much better
at extracting biologically relevant gene sets from the data.

Runtimes
We compared the runtimes of the eleven tools (Table 7). Ex-
cept for D3E, which was implemented in Python, all of the
tools were implemented in R (Table 1). The runtime was
computed using a personal computer, iMac with 3.1GHz
CPU and up to 8 gigabytes of memory. The average runtime
(of 10 times) of each tool, using the positive control dataset,

is shown in Table 7. SINCERA has the lowest time cost be-
cause it employs a simple t-test. edgeR has the lowest time
cost among the model-based and nonparametric methods.
MAST, Monocle2, and DESeq2 run fast (less than 5min), as
MAST and Monocle2 use linear regression methods, and
DESeq2 uses a binomial model for identifying DE genes.
scDD takes longer, as it needs time to classify DE genes into
different modalities. The nonparametric method, SigEMD,
EMDomics and D3E, take more time compared to the
model-based methods because they need to compute the
distance between two distributions for each gene. We note
that D3E had two running modes: It takes about 40min
when running under the simple mode and about 30 h when
running under the more accurate mode.

Discussion
As shown in Fig. 1, scRNAseq expression data are multi-
modal, with a high number of zero counts that make dif-
ferential expression analysis challenging. In this study, we
conducted a comprehensive evaluation of the performance
of eleven software tools for single cell differential gene ex-
pression analysis: SCDE, MAST, scDD, EMDomics, D3E,
Monocle2, SINCERA, edgeR, DESeq2, DEsingle, and
SigEMD. Using simulated data and real scRNAseq data,
we compared the accuracy of the tools in identifying DE
genes, agreement among the tools in detecting DE genes,
and time consumption of the tools. We also examined the
enrichment of the identified DE genes by running pathway
analysis and GO analysis for the real data.

Detection accuracy
In general, the eleven methods behave differently in
terms of calling true significantly DE genes. The tools
that show higher sensitivity also show lower precision.
Among all of the tools, DEsingle and SigEMD, which are
designed for the scRNAseq, tend to show a better
trade-off between TPRs and precision.

Table 6 Scores from word and phrase significance analysis of
each tool to recover biologically relevant terms and phrases

Methods Score (phrase) Score (word) Overall score (word+phrase)

Monocle2 3 3 6

MAST 3 3 6

DESeq2 2 3 5

D3E 2 3 5

DEsingle 2 3 5

SigEMD 3 2 5

EMDomics 2 2 4

edgeR 2 2 4

SINCERA 2 2 4

SCDE 1 1 2

scDD 1 1 2

Table 7 Average runtime of identifying DE genes in real data
by each tool

Methods Platform Time consumption in minutes

DESeq2 R 4.2

edgeR R 0.41

scDD R 85.13

EMDomics R 14.64

MAST R 1.47

D3E Python 38.43

Monocle2 R 2.6

SCDE R 10.39

SINCERA R 0.3

DEsingle R 14.97

SigEMD R 14.86
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All of the tools perform well when there is no multi-
modality or low levels of multimodality. They all also per-
form better when the sparsity (zero counts) is less. For
data with a high level of multimodality, methods that con-
sider the behavior of each individual gene, such as
DESeq2, EMDomics, Monocle2, DEsingle, and SigEMD,
show better TPRs. This is because EMDomics and
SigEMD use a nonparametric method to compute the dis-
tance between two distributions and can capture the mul-
timodality; DEsingle models dropout events well by using
a zero inflated negative model to estimate the proportion
of real and drop-out zeros in the expression value; Mon-
ocle2 uses a census algorithm to estimate the relative tran-
script counts for each gene instead of using normalized
read counts, such as TPM values; and DESeq2 uses a
gene-specific shrinkage estimation for the dispersions par-
ameter to fit a negative binomial model to the read counts.
If the level of multimodality is low, however, SCDE,
MAST, and edgeR can provide higher precision.

Agreement among the methods
The overall agreement in terms of finding DE genes
among all of the tools is low. We used the top 1000 DE
genes identified by the eleven tools (ranked by p-values)
and significantly DE genes with a significant threshold of
0.05 to identify the common DE genes across the tools
and between pairs of tools. The DE genes identified by
DESeq2, EMDomics, D3E, Monocle2, SINCERA, DEsin-
gle, and SigEMD show higher pairwise agreement,
whereas the model-based methods, SCDE and scDD,
show less pairwise agreement within other tools. No sin-
gle tool is clearly superior for identifying DE genes,
using single cell sequencing datasets. The tools use dif-
ferent methods with different strengths and limitations
for calling DE genes. The sequencing data also are very
noisy. The methods treat zero counts, multimodality,
and noise differently, resulting in low agreement among
them. Some tools work well when the drop-out event is
not significant and some, when data multimodality is
not significant. For instance, scDD aims at characterizing
different patterns of differential distributions; however,
handling a large number of zero counts in the expres-
sion values is a challenging task for this tool.

Sample size effect
All of the tools perform better when there are more
samples in each condition. TPRs improve significantly
by increasing sample size from 10 to 75, but they slow
down for sample sizes greater than 100; and for sample
sizes of 300 and larger, there are almost no changes in
TPRs and FPRs. Monocle2, EMDomics, DESeq2, DEsin-
gle, and SigEMD can achieve a TPR close to 100% by in-
creasing the sample size. DEsingle works well for a
larger number of zero counts or small number of

samples. When the number of zero counts is low and
the number of samples is large, its model cannot capture
the dropout event well.

Enrichment analysis
As expected, top-ranked DE genes of many of these
tools are enriched for GO terms strongly related to stem
cell biology. scDD and SCDE, however, failed to recover
stem cell-relevant terms at high significance. Instead,
they appeared to yield GO terms related to cellular
housekeeping processes. This result suggests that
model-based single cell DE analysis methods that do not
consider multimodality do not perform well in extract-
ing biologically relevant gene sets from the data.

Conclusion
In conclusion, the identification of DE genes, using
scRNAseq data, remains challenging. Tools developed for
scRNAseq data focus on handling zero counts or multi-
modality but not both. In general, the methods that can
capture multimodality (non-parametric methods), per-
form better than do the model-based methods designed
for handling zero counts. However, a model-based method
that can model the drop-out events well, can perform bet-
ter in terms of true positive and false positive. We ob-
served that methods developed specifically for scRNAseq
data do not show significantly better performance com-
pared to the methods designed for bulk RNAseq data; and
methods that consider behavior of each individual gene
(not all genes) in calling DE genes outperform the other
tools. The lack of agreement in finding DE genes by these
tools and their limitations in detecting true DE genes and
biologically relevant gene sets indicate the need for devel-
oping more precise methods for differential expression
analysis of scRNAseq data. Multimodality, heterogeneity,
and sparsity (many zero counts) are the main characteris-
tics of scRNAseq data that all need to be addressed when
developing new methods.
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S11, Supplementary Figures S1-S31). (DOCX 2225 kb)

Additional file 2: Results of the Gene Ontology Process enrichment
analysis of the 300 top-ranked DE genes and the list of the 300 top-ranked
genes for each tool. (XLSX 115 kb)

Additional file 3: Significant GO terms with their negative log transform
of their q-values for each tool. (CSV 24 kb)
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