
METHODOLOGY ARTICLE Open Access

DBS: a fast and informative segmentation
algorithm for DNA copy number analysis
Jun Ruan1, Zhen Liu1, Ming Sun1, Yue Wang2, Junqiu Yue3 and Guoqiang Yu2*

Abstract

Background: Genome-wide DNA copy number changes are the hallmark events in the initiation and progression
of cancers. Quantitative analysis of somatic copy number alterations (CNAs) has broad applications in cancer research.
With the increasing capacity of high-throughput sequencing technologies, fast and efficient segmentation algorithms
are required when characterizing high density CNAs data.

Results: A fast and informative segmentation algorithm, DBS (Deviation Binary Segmentation), is developed
and discussed. The DBS method is based on the least absolute error principles and is inspired by the segmentation
method rooted in the circular binary segmentation procedure. DBS uses point-by-point model calculation to ensure
the accuracy of segmentation and combines a binary search algorithm with heuristics derived from the Central Limit
Theorem. The DBS algorithm is very efficient requiring a computational complexity of O(n*log n), and is faster than its
predecessors. Moreover, DBS measures the change-point amplitude of mean values of two adjacent segments at a
breakpoint, where the significant degree of change-point amplitude is determined by the weighted average deviation
at breakpoints. Accordingly, using the constructed binary tree of significant degree, DBS informs whether the results of
segmentation are over- or under-segmented.

Conclusion: DBS is implemented in a platform-independent and open-source Java application (ToolSeg), including a
graphical user interface and simulation data generation, as well as various segmentation methods in the native Java
language.

Background
Changes in the number of copies of somatic genomic
DNA are a hallmark in cancer and are of fundamental
importance in disease initiation and progression. Quanti-
tative analysis of somatic copy number alterations
(CNAs) has broad applications in cancer research [1].
CNAs are associated with genomic instability which
causes copy number gains or losses of genomic seg-
ments. As a result of such genomic events, gains and
losses are contiguous segments in the genome [2].
Genome-wide scans of CNAs may be obtained with
high-throughput technologies, such as SNP arrays and
high-throughput sequencing (HTS). After proper
normalization and transformation of the raw sample
data obtained from such technologies, the next step is
usually to perform segmentation to identify the regions

where CNA occurs. This step is critical, because the sig-
nal at each genomic position measured is noisy and the
segmentation can dramatically increase the accuracy of
CNA detection.
Quite a few segmentation algorithms have been de-

signed. Olshen et al. [3, 4] developed Circular Binary
Segmentation (CBS), which relies on the intuition that a
segmentation can be recovered by recursively cutting the
signal into two or more pieces using a permutation ref-
erence distribution. Fridlyand et al. [5] proposed an un-
supervised segmentation method based on Hidden
Markov Models (HMM), assuming that copy numbers
in a contiguous segment have a Gaussian distribution.
Segmentation is viewed as a state transition and maxi-
mizes the probability of an observation sequence (copy
number sequence). Several dedicated HMMs have been
proposed [6–8]. Zaid Harchaoui et al. [9, 10] proposed
casting the multiple change-point estimation as a vari-
able selection problem. A least-square criterion with a
Lasso penalty yields a primary efficient estimation of

* Correspondence: yug@vt.edu
2Department of Electrical and Computer Engineering, Virginia Polytechnic
Institute and State University, Arlington, VA 22203, USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ruan et al. BMC Bioinformatics (2019) 20:1
https://doi.org/10.1186/s12859-018-2565-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2565-8&domain=pdf
mailto:yug@vt.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

change-point locations. Tibshirani et al. [11] proposed a
method based on a fused Lasso penalty that relies on the
L1-norm penalty for successive differences. Nilsen [12]
proposed a highly efficient algorithm, Piecewise Con-
stant Fitting (PCF), that is based on dynamic program-
ming and statistically robust penalized least squares
principles. By minimizing a penalized least squares cri-
terion, the breakpoints were estimated. Rigaill [13, 14]
proposed dynamic programming to retrieve the
change-points to minimize the quadratic loss. Yu et al.
[15, 16] proposed a segmentation method using the
Central Limit Theorem (CLT), which is similar to the
idea used in the circular binary segmentation procedure.
Many existing methods show promising performance

when the length of an observation sequence is small or
moderate to be split. However, as experienced in our
own studies, these methods are computationally inten-
sive and segmentation becomes a bottle neck in the
pipeline of copy number analysis. With the increasing
capacity for raw sample data production provided by
high-throughput technologies, a faster algorithm to per-
form segmentation to identify regions of constant copy
numbers is always desirable. In this paper, a novel and
computationally highly efficient algorithm is developed
and tested.
There are three innovations in the proposed Deviation

Binary Segmentation (DBS) algorithm. First, least abso-
lute error (LAE) principle is exploited to achieve high
processing efficiency and speed, and a novel integral
array-based algorithm is proposed to further increase
computational efficiency. Second, a heuristics strategy
derived from the CLT helps gaining additional speed
optimization. Third, DBS measures the change-point
amplitude of mean values of two adjacent segments at a
breakpoint. And using the constructed binary tree of sig-
nificant degree, DBS informs whether the results of seg-
mentation are over- or under-segmented. A central
theme of the present work is to build algorithm for solv-
ing segmentation problems under a statistically and
computationally unified framework. The DBS algorithm
is implemented in an open-source Java package named
ToolSeg. It provides integrated simulation data gener-
ation and various segmentation methods: PCF, CBS
(2004), and segmentation method in Bayesian Analysis
of Copy Number Mixture (BACOM). It can be used for
comparison between methods as well as meeting the
needs of the actual segmentation.

Implementation
Systems overview
The ToolSeg tool provides functionality for many tasks
typically encountered in copy number analysis: data
pre-processing, segmentation methods of various
algorithms and visualization tools. The main workflow

includes: 1) reading and filtering of raw sample data;
2) segmentation of allele-specific SNP array data; and
3) visualization of results. The input includes copy
number measurements from single or paired
SNP-array or HTS experiments. Allele observations
normally need to detect and appropriately modify or
filter extreme observations (outliers) prior to segmen-
tation. Here, the median filtering algorithm [17] is
used in the ToolSeg toolbox to manipulate the ori-
ginal input measurements. The method of DBS is
based on the Central Limit Theorem in probability
theory for finding breakpoints and observation seg-
ments with a well-defined expected mean and vari-
ance. In DBS, the segmentation curves are recursively
generated by the recursive splits using the preceding
breakpoints. A set of graphical tools is also available
in the toolbox to visualize the raw data and segmen-
tation results and to compare six different segmenta-
tion algorithms in a statistically rigorous way.

Input data and preprocessing
ToolSeg requires the raw signals from high-throughput
samples to be organized as a one-dimensional vector
and stored as a .txt file. Detailed descriptions of the soft-
ware are included in the Supplementary Material.
Before we performed copy number change detection

and segmentation using copy number data, a challenging
factor in copy number analysis was the frequent occur-
rence of outliers – single probe values that differ mark-
edly from their neighbors. Generally, such extreme
observations can be due to the presence of very short
segments of DNA with deviant copy numbers, technical
aberrations, or a combination. Such extreme observa-
tions have potentially harmful effect when the focus is
on detection of broader aberrations [17, 18]. In ToolSeg,
the classical limit filter, Winsorization, is performed to
reduce such noise, which is a typical preprocessing step
to eliminate extreme values in the statistical data to re-
duce the effect of possible spurious outliers.
Here, we calculated the arithmetic mean as the ex-

pected value μ̂ and the estimated standard deviation σ̂
based on all observations on the whole genome. For ori-
ginal observations, the corresponding Winsorized obser-
vations are defined as x0i ¼ f ðxiÞ, where

f xð Þ ¼
μ̂−τσ̂; x < μ̂−τσ̂

μ̂þ τσ̂; x > μ̂þ τσ̂
x; otherwise

8<
: ð1Þ

and τ ∈ [1.5, 3], (default 2.5 in ToolSeg). Often, such
simple and fast Winsorization is sufficient, as discussed
in [12].

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 2 of 14

Binary segmentation
Now, we discuss the basic problem of obtaining individ-
ual segmentation for one chromosome arm in one sam-
ple. The aim of copy number change detection and
segmentation is to divide a chromosome into a few con-
tinuous segments, within each of which the copy num-
bers are considered constant.
Let xi, i = 1,2, …, n, denote the obtained measurement

of the copy numbers at each of the i loci on a chromo-
some. The observation xi can be thought of as a sum of
two contributions:

xi ¼ yi þ εi

where yi is an unknown actual “true” copy number at
the i’th locus and εi represents measurement noise,
which follows an independent and identically distributed
(i.i.d.) with mean of zero. A breakpoint is said to occur
between probe i and i + 1 if yi ≠ yi + 1, i ∈ (1, n). The se-
quence y0, …, yK thus implies a segmentation with a
breakpoint set {b1,…, bK}, where b1 is the first break-
point, the probes of the first sub-segment are before b1,
the second sub-segment is between b1 and the second
breakpoint b2, and so on. Thus, we formulated the copy
number change detection as the problem of detecting
the breakpoint in copy number data.
Consider first the simplest problem of obtaining only

one segment. There is no copy number change on a
chromosome in the sample. Given the copy number sig-
nals of length n on the chromosome, x1, …, xn, and let xi
be an observation produced by independent and identi-
cally distributed (i.i.d.) random variable drawn from dis-
tribution of expected values given by μ̂ and finite
variances given by σ̂2.
The following defines the statistic Ẑij,

Ẑi; j ¼
P j−1

k¼i xk−μ̂ð Þ
σ̂

ffiffiffiffiffiffiffiffi
j−i

p ; 1 < i < j < nþ 1; ð2Þ

where μ̂ ¼ 1
j−i

P j−1
k¼ixk is the arithmetic mean between

point i and point j (does not include j), and σ̂ is the esti-

mated standard deviation of xi, σ̂ ¼
ffi
1

j−i−1

P j−1
k¼iðxk−μ̂Þ2

q
,

which will be discussed later. Furthermore, we define
the test statistic

Ẑ ¼ max
1<i< j<nþ1; j−i>n0

Ẑi; j

�� �� ð3Þ

where n0 is a pre-determined parameter of the minimum
length of CNA.
According to the central limit theorem (CLT), as the

sample size (the length of an observation sequence, j − i)
increases to a sufficiently large number, the arithmetic
mean of independent random variables will be approxi-
mately normally distributed with mean μ and variance

σ2/(j − i), regardless of the underlying distribution.
Therefore, under the null hypothesis of no copy number

change, the test statistic Ẑij asymptotically follows a
standard normal distribution, N (0, 1). Copy number
change segments measured by high-throughput sequen-
cing data usually span over hundreds, even tens of thou-

sands, of probes. Therefore, the normality of Ẑij is
approximated with high accuracy.
Here, let θ be a predefined significance level,

℘ Ẑij
� � ¼ 1−

ffiffiffi
2
π

r Z Ẑij

−∞
e−

x2
2 dx > θ ð4Þ

We iterate over the whole segment to calculate the

P-value of Ẑ using the cumulative distribution function
of N (0, 1). If the P-value is greater than θ, then we will
consider that there is no copy number change in the

segment. In other words, Ẑ is not far from the center of
the shape of the standard normal distribution.
Furthermore, we also introduce an empirical correc-

tion to θ which is divided by Li, j = j − i. In other words,
the predefined significance level is a function of length

Li, j of the detected parts in the segment. Here, let T̂ i; j

be the cut-off threshold of Ẑ,

℘ T̂ i; j
� � ¼ θ

j−i
ð5Þ

with a given θ and a length that corresponds to a def-

inite T̂ i; j ¼ ℘−1ðθ=ð j−iÞÞ based on using the inverse

function of the cumulative distribution function. If Ẑ is

less than T̂ i; j, then we will consider that there is no copy
number change in the segment. Otherwise, it is neces-
sary to split. The following is the criterion of segmenta-
tion in Eqn (6),

Ẑ ¼ max
i; j

P j−1
k¼i xk−μ̂ð Þ
σ̂

ffiffiffiffiffiffi
j−i

p
�����

�����≥ T̂ i; j ð6Þ

When the constant parameter θ is subjectively deter-
mined, we define a new statistic Zi, j by transforming for-
mula (1) so that it represents a normalized standard
deviation weighted by a predefined significance level be-
tween the two points i and j:

Zi; j ¼
P j−1

k¼i xk−μ̂ð Þ
T̂ i; j

ffiffiffiffiffiffi
j−i

p ¼ ωi; jεi; j ð7Þ

where ωi; j ¼ ðT̂ i; j
ffiffiffiffiffiffi
j−i

p Þ−1, ωi, j > 0, and εi, j is the accumu-
lated error between two points i and j, 1 < i < j < n + 1.
We select a point p between the start 1 and the end n

in one segment. Thus, Z1, p and Zp, n + 1 are the two sta-
tistics that correspond to the left side and the right side,
respectively, of point p in the segment and represent the

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 3 of 14

weighted deviation of these two parts. Furthermore, we
define a new statistic ℤ1, n + 1(p),

ℤ 1;nþ1 pð Þ ¼ dist Z1;p;Zp;nþ1
� �

; 0
� � ð8Þ

where dist(〈∙〉, 0) is a distance measure between vector
〈∙〉 and 0. The Minkowski distance can be used here.
These will be discussed in a later section “Selecting for
the distance function”. Finally, we define a new test stat-
istic ℤp,

ℤ p ¼ max
1<p<nþ1

ℤ 1;nþ1 pð Þ ð9Þ

ℤp is the maximum of abrupt jumps of variance within
the segment under the current constraints, and its pos-
ition is found by iterating once over the whole segment.
If ℤp is greater than the estimated standard deviation σ̂
at location p, that is, ℤp is considered significant, we will
obtain a new candidate breakpoint b at p.

b ¼ arg max
1<p<nþ1

ℤ 1;nþ1 pð Þ ð10Þ

Then, a binary segmentation procedure will be per-
formed at breakpoint b, and we will apply the above al-
gorithm recursively to the two segments x1, …, xp − 1 and
xp, …, xn, p ∈ (1, n).

Multi-scale scanning procedure
Up to now, the above algorithm has been able to identify
the most significant breakpoints, except one short seg-
ment sandwiched between two long segments. In this
case, the distance between breakpoints at the intermedi-
ate position p and both ends is much or far greater than

1. Thus, ℘ðT̂1;pÞ ¼ θ=p tends to 0, and T̂ 1;p has almost
no change with an increase in p. The accumulated error
generated by the sum process is equally shared to each
point from 1 to p. When increasing the distance to the
ends, the change of Zi, j becomes slower. Thus, spike
pulses and small segments embedded in long segments
are suppressed. Therefore, if ℤp is less than the esti-
mated standard deviation σ̂ after a one-time scan of the
whole segment, we cannot arbitrarily exclude the pres-
ence of the breakpoint.
From the situation above, it is obvious that we cannot

use the fixed endpoints to detect breakpoints on a global
scale. This method is acceptable with large jumps or
changes in long segments, but to detect shorter seg-
ments. We need smaller windows. For these smaller seg-
ments, scale-space scanning is used. In the DBS
algorithm, in the second phase, a multi-scale scanning
stage will be started by the windowed model, if a break-
point was not found immediately by the first phase.
Here, let W be a width set of sliding windows, and a

window width ∈W . Thus, the two statistics above, Z1, p

and Zp, n + 1, are updated to Zp −w, p and Zp, p +w. The
test statistic ℤp is updated by a double loop in Eqn (11),

ℤ p ¼ max
1<p<n;w∈W

dist Zp−w;p;Zp;pþw
� �

; 0
� � ð11Þ

Therefore, we can find the local maximum across
these scales (window width), which provides a list of (Zp

− w, p, Zp, p + w, p,w) values and indicate that there is a po-
tential breakpoint at p at the w scale. Once ℤp is greater
than the estimated standard deviation σ̂ , then a new can-
didate breakpoint is found. The new recursive procedure
as the mentioned first phase will be applied to the two
new segments just generated.

Analysis of time complexity in DBS
In DBS, the first phase is a binary segmentation proced-
ure, and the time complexity of this phase is O(n ∙ log K),
where K is the number of segments in the result of the
first phase, and n is the length of an observation se-
quence to be split. Because n≫ K, the time complexity
approaches O(n). Next, the second phase, the multi-scale
scanning procedure, is costly compared with a one-time
scan on a global scale on the whole segment. When W
is a geometric sequence with a common ratio of 2, the
time complexity of the second phase is O(n ∙ log n).
When W includes all integer numbers from 1 to n, the
time complexity of the second phase degenerates to
O(n2). Then, in this case, the algorithm framework of
DBS is fully equivalent to one in BACOM, which is simi-
lar to the idea used in Circular Binary Segmentation
procedure.
In simulation data set, it is not common that one short

segment sandwiched between two long segments is
found in the first or first few dichotomies of whole seg-
mentation process, because broader changes can be ex-
pected to be detected reasonably well. After several
recursive splits were executed, the length of each
sub-segment is greatly reduced. Then, the execution
time of the second phase in DBS is also greatly reduced
at each sub-segment. But the second phase must be trig-
gered once before the recursive procedure ends. So, the
time complexity of DBS tends to approach O(n ∙ log n).
Moreover, the real data is more complicated, so the ef-
fect of DBS is O(n ∙ log n) in practice. Its time complexity
is about the same as its predecessors, but DBS is faster
than them. We will discuss later in section “Computa-
tional Performance”.

Convergence threshold: Trimmed first-order difference
variance σ̂
Here, the average of estimated standard deviation σ̂ on
each chromosome is the key to the convergence of itera-
tive binary segmentation, and it comes from a trimmed
first-order difference variance estimator [19]. Combined

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 4 of 14

with simple heuristics, this method may be used to fur-
ther enhance the accuracy of σ̂ . Suppose we restrict our
attention to exclude a set of potential breakpoints by
computationally inexpensive methods. One way to iden-
tify potential breakpoints is to use high-pass filters, i.e., a
filter obtaining high absolute values when passing over a
breakpoint. The simplest such filter uses the difference
Δxi = xi + 1 − xi, 1 < i < n for each position i. We calculate
all the differences at each position and identify approxi-
mately 2% of the probe positions as potential break-
points. In other words, the area below the 1st percentile
and above the 99th percentile of all differences corre-
sponds to the breakpoints. Then, we estimated the
standard deviation ~σ 0 of Δxi at the remaining positions.
Supposing the change of the variances of each segment
on one chromosome is not very large, the average stand-
ard deviation σ̂ of each segment is σ̂ ¼ ~σ 0=

ffiffiffi
2

p
.

We need to be reminded that the current σ̂ is only
used to determine whether to continue to split itera-
tively. After a whole binary segmentation procedure is
completed, we can obtain preliminary results and a
corresponding binary tree of the test statistic ℤp gen-
erated by segmentation. Furthermore, according to
the binary tree, a new fine-tuned σ̂ 0 will be generated
naturally to improve the intra-segment variance more
accurately. Finally, we select those candidate break-
points in which ℤp is greater than the given σ̂ 0 as the
final ‘true’ breakpoints.

Determining real breakpoints or false breakpoints
Let us now analyze the specific process of σ̂ 0 in detail.
Figure 1(a) shows an assumed complete segmentation
process. After being split twice at breakpoints b1 and b2,
an initial array (Segment ID is 1) is divided into three
segments (their IDs are 3, 4, and 5). ℤ1 and ℤ2 are two
local maximums ℤp at the corresponding breakpoints of
two segments (IDs are 1 and 2). If ℤ3, ℤ4 and ℤ5 within

the corresponding segments are all less than the
pre-calculated σ̂ , then the whole subdivision process
ends.
Then, we can generate a corresponding binary tree of

test statistic ℤp; see Fig. 1(b). The values of the root node
and child nodes are ℤp of the initial array and the corre-
sponding intermediate results, and the values of the leaf
nodes are ℤp of the results of segmentation. The identifi-
cation of every node (Node ID) is the Segment ID.
We define a new distance η between the set of

non-leaf nodes and the set Nleaf of leaf nodes,

η ¼ min ℤ iji∉N leafð Þ− max bσ jj j∈N leaf
� � ð12Þ

where ℤi is the ℤp of corresponding segments, and bσ j is
the estimated standard deviation of corresponding seg-
ments. Because now the partitions have been initially
completed, we use the real local standard deviation of
each segment to examine the significance level of every
child node.
If η > 0, all ℤps of non-leaf nodes are greater than all

standard deviations of leaf nodes, and the breakpoints
corresponding to all non-leaf nodes are the real signifi-
cant breakpoints and the DBS algorithm ends
immediately.
If η ≤ 0, there are false breakpoints resulting in

over-segmentation, which are less than the standard de-
viation of the leaf nodes. Thus, we update σ̂ to σ̂ 0,

σ̂ 0 ¼ max bσ jj j∈N leaf
� �þ λ ð13Þ

where λ is a safe distance between the non-leaf nodes
and the leaf nodes. Its default value is 0.02. In other
words, we only choose the candidate breakpoints whose
ℤp are greater than σ̂ 0 as the final result. Here when a
false breakpoint is removed, then the sub-segments cor-
responding to its two children are merged. This pruning
process is equivalent to the process of merging and col-
lating segments in other algorithms. In the following

Fig. 1 Segmentation process and binary tree of ℤp in DBS. a an assumed segmentation process with two breakpoints. Row [0] is the initial
sequence to be split. Row [1] shows the first breakpoint would be found at loci b1, and Row [2] is similar. b shows the corresponding binary tree
of ℤp generated by (a). Here the identification of every node (Node ID) also is the Segment ID

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 5 of 14

sections, we will discuss segmentation process using
simulation data and actual data sample.
Here it needs to be emphasized that the proper

over-segmentation is helpful to avoid missing real break-
points possibly exist. In actual data, if and only if η
trends closer to zero, the best segmentation result will
be obtained due to the continuity of variance within seg-
ments. We will discuss later in section “Segmentation of
actual data sample”.

� Quickly calculating the statistic Zij

In DBS, we use absolute errors rather than squared er-
rors to enhance the computational speed of segmenta-
tion. The time complexity of absolute errors can be
reduced to O(1), and it only needs one subtraction oper-
ation for the summing of one continuous region using
an integral array. The algorithm of integral array is nat-
urally decreased from the integral image in computing
2D images [20]. A special data structure and algorithm,
namely, summed area array, make it very quick and effi-
cient to generate the sum of values in a continuous sub-
set of an array.
Here, we only need to use a one-dimensional summed

area table. As the name suggests, the value at any point i
in the summed area array is just the sum of all the left

values of point i, inclusive: Si ¼
Pi

k¼1xk . Moreover, the
summed area array can be computed efficiently in a sin-
gle pass over a chromosome. Once the summed area
array has been computed, the task of evaluating the sum
between point i and point j requires only two array ref-
erences. This method allows for a constant calculation
time that is independent of the length of the subarray.
Thus, using this fact, the statistic Zij can be computed
rapidly and efficiently in Eqn (14).

Zi; j ¼ ωi; j

X j−1

k¼i
xk−μ̂ð Þ ¼ ωi; j S j−Si− j−ið Þμ̂� 	 ð14Þ

where ωi; j ¼ ð℘−1ðθ=ð j−iÞÞ ffiffiffiffiffiffi
j−i

p Þ−1 and ℘−1(∙) are the in-
verse functions of the cumulative distribution function
of N (0, 1).

� Selecting for the distance function dist(∙)

The two statistics Z1, p and Zp, n + 1 are weighted
standard deviations between point p and two ends,
respectively,

Z1;p ¼ ω1;pε1;p ð15Þ

Zp;nþ1 ¼ ωp;nþ1εp;nþ1 ð16Þ

Because εi; j ¼
P j−1

k¼iðxk−μ̂Þ , then ε1, p + εp, n + 1 = 0.
Thus,

ℤ 1;nþ1 pð Þ ¼ dist Z1;p;Zp;nþ1

 �

; 0
� �

¼ dist ω1;p;ωp;nþ1

 �

; 0
� �

ε1;p
�� ��

¼ Dp ε1;p
�� �� ð17Þ

Finally, ℤ1, n + 1(p) represents an accumulated error |ε1,
p| weighted by Dp . The test statistic ℤp physically repre-
sents the largest fluctuation of ℤ1, n + 1(p) on a segment.
There are two steps in the entire process of searching

for the local maximum ℤp on a segment. First, the Min-
kowski distance (k = 0.5) is used to find the position of
breakpoint b at the local maximum by the model Eqn
(18).

Dp ¼ distk¼0:5 ω1;p;ωp;nþ1

 �

; 0
� �

¼ ω1;p
k þ ωp;nþ1

k
� �1=k ð18Þ

When k < 1, the Minkowski distance between 0 and
〈ω1, p, ωp, n + 1〉 tends to the smaller component within
ω1, p and ωp, n + 1. Furthermore, ω1, p and ωp, n + 1 belong
to the same interval [ω1, n + 1, ω1, 2], and as p moves, they
exhibit the opposite direction of change. Thus, when ω1,

p is equal to ωp, n + 1, Dp reaches a maximum value, and
then p = n/2.
From the analysis above, when p is close to any end

(such as p is relatively small, then n − p is sufficiently
large), Z1, p is very susceptible to the outliers between
point 1 and p. In this case, the position of such a local
maximum Z1, p may be false breakpoints, but Zp, n + 1 is
not significant because there are a sufficient number of
probes between point p and another end to suppress the
noise. Here, the Minkowski distance (k < 1) is used to fil-
ter these unbalanced situations. At the same time, the
breakpoints at balanced local extrema are preferentially
found. Usually, the most significant breakpoint may be
found at the middle of a segment due to Dp , so the per-
formance and stability of binary segmentation is
increased.
Once a breakpoint at b is identified, ℤ1, n + 1(b) can be

calculated by the Minkowski distance (k ≥ 1). The Min-
kowski distance (k < 1) is not a metric, since this violates
the triangle inequality. Here, we select the Chebyshev
distance by default:

ℤ p ¼ ℤ 1;nþ1 bð Þ ¼ max Z1;b

�� ��; Zb;nþ1

�� ��� � ð19Þ

In other words, at each point, ℤ1, n + 1(p) tends to the
smaller value of the left and right parts to suppress the
noise when searching for breakpoints; ℤ1, n + 1(p) tends
to the larger value for measuring the significance of
breakpoints.

Algorithm DBS: Deviation binary segmentation
Input: Copy numbers x1, …, xn; predefined significance
level θ = 0.05; filtration ratio γ = 2(%); safe gap λ = 0.02;

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 6 of 14

Output: Indices of breakpoints b1, …, bK; segment
average y1, …, yK; and degree of significance of break-
points ℤ b1 ;…;ℤ bk .

1. Calculate integral array by letting S0 = 0, and iterate
for i = 1…n:

Si ¼ Si−1 þ xi
2. Estimate standard deviation σ̂ :

a) Calculate the differences iteratively for i = 1…n:
di = xi + 1 − xi

b) Sort all di and exclude the area below the γ/2
percentile and above the 100 − γ/2 percentile of
differences of di, then calculate the estimated
standard deviation ~σ 0 at the remaining part.

c) Get σ̂ ¼ ~σ 0=
ffiffiffi
2

p
.

3. Start binary segmentation with two fixed endpoints
for segment x1, …, xn, and calculate the average μ̂
on the segment;
a) By Eqn (14) iterate Z1, p and Zp, n + 1 for p = 1…n;

then get ℤ1, n + 1(p) by Eqn (18), and k = 0.5;

b) Search the index of potential breakpoint bk at which

p is the maximum in the previous step, and
calculate ℤ bk by Eqn (19);

c) If ℤ bk > σ̂ , store ℤ bk and bk, then go to Step 3 and
apply binary segmentation recursively to the two
sub-segments x1;…; xbk−1 and xbk ;…; xn; otherwise,
the multi-scale scanning will be started, and enter
Step 4.

4. Start binary segmentation with various sliding
windows for segment x1, …, xn,
g) Create a width set of sliding windows by letting

W0 ¼ n=2, and iterate W i ¼ W i−1/2 until W i is
less than 2 or a given value.

h) Similar to the above binary segmentation, iterate
Zp −w, p, Zp, p + w and 1, n + 1(p) for p = 1…n
under all sliding windows W i, then find the
index of potential breakpoint bk by the
maximum and ℤ bk is calculated.

i) If ℤ bk > σ̂ , store ℤ bk and bk, then go to Step 3
and recursively start a binary segmentation
without windows to the two segments x1;…;

xbk−1 and xbk ;…; xn; otherwise, terminate the
recursion and return.

5. Merge operations: calculate η and update σ̂ 0, and
prune child nodes corresponding to candidate
breakpoints to satisfy η > λ.

6. Sort the indices of breakpoints b1, …, bK, find the
segment averages:

yi = average(xbi−1 ;…; xbi−1) for i = 1…K, and b0 = 1.
In the algorithm, we use the data from each segment

to estimate the standard deviation of noise. As it is well

documented that the copy number signals have higher
variation for increasing deviation from diploid ground
states, by assuming each segment has the same copy
number state, the segment-specific estimate of noise
level makes the algorithm robust to the heterogeneous
noise.
DBS is a statistical approach based on observations.

Similar to its predecessors, there is a limit of minimum
length of short segments in order to meet the conditions
of CLT. In DBS, the algorithm has also been extended to
allow a constraint on the least number of probes in a
segment. It is worth noting that low density data, such
as arrayCGH, is not suitable for DBS, and an insuffi-
ciently low limit on the length (twenty probes) of a seg-
ment is necessary.

Results and discussion
Constructing the binary tree of ℤp and filtering the
candidate breakpoints
In DBS, the selection of parameters is not difficult. There
are three parameters. The predefined significance level θ
can be seen as a constant. The filtration ratio γ implies the
proportion of breakpoints at one original sequence. When
breakpoints are scarce in copy number analysis, the 2% re-
jection rate is already sufficient. The safety gap λ should
be a positive number close to zero in determining the
trade-off between high sensitivity and high robustness
(i.e., a leap at the breakpoint visually). It limits the mini-
mum of significant degrees ℤp of breakpoints in the re-
sults and ensures that the most significant breakpoints are
not intermixed with some inconspicuous breakpoints.
The key factor is the average of estimated standard de-

viation σ̂ of all segments and is predicted statistically ac-
cording to the difference between adjacent points. When
the preliminary segmentation is completed, σ̂ will also
be updated in terms of the binary tree of ℤp. Therefore,
the binary tree generated by DBS is the key to the judg-
ment of breakpoints.
Consider first the simple condition to segment simula-

tion data generated by random numbers that follows
several normal distributions. Here, Fig. 2 demonstrates a
segmentation process using DBS. In Fig. 2(a), σ̂ is 0.3703
calculated by DBS but is less than the actual value 0.4
due to the strong filtering effect of γ. Two percent of the
length of simulation data is much larger than the actual
six breakpoints. After splitting several times, the initial
array in the zero row is divided into nine segments in
the fifth row. Now, ℤp of the result segments is less than
the predetermined threshold σ̂ , then the whole subdiv-
ision process ends, and the binary tree of ℤp is generated
in Fig. 2(b). Next, we estimate the maximum standard
deviation of the nine segments, and it is close to 0.4.
Thus, η = 0.3833 − 0.4 < 0, and σ̂ is updated from 0.37 to
0.41 at least. Then, in Fig. 2(b), Node 7 and Node 14 are

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 7 of 14

classified as two false breakpoints, so their children are
pruned and they degenerate into leaf nodes. Thus, only
seven segments are split in the sixth row because there
are six yellow candidate breakpoints whose ℤp are
greater than σ̂ 0.

Segmentation of actual data sample
Now, we illustrate splitting one actual data sample using
copy numbers. One pair of tumor-normal matched sam-
ples is picked from the TCGA ovarian cancer dataset
(TCGA_OV), with the sample ID named TCGA-24-
1930-01A-01D-0648-01. In Fig. 3, we chose chromo-
some 8 as the focus of analysis, which contains different
lengths of segments, especially one short segment sand-
wiched between two long segments (resembles a sharp
pulse). In this example, σ̂ is estimated to be 0.2150 by
the default parameters in DBS. Then, the initial array is
divided into 35 segments (leaf nodes) by the separations
recursively in Fig. 3(a). Next, we estimate the maximum
standard deviation of the segments corresponding to
these leaf nodes, and the maximum is 0.3121. However,
the minimum ℤp of the non-leaf nodes is 0.2197, so η <
0, and σ̂ is updated to approximately 0.33. Then, as
shown in Fig. 3(a), the 22 white nodes are classified as
false breakpoints whose ℤp is less than 0.33. Finally, the
result includes 12 true breakpoints corresponding to
these yellow nodes. Figure 3(b) shows the position and
the degree of significance of the ℤps of all true

breakpoints. We can see that the most significant change
is found at the location of Node 1 in the first scan, and
its ℤp is also the maximum significant degree (4.2276) of
all breakpoints. Next, the more significant Node 2, Node
4 and Node 19 are found one by one, and they occupy
four-fifths of the top 5 significant breakpoints. This re-
sult is consistent with the visual appearance in Fig. 3(b).
However, the last of the top 5 significant breakpoints

was not immediately found. Here, we can see that the ℤp

of Node 4 is rising instead of falling compared to that of
its parent Node 2. This fact also predicts the existence
of complex changes between Node 2 and its child, Node
4. The resolution capacity of the binary segmentation
with two fixed endpoints in DBS is increased as the
length of the split segments becomes shorter, unless the
binary segmentation with various sliding windows is
triggered. After splitting several times, one sharp pulse is
found between Node 7 and Node 8. The processes of
discovering Node 40, Node 41 and Node 56 are also
similar.
In DBS, because the resolution capacity of breakpoints

is continually enhanced with recursive segmentation, the
binary segmentation with multi-scale scanning will be
performed at the leaf nodes. Thus, the segments corre-
sponding to the leaf nodes cannot contain the break-
points whose ℤp is greater than σ̂ . Therefore, the
conditional multi-scale scanning of DBS determining the
trade-off between segmentation efficiency and segmenta-
tion priority (i.e., the sooner the greater) can be

Fig. 2 Segmentation process with simulation data in DBS. a shows the segmentation process by splitting multiple times. Notably, DBS uses a
recursive algorithm. After Node 1, 3, 4, 5, and 7 were found one by one, Node 11, etc. at right part were discovered. The red lines over gray data
points is the segmentation curves. The curves are the results of segmentation, and indicate the ranges and average of each sub-segment. b
shows the corresponding binary tree of ℤp generated by the left panel (a). The red dotted line represents the position of the estimated standard
deviation σ̂, and the red solid line represents the position of the threshold σ̂0 of degree of significant ℤp of breakpoints

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 8 of 14

accepted, although this method leads to the destruction
of the tree structure. There will be no missing break-
points; this process will merely postpone the time to find
them unless σ̂ is overestimated.
Usually, the segmentation process of Node 19 is repre-

sentative, as the ℤp of child nodes are monotonically de-
creasing. The possibility of finding breakpoints is smaller
after shortening the segment length and excluding more
significant breakpoints continuously. The ℤp of new
nodes will eventually be less than the σ̂ predicted previ-
ously by CLT, and a new leaf node will be identified to
terminate the recursion.
For the above examples, we argue that the proper

underestimation of σ̂ is necessary. It ensures that the leaf
nodes cannot contain any real breakpoints in the initial
top-down segmentation process. Simultaneously, the
standard deviations of the segments corresponding to
the leaf nodes also correctly reflect the actual dispersion
under correct segmentation, which guides the classifica-
tion by degree of significance of breakpoints through a
bottom-up approach. In DBS, we choose a sufficiently
large filtration ratio γ to ensure this result. Thus, η
would be less than 0 after the preliminary segmentation.
Otherwise, there is a reason to worry about missing

breakpoints, which can be observed only when the
change in adjacent segments is more obvious, as shown
in Fig. 2.

Test dataset
To generate a test dataset that has a similar data struc-
ture with that in real cases, we chose real data samples
as the ground truth reference [16]. We manually
checked the plots of all chromosomes and chose several
genomic regions as the reference templates for generat-
ing simulated data. These regions are representative of
the diversity of copy number states that are typically ex-
tracted in tumor-normal sample pairs by classical seg-
mentation algorithms and have no structural variations
in them. In addition, the data included in each template
follows a single Gaussian distribution, and there are four
different templates corresponding to copy number range
from 1 to 4. Using these templates, we generate a test
dataset at the assured position of breakpoints and the
given average copy number for each segment.
Furthermore, since the templates have been normal-

ized, they can be viewed as pure cancer samples. We can
generate simulated copy number profiles with any pro-
portion of normal cells contaminated. Here, we chose

Fig. 3 Segmentation process with an actual data sample in DBS (using half copy numbers). a the segmentation process in the binary tree of ℤp.
b plots the copy number of an actual sample, and shows the position and ℤp of the 12 true breakpoints, which correspond to these yellow nodes in
Panel (a). In (b), the observed copy number signals are the ratios of the measured intensity of tumor-normal matched sample

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 9 of 14

several different proportions between 30 and 70%. For
one region of length n in the test data, n data points are
sampled from the template, which corresponds to the
appointed average copy number. Then, according to
model (6), xi is transferred from sampling data pi in the
template with normal cell contamination, and α is the
fraction of normal cell subpopulation in the sample.

xi ¼ pi � 1−αð Þ þ 2 � α ð20Þ
The entire test dataset consists of 104 test sequences

and a total of 876 test segments. The length of each de-
tected sequence is between about 103 and 105. In the
process of calculation, too short sequences are too vul-
nerable to external random interference, which is gener-
ated by other programs running in operating system.
Therefore, we only use sequences of length more than
10,000 in performance analysis.

Test method
We evaluate the performance of these algorithms by cal-
culating the precision of segmentation results. With ref-
erence to test methods proposed by the pioneers [12,
21], a classification was constructed to test and compare
the sensitivity and specificity of segmentation algo-
rithms, which are used for the detection of recurring
alterations in Multiplex Ligation-dependent Probe Amp-
lification (MLPA) analysis [12].
A binary classifier with a parameter τ>0 was proposed

using aberration calling. Its τ is a discrimination thresh-
old, which determines the sensitivity of the aberration
calling. The classifier outcome is a discrete class label,
indicating that the point to be tested is in the normal re-
gion or aberrant region. Then, Eqn (21) is given, where
p is a location to be detected, and μk is the average of
copy number of the segment Segk including p. (The ex-
pected DNA copy number in normal cells is two.)

Tag pð Þ ¼ μk−2
�� �� < τ; p∈Segk

� � ð21Þ

If Tag(p) is true, we consider that the p is in the nor-
mal region and is called positive. Otherwise, it is in an
aberrant region and is called negative. When we use the
given breakpoints and the average copy number of seg-
ments in the test dataset, the gold standard was obtained
by uniform sampling near the given breakpoints. In the
gold standard, there were 1424 positive and 4752 nega-
tive values used for the comparison.
Thus, the test mechanism that was independent of the

structure of the algorithm was established for segmenta-
tion accuracy. If the prediction from the classifier using
the outcomes of a segmentation algorithm is positive
and the actual value in the gold standard is also positive
(normal loci), then it is called a true positive (TP); how-
ever, if the actual value is negative (aberrant loci), then it

is said to be a false positive (FP). Conversely, a true
negative (TN) has occurred when both the prediction
outcome and the actual value are negative, and a false
negative (FN) is when the prediction outcome is nega-
tive, while the actual value is positive.

Segmentation accuracy
Using the MLPA binary classifier as the gold standard,
the sensitivity and specificity of aberration calling were
calculated for a range of threshold values θ. Figure 4
shows the resulting Receiver Operating Characteristic
(ROC) curves, and panel (a) and (b) illustrate the results
for DBS depending on the choices of λ and γ. Because
these two parameters have actual physical meaning and
the value ranges are bounded, aberration calling appears
to be almost independent of the parameters by rational
choice.
Panel (c) shows the effect of different combinations of

window sizes. Curve W1 is the result using window sizes
generated by the arithmetic progression with common
difference of 1, and corresponds to use arbitrary sets of
window sizes. Curve W2, W4 and W8 correspond to
window sizes of the geometric sequence with common
ratio of 2, 4 and 8 respectively. We can see that different
combinations have little effect on the segmentation
result.
Panel (d) shows calls made on the basis of the segmen-

tations found by DBS, PCF, Circular Binary Segmenta-
tion (CBS) [3] and the segmentation method in BACOM
[15, 16] with raw data. In comparison studies of the ac-
curacy of the segmentation solutions, CBS is the most
commonly used available algorithm and has good per-
formance in terms of sensitivity and false discovery rate.
PCF is a relatively new copy number segmentation algo-
rithm based on least squares principles and combined
with a suitable penalization scheme. Here the recent ver-
sions have been used with the original R implementa-
tions, DNAcopy v1.52.0 (CBS) and copynumber v1.18
(PCF). The predecessor of DBS is the segmentation
method in BACOM, and this precursor replaces a deci-
sion process-based permutation test on CBS with a deci-
sion process based on Central Limit Theorem (CLT).
There are the differences between DBS and CBS mainly
in the following points. Firstly, the criterion of segmen-
tation use Eqn (6) in BACOM, however Eqn (9) is the
criterion in DBS. Secondly, the algorithm structure of
the method in BACOM mainly contains a complete
double circulation with recursively dividing into three
sub-segments. DBS only contains a single circulation
with recursive splits. Finally, the test statistics of the
method in BACOM and the first phase in DBS are cal-
culated point by point, this is equivalent to a scan
process using window sizes with the arithmetic progres-
sion with common difference of 1. But the sliding

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 10 of 14

windows of the second phase in DBS are a geometric se-
quence with a common ratio of 2.
In terms of aberration calling accuracy, Table 1 shows

that CBS, PCF, DBS and others give nearly similar good
results using the default parameter settings. The AUC of
the ROC curves (in Fig. 4 (d)) corresponding to the four
algorithms all exceed 0.9. In other words, all algorithms

have detected most of the real breakpoints. However,
ROC curve cannot detect whether over-segmentation
exist. Because the average of sub-segment separated fur-
ther based on correct segmentation will not change.
We found that the number of segments included in

the segmentation result is different. The entire test data-
set consists of 104 test sequences and a total of 876 test
segments. The method in BACOM only got 845 seg-
ments, it shows the existence of under-segmentation.
There is more serious over-segmentation in PCF using
default parameter (it is too small). In CBS and DBS, the
results are all over-segmented. But the result of DBS is
slightly better than CBS. Here we defined a variable,
over-segmentation ratio, which is a ratio of the segment
count generated by each algorithm and the actual num-
ber of test segments. As shown in Table 1, the ratio of
DBS is the minimum in all over-segmentation results. It
also shows the merit of the merge operation (pruning
false breakpoints) in DBS.

Fig. 4 ROC-curves of five segmentation methods. The curves show the sensitivity and specificity of accuracy for a sequence of thresholds as
calculated by comparing aberration calls to the classifications made in a MLPA-analysis on the test dataset. (a) and (b) show that the classification
accuracy is not affected much for a wide range of λ and γ. Here γ is equal to 0.02 in (a), and λ is equal to 0.02 in (b). c shows the effect of different
combinations of window sizes. Curve W1 is the result using window sizes generated by the arithmetic progression with common difference of 1.
Curve W2, W4 and W8 correspond to window sizes of the geometric sequence with common ratio of 2, 4 and 8 respectively. λ and γ is default value
(0.02). d shows calls based on the segmentations found by DNAcopy v1.52.0 (CBS), copynumber v1.18 (PCF), the method in BACOM and DBS with
raw data

Table 1 Segmentation and Merging effects

AUC Segment Count Over-segmentation Ratio

In BACOM 0.9256 845 0.965

CBS 0.9373 1171 1.34

PCF 0.9279 4906 5.60

DBS 0.9452 967 1.104

Here the entire test dataset consists of 104 test sequences and a total of 876
test segments. The AUC correspond to the ROC curves in Fig. 4(d). Segment
count is the number of segments generated by the four algorithms. Over-
segmentation ratio is a ratio of the segment count generated by each
algorithm and the actual number of test segments

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 11 of 14

Computational performance
We further compare the computational performance of
the segmentation solutions found by the four
above-mentioned methods. We tested the entire test
dataset with four algorithms and collected the computa-
tion time (in seconds) per sample. Using default param-
eter settings, we compared the computing times of DBS,
CBS, PCF and the method in BACOM on the 10 sam-
ples in the 26 K simulation data set, on 10 samples in
160 K simulation data set, and on 10 samples from Affy-
metrix SNP 6.0 Array. Table 2 gives the average compu-
tation time (in seconds) per sample. With default
preprocessing of the data, on average, DBS is about 5
times faster than PCF, is about 15 times than CBS, and
is about 23 times than the method in BACOM.
Next, we compare the computational complexity of

time among the four above-mentioned methods using
the actual computation time and length of the test sam-
ples. We select logarithmic transformation to reveal the
relationship of computation time and sequence length.
Using default parameter settings, we compared the com-
puting times of DBS, CBS, PCF and the method in
BACOM on the expanded samples in the 11.6 K ~ 160 K
simulation data set. In Fig. 5, the data points with differ-
ent colors correspond to the computation results of dif-
ferent algorithms in a logarithmic coordinate system.
The conventional linear regression model corresponding
to the data points of each method is shown as solid lines
with the same colors. The slope of these lines represents
the order of complexity in Big O notation, which is used
to classify algorithms according to how their running
time or space requirements grow as the input size grows.
In Table 2, the slope of the linear regression of DBS,
CBS and PCF all are approximately 1. These three algo-
rithms benefit from the algorithm structure with nearly
linear complexity, O(n ∙ log n). The slope of the method
in BACOM is 2, because this method mainly contains a
complete double circulation.
Further, the time complexity of the first phase in DBS is

O(n ∙ logK), where K is the number of segments in the

result of the first phase, and n is the length of obser-
vation sequence to be split. Because n≫ K, the time
complexity approaches O(n). At the second phase, the
time complexity is O(n ∙ log n), because W is a geo-
metric sequence with a common ratio of 2 by default.
Although the time complexity of DBS is a mixture of
O(n) and O(n ∙ log n) in theory, but the speed of DBS
depends on the frequency upon triggering binary seg-
mentation with various sliding windows. Thus, the
speed of DBS is quite variable from sample to sample
of the same length. As a result, the time complexity
of DBS is basically no different than the other two al-
gorithms (CBS and PCF) in the benchmarking. Just
the speed of DBS is indeed larger than them. In Fig.
5, the slopes of the lines corresponding to the three
algorithms are the same, but the line of DBS is at the
bottom. In conclusion, DBS and other methods typic-
ally provide similar results and have equivalent accur-
acy; however, DBS enjoys a significant advantage in
computation performance.

Conclusions
We have developed a variant of binary segmentation
based on least absolute errors (LAE) principles com-
bined with heuristics using CLT that we call Deviation
Binary Segmentation (DBS) for identifying genomic al-
terations in array copy number experiments. We have
introduced a suite of platform-independent evaluation
mechanisms based on the MLPA binary classifier as the
gold standard. DBS was applied to a test dataset that has
a similar data structure as a real case. The algorithm
performs similarly to other leading segmentation
methods in terms of sensitivity and specificity. In
addition, the proposed algorithm can provide significant
degrees of breakpoints in the results, and find break-
point locations by searching for the extreme of test stat-
istic. Furthermore, DBS benefits from the algorithm
structure with a computational complexity of O(n*log
n), which gives a further marked reduction in computa-
tion time using heuristics with trimmed first-order

Table 2 Computational performance

Method Time (s) Trend Line

Test 1
(26 K, 1 Chr.)

Test 2
(160 K, 1 Chr.)

Affymetrix SNP 6.0 (868 K, 22 Chr.) Slope R2

In BACOM 0.592 18.769 34.818 1.999 0.988

CBS 1.442 6.249 80.551 0.984 0.963

PCF 0.393 2.638 10.256 0.968 0.979

DBS 0.093 0.524 2.167 0.968 0.986

The computation time (in seconds) is shown for DNAcopy v1.52.0 (CBS), copynumber v1.18 (PCF), in BACOM, and DBS (ToolSeg) on the 26 K / 160 K simulation
data set (10 samples) and on the values from an Affymetrix SNP 6.0 Array data set (10 samples). The slope of linear trend lines represents the computational
complexity of each algorithm, which are shown in Fig. 5. All tests were performed on a PC with a 2.5GHz Intel i5 CPU with 8 GB of memory running Windows 10
and Java 8 (64-bit)

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 12 of 14

difference variance for searching for potential break-
points. The proposed algorithm is easy to generalize and
is computationally very efficient on high-resolution data.
The Java Application offers a user-friendly GUI to the
proposed algorithms and is freely available at https://
gitee.com/w3STeam/ToolSeg.

Acknowledgements
This research was supported by research grants 81300042 (to JY) from the
Natural Science Foundation of China and 2014(41) (to JY) from the “Training
project for Young and Middle-aged Medical Talents” from Health and Family
Planning Commission of Wuhan City of China.

Funding
Not applicable.

Availability of data and materials
Project name: ToolSeg.
Project home page: https://gitee.com/w3STeam/ToolSeg
Download: https://gitee.com/w3STeam/ToolSeg/attach_files
Operating system(s): All systems supporting the Java.
Programming language: Java.
Other requirements: No.
License: Apache License 2.0.

Authors’ contributions
The study was initiated by JR, YW and GQY. JR and ZL drafted the manuscript.
The software was written by JR with contributions from ZL based on algorithms
developed by ZL and MS. YW, GQY and JQY contributed with examples and in
discussions of the manuscript and software. All authors have read, commented
on and accepted the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1School of Information Engineering, Wuhan University of Technology,
Wuhan, Hubei 430070, China. 2Department of Electrical and Computer
Engineering, Virginia Polytechnic Institute and State University, Arlington, VA
22203, USA. 3Department of Pathology, Hubei Cancer Hospital, Wuhan,
Hubei 430079, China.

Received: 10 July 2017 Accepted: 7 December 2018

References
1. Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R,

Botstein D, Borresen-Dale AL, Brown PO. Microarray analysis reveals a major
direct role of DNA copy number alteration in the transcriptional program of
human breast tumors. Proc Natl Acad Sci U S A. 2002;99(20):12963–8.

2. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J,
Barretina J, Boehm JS, Dobson J, Urashima M. The landscape of somatic
copy-number alteration across human cancers. Nature. 2010;463(7283):
899–905.

3. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary
segmentation for the analysis of array-based DNA copy number data.
Biostatistics. 2004;5(4):557–72.

4. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm
for the analysis of array CGH data. Bioinformatics. 2007;23(6):657–63.

5. Fridlyand J, Snijders AM, Pinkel D, Albertson DG, Jain AN. Hidden Markov
models approach to the analysis of array CGH data. J Multivar Anal. 2004;
90(1):132–53.

Fig. 5 Computational complexity of time in the four algorithms. The solid lines with different colors represent the conventional linear regression
models, which correspond to the data points with the same colors. The x-axis represents the logarithmic length of test samples (sequences), and
the y-axis represents the logarithmic computation time

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 13 of 14

https://gitee.com/w3STeam/ToolSeg
https://gitee.com/w3STeam/ToolSeg
https://gitee.com/w3STeam/ToolSeg
https://gitee.com/w3STeam/ToolSeg/attach_files

6. Chen H, Xing H, Zhang NR. Estimation of parent specific DNA copy number
in tumors using high-density genotyping arrays. PLoS Comput Biol. 2011;
7(1):e1001060.

7. Greenman CD, Bignell G, Butler A, Edkins S, Hinton J, Beare D, Swamy S, Santarius
T, Chen L, Widaa S. PICNIC: an algorithm to predict absolute allelic copy number
variation with microarray cancer data. Biostatistics. 2010;11(1):164.

8. Sun W, Wright FA, Tang Z, Nordgard SH, Van LP, Yu T, Kristensen VN, Perou
CM. Integrated study of copy number states and genotype calls using high-
density SNP arrays. Nucleic Acids Res. 2009;37(16):5365–77.

9. Harchaoui Z, Lévy-Leduc C. Catching change-points with lasso. Adv Neural
Inf Proces Syst. 2007;22:617–24.

10. Harchaoui Z, Lévy-Leduc C. Multiple change-point estimation with a Total
variation penalty. J Am Stat Assoc. 2010;105(492):1480–93.

11. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K. Sparsity and smoothness
via the fused lasso. J R Stat Soc. 2005;67(1):91–108.

12. Nilsen G, Liestol K, Van Loo P, Moen Vollan HK, Eide MB, Rueda OM, Chin SF,
Russell R, Baumbusch LO, Caldas C, et al. Copynumber: efficient algorithms
for single- and multi-track copy number segmentation. BMC Genomics.
2012;13:591.

13. Rigaill G. A pruned dynamic programming algorithm to recover the best
segmentations with 1 to Kmax change-points. Journal de la Société
Française de Statistique. 2015;156(4):180-205.

14. Rigaill G. Pruned dynamic programming for optimal multiple change-point
detection. 2010. arXiv preprint arXiv:1004.0887.

15. Yu GQ, Zhang B, Bova GS, Xu JF, Shih IM, Wang Y. BACOM: in silico
detection of genomic deletion types and correction of normal cell
contamination in copy number data. Bioinformatics. 2011;27(11):1473–80.

16. Fu Y, Yu G, Levine DA, Wang N, Shih Ie M, Zhang Z, Clarke R, Wang Y.
BACOM2.0 facilitates absolute normalization and quantification of somatic
copy number alterations in heterogeneous tumor. Sci Rep. 2015;5:13955.

17. Huang T, Yang G, Tang G. A fast two-dimensional median filtering algorithm.
IEEE Transactions Acoustics Speech Signal Process. 1979;27(1):13–8.

18. Hupe P, Stransky N, Thiery JP, Radvanyi F, Barillot E. Analysis of array CGH
data: from signal ratio to gain and loss of DNA regions. Bioinformatics. 2004;
20(18):3413–22.

19. Neumann JV, Kent RH, Bellinson HR, Hart BI. The mean square successive
difference. Ann Math Stat. 1941;12(2):153–62.

20. Viola P, Jones M. Rapid object detection usineg a boosted cascade of
simple features. In: Computer Vision and Pattern Recognition, 2001 CVPR
2001 Proceedings of the 2001 IEEE Computer Society Conference on, vol.
511; 2001. p. I-511–8.

21. Pierre-Jean M, Rigaill G, Neuvial P. Performance evaluation of DNA copy
number segmentation methods. Brief Bioinform. 2015;16(4):600–15.

Ruan et al. BMC Bioinformatics (2019) 20:1 Page 14 of 14

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Systems overview
	Input data and preprocessing
	Binary segmentation
	Multi-scale scanning procedure
	Analysis of time complexity in DBS
	Convergence threshold: Trimmed first-order difference variance σ̂$$\widehat{\boldsymbol{\sigma}}$$
	Determining real breakpoints or false breakpoints
	Algorithm DBS: Deviation binary segmentation

	Results and discussion
	Constructing the binary tree of ℤp and filtering the candidate breakpoints
	Segmentation of actual data sample
	Test dataset
	Test method
	Segmentation accuracy
	Computational performance

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

