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Abstract

Background: Advancements in biophysical experimental techniques have pushed the limits in terms of the types
of phenomena that can be characterized, the amount of data that can be produced and the resolution at which
we can visualize them. Single particle techniques such as Electron Microscopy (EM) and X-ray free electron laser
(XFEL) scattering require a large number of 2D images collected to resolve three-dimensional (3D) structures. In this
study, we propose a quick strategy to retrieve potential 3D shapes, as low-resolution models, from a few 2D
experimental images by searching a library of 2D projection images generated from existing 3D structures.

Results: We developed the protocol to assemble a non-redundant set of 3D shapes for generating the 2D image
library, and to retrieve potential match 3D shapes for query images, using EM data as a test. In our strategy, we
disregard differences in volume size, giving previously unknown structures and conformations a greater number of
3D biological shapes as possible matches. We tested the strategy using images from three EM models as query
images for searches against a library of 22750 2D projection images generated from 250 random EM models. We
found that our ability to identify 3D shapes that match the query images depends on how complex the outline of
the 2D shapes are and whether they are represented in the search image library.

Conclusions: Through our computational method, we are able to quickly retrieve a 3D shape from a few 2D
projection images. Our approach has the potential for exploring other types of 2D single particle structural data
such as from XFEL scattering experiments, for providing a tool to interpret low-resolution data that may be
insufficient for 3D reconstruction, and for estimating the mixing of states or conformations that could exist in such
experimental data.
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Background
Biophysical techniques such as X-ray crystallography,
Nuclear Magnetic Resonance and Electron Microscopy
(EM) have provided us with the ability to visualize
biological cells and molecules in three-dimensions (3D).
Single particle EM techniques in particular have paved
the way for larger, non-crystallizable complexes to be
probed with increasing resolution [1]. X-ray free electron
laser (XFEL) scattering is another such novel tech-
nique that will create new opportunities to view

biological molecules and larger assemblies that have
eluded us thus far [2].
However, most experimental methods do not directly

provide 3D models. Some provide two-dimensional (2D)
images (e.g. EM, XFEL) while others provide even lower
dimensional data (e.g. small angle X-ray scattering
(SAXS), fluorescence resonance energy transfer). Such
experimental data needs to be further analyzed compu-
tationally to produce a 3D model. In the reconstruction
of 3D models in single particle analysis, the orientation
angles of the 2D images of sample have to be
determined from the signal in the noisy raw data [1].
Complex computational algorithms are required to
analyze large amounts of experimental data of reason-
able quality to produce good quality 3D structures from
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EM [3] and XFEL [1, 4]. Moreover, in X-ray techniques,
the phase information is required for structure recon-
struction, which is a problem that is still difficult to solve
[5–7]. Extensive efforts have been devoted to develop-
ment of software packages to analyze single-particle EM
data [8–13] and also for new XFEL data [14]. Thus, a
large number of experimental images with clean sam-
ples, homogenous structures and computational process-
ing are required for 3D reconstruction.
However, there are cases where the experimental data

are insufficient in quality and quantity for de novo 3D
reconstruction. In such cases where the resolution or
amount of the data is low, hybrid approaches that com-
bine computational modeling with experimental data are
required to obtain the 3D structure models. One appli-
cation is the modeling from low-resolution cryo-EM
maps, where computational modeling tools are used to
generate detailed structural models that conform to
low-resolution maps. Multiple approaches have been de-
veloped and successfully applied to experimental data to
model conformational changes [15–27]. The hybrid ap-
proach can be also extended to XFEL data [28–30] and
also combine multiple experimental data to increase the
applicability [31–33].
Another type of approaches uses prebuilt database of

possible structures and expected experimental observa-
tions. The DARA webserver is a tool that can identify
structural neighbors by matching experimental and sim-
ulated small-angle X-ray scattering (SAXS) data to a
database of pre-computed simulated SAXS profiles of
known structures [34]. SASTBX is another tool that uses
a database of 3D shapes to propose 3D models matching
the SAXS data [35]. However, there are no computa-
tional tools available to quickly predict 3D shapes dir-
ectly from a few XFEL or EM experimental 2D images,
which we aim to address in our study.
We present a hybrid approach to search for 3D models

by comparing some experimental image data to the pro-
jection images from existing structural data (Fig. 1). Here,
an experimental image can be quickly aligned to all the
images in the library, and the best matches can be mapped
on to their corresponding 3D models, retrieving a possible
matching 3D shape (Fig. 1b). As part of the strategy, we
construct a set of 3D biological shapes, where we include
a novel step of resizing the 3D models to have the same
volumetric size, allowing for the possibility for a small
novel protein to have a similar shape to a large protein
complex (Fig. 1a). In other words, we use existing
known structures to create a library of low-resolution
shapes by discarding the original molecular composi-
tions. Focusing on shape over volumetric size increases
the coverage of the library to a larger number of pos-
sible biological shapes. We hypothesize that by disre-
garding volume, we can obtain the 3D shape of a

previously uncharacterized sample from our library of
shapes without prior information on its identity or
sequence information. We use existing 2D image align-
ment algorithms for EM data analysis (XMIPP) [8] and
a 3D structure fitting program (GMFIT) [36], which
aligns coarse-grained 3D representation of structure
data from X-ray crystallography and EM. We tested our
strategy using single particle models from the Electron
Microscopy Database (EMDB), and simulated 2D pro-
jection images in real space from EM models that
are resized to have the same actual volume.

Methods
Preparation of 3D model datasets from EMDB
In this study, we used single particle EM data as our
primary source of biological shapes. In order to select
optimal parameters for our protocol, we first assembled
a small test dataset of 25 EM models from the single
particle entries in the Electron Microscopy Pilot Image
Archive (EMPIAR) [37]. Using this small dataset, we first
developed formalisms to analyze the relation between
3D models and 2D images to select suitable
parameters, and then tested our protocol on an
expanded dataset of 250 EM single particle models
obtained from the Electron Microscopy Data Bank
(EMDB) (Additional file 1: Table S1, “Resizing and
aligning 3D models” section) [38].

Resizing and aligning 3D models
In this approach, we aim to provide a tool that proposes
low-resolution “shapes”, regardless of the volumetric
size, from a limited number of query images. In other
words, if two volumes have different sizes but the same
shape, they should be considered as a single entry. Thus,
we resized the volumes of the EM models where they
have the same approximate volume and compared their
similarity in shape by aligning them. To align the EM
models, we used the program GMFIT [36], which has
also been used by the web-tool Omokage Search to
visualize the 3D alignment of pairs of structures [39].
GMFIT uses Gaussian Mixture Model (GMM) to extract
the overall shapes of the models across different experi-
mental sources, such as X-ray Crystallography or EM.
The GMM is a function consisting of several Gaussian
distribution functions (GDFs), and the overlap between
two GDFs can be obtained analytically, allowing volumes
to be aligned quickly.
First, all 3D models from the EMPIAR dataset were

initially resized to normalize every EM density map to
have the same grid size of 1 Å, and a uniform cubic di-
mension of 100 Å per side, using the XMIPP image_re-
size function with spline interpolation (14). For the
small dataset, every model was converted to a Gaussian
mixture model (GMM) with 20 GDFs and a maximum
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number of voxels per cubic dimension set to 64, as rec-
ommended by GMFIT to speed up the conversion. For
the whole EMDB single particle dataset, every model
was converted to a Gaussian mixture model (GMM)
with 40 GDFs and a maximum number for voxels of
each axis was again set to 64. In both alignment proce-
dures, we retrieved the volume information from the
GMMs constructed automatically from the initial resized
models. The retrieved initial volume was then used to
resize each EM model again using the XMIPP image_r-
esize function so that all the models have the same
particle volume (503 Å3) (Eq. 1). This volume was se-
lected so that sufficient space exists around the mol-
ecule, for all types of represented EM maps, in the
2D projection images, which are 64 by 64 pixels.

Dnew ¼ Dold � Drefffiffiffiffiffiffiffiffiffi
Vold

3
p ð1Þ

where Dnew is the new axis dimension, Dold is 100, Vold

is the volume of the EM model as retrieved from its
GMM and Dref is 50 Å.
The newly resized EM models with the approximate

particle volume of 503 Å3 were again converted to
GMMs using the same parameters, and superposed
with each other using GMFIT. We used the correl-
ation coefficient (CC) as the 3D structure similarity
measure (Eq. 2)

CC ¼
R∞
−∞ f A rð Þ f B rð ÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR∞

−∞ f 2A rð Þdr R∞
−∞ f 2B

q
rð Þdr

ð2Þ

where fA (r) is the distribution function of one GMM
(A), and fB (r) is the distribution function of the other
GMM (B) [39]. The CC values range from − 1 to 1,
where 1 indicates maximum similarity.

Fig. 1 a Overview of building the 2D projection image library from 3D biological shapes. Known structures are resized to have the same particle
volume and are aligned with each other to determine their similarity. Representative shapes are picked for each shape type and projection
images are simulated based on them for the 2D projection image library. b Overview of finding candidate 3D models from a few 2D
experimental images in real space. The input image is aligned against the library of images, and the close matches are mapped to their
corresponding 3D models, resulting in a potential 3D candidate model
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Generating 2D projection images from resized 3D models
The 2D projection image library was created from 3D
EM density maps in XMIPP, using the angular_projec-
t_library program [8]. The angular_project_library pro-
gram takes a 3D volume and calculates 2D projection
images from different orientations. The surface of the
volume is divided into a triangular grid based on an
icosahedron and sampled evenly. In the small dataset,
196 2D projection images were created for each of the
25 EM models in the initial test dataset (4900 images in
total). In the expanded set of 250 EM models used to
test the match retrieval, 91 projection images were cre-
ated per model (22750 in total) in order to reduce the
computational cost without compromising sufficient
coverage of the 3D shape. Every 2D projection image
generated is 64 by 64 pixels in size.
To test the developed match retrieval algorithm on the

expanded dataset, we chose 3 example models that are
not present in the 2D projection image library as test
cases: EMD-3347 (T20S proteasome), EMD-2275 (Yeast
80S ribosome) and EMD-2326 (GroEL/ES with ligand).
For each of the three models, we chose 5 random images
from the stack of images created in the protocol above
and used them as input images.

Aligning and assessing the similarity between 2D
projection images
The alignment of the 2D projection images were per-
formed using a modified version of XMIPP’s align2d
utility [8] to assess their similarity. We aligned all the
images in a stack directly against one of the images as a
fixed query reference, where we retrieved the maximum
correlation coefficient (CC) for each image against that
reference. The maximum CCs retrieved here were then
used to calculate the overall match score between the in-
put and each of the EMDB ID represented in the projec-
tion image library.

Statistical analysis
All the statistical analyses were performed using R
package version 3.2.2 [40].

Clustering
We performed hierarchical clustering to group the EM
models based on their 3D structure similarity, and
the overlap in their 2D projection images. The 3D and 2D
hierarchical clustering were performed using the following
eq. (3) as the distance, d:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−CC2
� �

2

q
ð3Þ

where CC is the pairwise correlation coefficient from
the GMFIT or align2d alignment. The hierarchical

clustering was performed using the ward.D clustering
algorithm [41].
For the small dataset, in addition to the comparison of

the 3D shapes, we sought to assess the similarity
between the 25 EMDB IDs based solely on their 2D pro-
jection image set (196 images each). We first calculated
the submatrix of CCs between images for one EM model
against images from all EM models (196 by 4900 CCs),
which we used to calculate the Pearson’s correlation co-
efficient (PCC). Using the PCCs, we then performed
hierarchical clustering with the same parameters as
stated above to gain insight into the overall similarity be-
tween the 2D projection images per EMDB ID.

Multidimensional scaling
In order to visualize the similarity between each individual
2D projection image in the small dataset, we performed
classical multidimensional scaling analysis (MDS) on the
4900 by 4900 pairwise score matrix constructed with the
2D image alignment CCs (see “Aligning and assessing the
similarity between 2D projection images” section; Fig. 4).
Classical multidimensional scaling presents the data in
k-dimensional space, such that the distances between
them are approximately equal to their dissimilarities. In
the MDS analysis, the parameter k was set to 2, such that
only 2 dimensions are calculated, after assessing the good-
ness of fit and the associated eigenvalues. For the
visualization, we divide the resulting plot into cells that
are 0.1 by 0.1 unit and count the number of images and
the average CC in each cell (Fig. 4b). We populate these
cells by selecting a representative image with the highest
occurring EMDB-ID in that cell (Fig. 5).

3D model match retrieval protocol
The purpose of such database is to identify corresponding
3D shapes to a given query image based on its similarity
to the images in the 2D projection image library. In order
to retrieve matches for a given query 2D projection image,
we defined a match score based on the 2D alignment CCs.
First, the CCs are normalized as Z-scores, calculated as:

Z i; jð Þ ¼ CCi; j−μi
σ i

ð4Þ

where CCi,j is the align2d correlation coefficient between
a given input image i and a projection image from the li-
brary j, μi is the mean pairwise correlation coefficient for
input image i and σi is the standard deviation. Then, for
each EMDB ID in the image library, denoted by n, the
top ten Z-scores are summed per input image i, giving
Xi

n. For x number of input images, the sum of top ten
Z-scores per EMDB ID, Sn is given by:
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Sn ¼
Xx

i¼1

Xn
i ð5Þ

The final match score Tn for the EMDB ID n is given
by:

Tn ¼ Sn−μS
σS

ð6Þ

where μS is the average Sn for all EMDB IDs and, σS is
the corresponding standard deviation.

Results
Analysis of single particle entries in EMDB
The single particle EMDB entries retrieved in August
2016 can be described as having mostly up to 3 unique
components per EM map (Additional file 1: Figure S1A).
The resolutions of the maps are spread between 1.72 Å
and 78.1 Å (Additional file 1: Figure S1B). Most of these
entries are for various kinds of proteins, followed by
viruses (Additional file 1: Figure S1C). The EMPIAR
dataset of 25 models has 20 protein structures, 1 virus,
and 4 ribosome structures in different complex states.

Initial analysis of the 25 EM model test dataset
Comparing size normalized 3D shapes
In order to extract the overall 3D biological shape, we
resized the EM models to have the same particle
volume. The advantage of doing this is two-fold: to
decrease redundancy of shapes, and to normalize
discrepancies between the models. For example, when
we examine the GMMs surfaces, we identified two
spherical shapes, Brome mosaic viral capsid (EMD-6000)
and horse spleen apoferritin (EMD-2788) (Fig. 2a).
When we resized the two spherical shapes, we found
that the similarity between the shapes was very high at
correlation coefficient of 0.932 (Fig. 2b). In the second
example, we assessed the pairing of the two
beta-galactosidases EMD-5995 (yellow) and EMD-2824
(cyan), which have slight differences in their overall size
(Fig. 2c). When we resized EMD-5995 and EMD-2824,
the correlation coefficient improved from 0.971 to 0.982
(Fig. 2d).
In the hierarchical clustering of the 3D similarity

scores, we noted that the same type of structures,
EMD-5995 and EMD-2824 (beta galactosidases),
EMD-6392 and EMD-6393 (tubulin co-factor complexes),
EMD-2275, EMD-2660, EMD-5942 and EMD-5976
(ribosomes) and EMD-2981, EMD-3348, EMD-3347,
EMD-6287 (proteasomes), cluster together at lower
heights below 0.7 on the dendrogram (Eq. 3 and Fig. 3),
indicating a higher level of similarity within those groups.
Moreover, we find that EMD-2788 and EMD-6000, which
are both spherical shapes as mentioned above, cluster

together (Fig. 3; red dashed box), albeit at a greater height
than other cluster groups that consist of the same type of
proteins. This shows that the overall 3D shape can be
sufficiently described by GMMs, and that similar 3D
biological shapes can cluster together regardless of
structure type.

2D projection image comparisons
We performed multi-dimensional scaling (MDS) to
visualize the (dis)similarities between the 2D projection
images, based on their alignment CCs, in two dimen-
sions. While most small dataset EMDB IDs have their
corresponding 2D projection images grouped closely
together, some models such as EMD-2852, EMD-5995
and EMD-6393 have their 2D projection images
spanning a large region of the two-dimensional MDS
space (Fig. 4a). EMD-2852 is a mitochondrial F-type
ATP synthase dimer with a flat crown-like shape,
EMD-5995 is a beta-galactosidase (Fig. 2c, yellow) that
has a quasi-rhombohedral shape with several different
faces, while EMD-6393 is a low-resolution EM model
(24 Å) of a tubulin-cofactor complex made up of 5
components resulting in a highly irregular shape. The
observable differences in the outline of these shapes
from different angles could explain the diversity in their
corresponding 2D projection image sets.
To analyze the overlap between the points, we

arbitrarily divided the MDS plot into 0.1 by 0.1 unit
cells. We counted the number of points within each cell
as well as the mean of the 2D similarity scores (CCs)
between the points in each cell (Fig. 4b). To observe the
distribution of the 2D projection image types on the
MDS coordinate space, we display a representative
image from each cell (Fig. 5). We find that the shape
types on the MDS plot goes from linearly-shaped (Fig. 5;
bottom left-hand corner) to circular-shaped (Fig. 5; top
right-hand corner). Moreover, the most populated cells
consist of irregular globular shapes corresponding to the
type obtained from ribosomes, while the flat cylinder
shapes are also abundant in the data (Additional file 1:
Figure S2). This result indicates that due to the large
overlap between many of the 2D projection, it is difficult
to distinguish between 3D models based on a single 2D
image. Thus, we would require a combination of 2D
projection images to increase the possibility of capturing
the overall 2D image profile belonging to particular 3D
shape.
In addition, we determined how the EM models

cluster with each other based on the information pro-
vided by their 2D projection image similarity. By cluster-
ing the Pearson’s correlation coefficient calculated using
2D alignment CCs, we compared the overall relationship
between 196 images per EMDB model to all other 2D
projection images in the small dataset. In general, there
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Fig. 3 Hierarchical clustering dendrogram of 3D similarity (GMFIT correlation coefficients) between 25 entries in the small test dataset. EMD-2788
and EMD-6000, which are both spherical shapes group together (red dashed box), as well as the EMD-3035 and EMD-6267 which are unrelated
membrane channels (orange dashed box), the beta-galactosidases (EMD-5995 and EMD-2824; green solid box), the proteasomes (EMD-2981,
EMD-3348, EMD-3347, EMD-6287; purple solid box, the ribosomes (EMD-2275, EMD-2660, EMD-5942 and EMD-5976; magenta solid box) and the
tubulin cofactor complexes (EMD-6392, EMD-6393; brown box). We observe that all these related structures fall below the clustering height of 0.7
(red line)

Fig. 2 Superposed GMMs of spherical proteins and beta-galactosidases represented as wire surfaces. In (a) horse apoferritin protein EMD-2788 is
represented in black and Brome mosaic virus EMD-6000 is in magenta and are illustrated to show the large difference in their sizes. In (b) EMD-2788
(black) and EMD-6000 (magenta) are resized to have similar particle volumes, as shown by the greater fit of their superposition. c shows the pairing of
two beta-galactosidases EMD-5995 (yellow) and EMD-2824 (cyan) before they have been resized, where EMD-2824 is slightly larger than EMD-5995,
while (d) shows the beta-galactosidases pairing after they have been resized to have the same volume
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is reasonable agreement between the 3D and the 2D
hierarchical clustering results, and this agreement is
largely dependent on the complexity of the overall 3D
shape. When we compare the hierarchical clustering
from the 3D analysis (Fig. 3) to the 2D analysis (Fig. 6)
in detail, we find that there is agreement between closely
related pairs of models such as EMD-3348 and
EMD-3347, EMD-6392 and EMD-6393, and spherical
shapes like EMD-2788 and EMD-6000. However, we
observe that the clustering between EMD-6287 with
EMD-3348 and EMD-3347 (proteasomes), EMD-2275

and EMD-2660 (ribosomes), EMD-2824 and EMD-5995
(beta-galactosidases) seen in the 3D alignment is lost in
the 2D analysis. The differences in the features between
the structures of these complex shapes are captured in
the projection images, which probably emphasize the
differences between the projection image sets when they
are aligned. When we performed the same analysis with
a varying the number of 2D projections images per EM
model (58, 101, 203 and 406), we observed that a lower
number about 100 projection images per model is suffi-
cient to differentiate between them (Additional file 1:
Figure S4). Thus in the following analysis with a larger
dataset, 91 projection images per EM model were used.

Retrieving matches for a query from a representative
library of 2D images
Here, we constructed a large 3D model dataset to build
a library of 2D projection images to test our match re-
trieval protocol. Protein, virus, and ribosomal structure
types make up the bulk of all single particle EMDB
entries (Additional file 1: Figure S3A). After performing
hierarchical clustering on the GMFIT CCs obtained
from the 3D alignment using GMMs with 40 Gaussian
distribution points, we reduced the number of EMDB
single particle models from 3144 to 1572, by setting the
median height of 0.574 as the cut-off. The median
height, which is the point at which half of the structures
cluster in the hierarchical clustering, was chosen as a
reasonable point to remove structures with high similar-
ity. When we examined a few of the groups that form
below the cut-off of 0.574, we find that they share 3D
GMFIT CC of 0.9 and above. The representation of the
molecular types remains largely the same in terms of
percentage in the reduced dataset, except for a slight in-
crease in the percentage of protein structure types, and
reduction in ribosomal structures for both prokaryotes
and eukaryotes (Additional file 1: Figure S3B). To build
the 2D projection library, we expanded the test dataset
from 25 to 250 EM models; 238 EM models from the re-
duced EMDB dataset were randomly selected and then
added to the 12 reduced EM models from the 25
EMPIAR-EMDB entries. We find that the proportion of
structure types does not change significantly by selecting
250 EM models and is representative of the type of shapes
in the whole EMDB (Additional file 1: Figure S3C).

2D image comparison – Searching for matches in three
different test-cases
Based on the analysis we performed on the small dataset
(“Background” section), we showed that a) 2D projection
images from a given 3D model can be diverse and b) there
is a large overlap between most of the projection images.
These results indicate that using a single input image to
retrieve a 3D model is expected to be unreliable. Thus, we

A

B

Fig. 4 a Multidimensional scaling plot of the small dataset 2D
projection images, as calculated from their pairwise similarity scores
(maximum correlation coefficients) from XMIPP align2D. Each point
represents a 2D projection image in the dataset, colored according
to its EMDB ID. b Number of multidimensional scaling points from
the small dataset 2D projection images in each 0.1 by 0.1 unit cell
(above) and mean pairwise correlation coefficients between the
images in each cell (below)
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Fig. 5 Representative 2D projection images on multidimensional scaling plot. For each 0.1 by 0.1 unit cell in the multidimensional scaling plot of
the small dataset (Fig. 4), a representative 2D projection image is selected from the EMDB ID with the largest number of images occurring in
each cell and overlaid

Fig. 6 Hierarchical cluster dendrogram of 2D image alignment similarity scores, converted to Pearson’s Correlation Coefficients (PCCs), from 25
small dataset EM models. The color-coding of the individual EMDB IDs follows Fig. 3, while the boxes indicate that the tubulin cofactor
complexes (EMD-6392, EMD-6393; brown box), and the spherical shapes (EMD-2788 and EMD-6000; red dashed box) group together as
previously observed
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used five projection images each from three EM models
that are not present in the 2D projection image library to
test the match retrieval protocol (Fig. 7). EMD-3347
(proteasome) and EMD-2275 (80S ribosome) have highly
similar models present in the expanded dataset, while the
third, EMD-2326 (GroEL/ES chaperone complex), has no
good 3D model match in the expanded dataset.
In Fig. 8, the final match score Tn (Eq. 6) is represented

as a blue line, and determines the ranking of the model
matches. Here, we also see the values of Sn (Eq. 5) per
image index, and find that in some cases, the individual
input images have higher top 10 Sn scores than others.
Such a scheme is useful for searching models that match a
particular input image well, based on the 2D shape it con-
tains. For example, in EMD-2326, the top scoring matches
have larger contributions from input images 1 and 4,
which are both ellipsoidal shapes whereas matches that
have larger contributions from input images 2 and 3, such
as EMD-1629 and EMD-6012, bear some similarity to the
cylinder-like shape captured in those images (Fig. 7).
In the case of EMD-3347 and EMD-2275, we were

able to retrieve the most similar 3D models within the
first five hits for each (Fig. 9). For EMD-2326, no true
match exists in the database. When we analyze individ-
ual images, we find that the top-ranking hit captures the
cylindrical nature of the molecule, while the third rank-
ing match resembles the lower half corresponding to the
GroEL subunit of the original model. When we included
the 2D projection image set generated from EMD-2326
in the projection library, and found that we were able to
retrieve it as the top-ranking match using the same 5
input images as our test case, demonstrating that the
inability to retrieve an accurate hit is not due to the
design of the algorithm (Additional file 1: Figure S5).
We find that the final match score, as calculated by

using Eq. 6, is accurate when the GMFIT CCs between
the 3D models of the test cases used and the 3D models
in the expanded dataset are above 0.9 and they tend to
correspond to top three match scores retrieved (Fig. 10).
The top three ranking search matches for EMD-3347
have final match scores significantly higher than the rest,
suggesting that a significant difference between two con-
secutive scores could be used to determine well-suited
matches to the input data. However, as we have
observed in Fig. 4, there are a large number of shapes
that overlap with each other, largely corresponding to
the ribosomal structures, resulting in a larger number of
suitable 3D models being proposed with lesser difference
between the final match scores. Finally, in the case of
EMD-2326, even though some of the proposed 3D
models capture features of the input images, due to the
lack of a significantly well-matched model represented
in the projection library, the final match scores are un-
able to indicate search matches that are more accurate
than the rest. This requires a potential user to examine
several top-ranking 3D shapes in the results to see if
they possess common attributes, in order to assess their
relevance to the data being analyzed. In general, the
match retrieval protocol reveals that the success of the
strategy defined here relies on the coverage of shapes
within the projection image library.

Discussion
In order to extract the overall 3D biological shape, we
resized the EM models so that they have the same
particle volume. We do this in order to decrease
redundancy, and to normalize discrepancies between the
models. By normalizing the volume in the database, we
allow for the possibility that the shapes from diverse
samples could be listed as potential shapes for the query

Fig. 7 Five random 2D projection images used as input for testing 3D candidate model search from EMD-3347, EMD-2275 and EMD-2326. Two
views of each EM model are displayed below the model name (left) and the input projection images numbered 1 to 5 are displayed in the same
row (right)
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images. This is especially useful for samples where a
homologous structure may be unavailable, and yet their
2D images resemble shape of another molecule. This
phenomenon is exemplified by the high similarity
between the GMMs of the spherical Brome mosaic viral
capsid (EMD-6000) and horse spleen apoferritin
(EMD-2788) when their volumes are normalized.
Another purpose for removing redundant 3D bio-

logical shapes is to increase the efficiency of the search
algorithm. Despite reducing the search space, we cannot
avoid the large overlap we observe between many of the
2D projection images, which makes it difficult to
distinguish between 3D models based on a single 2D
image. In cases where the 3D shape is asymmetric, we
observed greater heterogeneity in their corresponding

2D projection image sets. However, the individual 2D
images have the potential to match many different 3D
shapes. This led us to conclude that we would require a
combination of 2D projection images to increase the
possibility of capturing the overall 2D image profile be-
longing to particular 3D shape. The final match scores
(Eq. 6) are normalized such that the contribution of each
input image in the search are equalized (Eq. 5), and thus
do not reflect on the exact quality of the match. This al-
lows us to retrieve reasonable matches to our test exam-
ples and avoid the biasing effect of the highly
overlapping 2D images to certain shape type, as ob-
served in Fig. 5. However, depending on the case, the
difference between the final match scores in the top
ranking matches could indicate the quality of the match
to the input, just as we observe in the results for
EMD-3347 (Fig. 8). In general, that the lack of such final
match score separation, as observed for EMD-2275 and
EMD-2326, does not necessarily indicate low quality
matches, requiring future users to compare several of
the top ranking 3D models to the input data visually in
order to assess their accuracy.
When we performed the test search for the three

example targets, EMD-3347 (proteasome), EMD-2275
(80S ribosome) and EMD-2326 (GroEL/ES chaperone
complex), the quality of the retrieved matches depended
on the availability of highly similar structural alternatives
in the database. Yet, in the case of EMD-2326, where no
highly similar structure was present, we were able to
identify shapes that corresponded to the outlines of each
of the five input images; images 1, 4 and 5 contribute
more to the top 3 ranking hits which have ellipsoidal
and cylindrical shapes while images 2 and 3 contribute
less due to the absence of similar “bullet-shaped” models
in the projection library. In summary, our results indi-
cate that with sufficient coverage in shape types in the
projection library, we will be able to provide an idea of
the 3D shape captured by the input image more reliably.
We find that this hybrid approach allows for many

potential applications. Firstly, we envision that some EM
or XFEL data that might not be good enough for 3D re-
construction still contains useful information about the
3D structure of the sample of interest, and thus obtain-
ing a possible idea about the 3D shape could be a useful
start. In some cases, producing a 3D structure with
atomic-level resolution is not the only use for EM as an
experimental technique. For example, 2D negative stain
EM images have been used to gain insight into the func-
tional complex formation of the mammalian circadian
clock proteins in the cell [42]. Our aim is to provide
such an alternative tool to obtain new information from
the experimental data.
In the future, we aim to expand our projection library to

include 3D shapes gathered from the Protein Databank

Fig. 8 The top 20 model matches for EMD-3347, EMD-2275 and
EMD-2326 with contributions to the score from each of the five
input images. The stacked bar plot shows the top ten Z-score sum
(Sn score) by input image (1 – blue, 2 – orange, 3 – yellow, 4 – green, 5
– maroon; left y-axis) for each of the top 20 model matches that are
ordered by the final match score (Tn score; blue line; right y-axis)
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(PDB) [43], SASDB [44] and the rest of the Electron
Microscopy Databank (EMDB) [38]. This approach is
analogous to other webservers such as DARA [34] and
SASTBX [35] for searching initial SAXS models,
EM-surfer [45] for comparing a particular EM model to a
database of EM surfaces, and Omokage search [39], for
searching 3D structures across all the different structure
databases and retrieving different similar shape types
across different functions and resolutions. When perform-
ing large-scale structural data analysis, our strategy can be
part of an integrative structural biology approach [46].
The visual proteomics approach promises to create a
“molecular atlas” of the cell by fitting individual tem-
plate structures into an electron tomography map of
cell [47, 48]. In visual proteomics, 3D template
matching is used to assign structures to the electron dens-
ities in a tomogram [49, 50]. Our strategy could be used
to identify cellular components, in various orientations, in
2D electron microscopy data. It could also be used to
quickly estimate the mixing of states or conformations
that can be present within the experimental data [51].
For the performance of the match retrieval, a stack of

7544 images takes approximately 7.2 min using a single
core of Intel Xeon E5–2650 V2 to align against a single

input reference image. Using a cluster with multiple
nodes and by dividing the image library into three stacks
that can be aligned against the input query images as
references concurrently, a search with one input image
can be performed in approximately 1 h. We plan to
increase the speed of the calculations by reducing the
number of 2D images simulated per model in the library,
and to pre-compute the similarity between the images so
that quick neighbor searches can be performed.

Conclusion
In this study, we were able to assemble a collection of
3D biological shapes by resizing known EM structures
to the same relative size, and then comparing them by
treating them as GMMs. Furthermore, when we simu-
lated 2D images from the 3D shapes, we found that
there can be a large overlap between many of the images
from different models. Yet, depending on the complexity
of the given model’s shape, the corresponding 2D
projection images can be highly heterogeneous. Still, the
algorithm we have proposed in this study is able to
determine the 3D shape that matches a low number (5)
of query images, when searching against a library of 2D
projection images from 250 EM models. Our strategy

Fig. 9 Top five search hits for each input model (EMD-3347, EMD-2275, EMD-2326). From rank #1 to # 5; EMD-3347: EMD-5593, EMD-6217,
EMD-6287, EMD-1629, EMD-2409: EMD-2275: EMD-6316, EMD-3163, EMD-2660, EMD-6010, EMD-1417; and EMD-2326: EMD-5153, EMD-1283,
EMD-1656, EMD-6617, EMD-6010
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can find potential 3D shapes from experimental data
without considering volume information. In the future,
we will expand the number of biological shapes repre-
sented in the 2D image library using data from other
structure databases like the PDB, EMDB and SASBDB,
and make it available as a webserver for the structural
biology community. Lastly, the applications of our
hybrid approach are numerous, whether it is used to
quickly identify possible shapes for novel single particle
data, to estimating the number of conformations that
can be present in experimental data from EM or XFEL.

Additional file

Additional file 1: Table S1. List of EMDB IDs in both small (25 models)
and expanded dataset (250 models). Figure S1. Distribution of single
particle EMDB entries according to number of components A), resolution
B) and structure type C). Figure S2. Multidimensional scaling plot
zoomed in to present the top 3 most populated cells with the following
axis boundaries: cell 33 (− 0.2 < = x < − 0.1, 0 < = y < 0.1), cell 59
(0.1 < = x < 0.2, − 0.1 < =y < 0) and cell 60 (0.1 < −x < 0,2, 0 < =y < 0.1). The
cells are split further into 0.05 (x axis) by 0.02 (y axis) subcells. Each

representative image has the highest occurring EMDB ID in each subcell.
Figure S3. Structure types in A) All Single Particle data in the EMDB,
(B) Reduced Single Particle data based on 3D analysis and C) in the
randomly expanded EMDB data. Figure S4. Gaussian kernel density plots
illustrating the distribution of 2D image alignment correlation coefficients
(CCs) from the small dataset, with 406, 203, 101 and 58 different 2D
projection images per EM model. For each number of 2D projection
images used, we first calculated the submatrix of CCs between images
for one EM model against images from all EM models (for example, 406
by 10150 (=406 × 25) CCs). Then we calculated the kernel densities of the
submatrices associated with each EMDB ID. The plots show that there is
no change in the position of the peaks, which means that the
distribution of the scores remains consistent. Figure S5. The top 50
model matches for EMD-2326, when performing the search using 5 input
images against the 2D projection image library generated from the ex-
panded dataset of 250 EM models and EMD-2326 (251 models in total).
(PDF 2600 kb)
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2D: Two-dimensional; 3D : Three-dimensional; CC : Correlation coefficient; EM
: Electron Microscopy; EMDB: Electron Microscopy Database; EMPIAR: Electron
Microscopy Pilot Image Archive; GDF: Gaussian distribution function;
GMM: Gaussian mixture model; MDS: Multidimensional scaling;
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Fig. 10 3D GMFIT correlation coefficients vs. final match scores (Tn). In the case of EMD-3347 and EMD-2275, which have high similarity (GMFIT
CC > 0.9, dotted red line) to at least one model in the projection image library, the corresponding final match score as retrieved using 5 input
images in the search against the projection library is within the top 10 ranked hits. In EMD-2326, there is no highly similar model present
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