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Abstract

Background: Procedures for controlling the false discovery rate (FDR) are widely applied as a solution to the

multiple comparisons problem of high-dimensional statistics. Current FDR-controlling procedures require accurately
calculated p-values and rely on extrapolation into the unknown and unobserved tails of the null distribution. Both
of these intermediate steps are challenging and can compromise the reliability of the results.

Results: We present a general method for controlling the FDR that capitalizes on the large amount of control data

often found in big data studies to avoid these frequently problematic intermediate steps. The method utilizes
control data to empirically construct the distribution of the test statistic under the null hypothesis and directly
compares this distribution to the empirical distribution of the test data. By not relying on p-values, our control
data-based empirical FDR procedure more closely follows the foundational principles of the scientific method:

application to a problem in structural genomics.

that inference is drawn by comparing test data to control data. The method is demonstrated through

Conclusions: The method described here provides a general statistical framework for controlling the FDR that
is specifically tailored for the big data setting. By relying on empirically constructed distributions and control
data, it forgoes potentially problematic modeling steps and extrapolation into the unknown tails of the null
distribution. This procedure is broadly applicable insofar as controlled experiments or internal negative controls
are available, as is increasingly common in the big data setting.
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Background

Methods based on the false discovery rate (FDR) [1] have
emerged as the preferred means to address the multiple
comparisons problem of high-dimensional statistical infer-
ence and are widely applied across the sciences [2-5]. The
crucial component impacting FDR estimates is the
unknown shape of the tail of the null distribution [6]. In
settings with limited data, many FDR-controlling proce-
dures rely on assumptions about the nature of the tails of
the null distribution or build approximations to these tails
using subsets of the test data [2, 6, 7]. In these procedures,
FDR estimates involve extrapolation into the unobserved
tails of the null distribution.
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The increasingly common “big data” setting, wherein
thousands of data points are obtained for thousands of
variables simultaneously, is revolutionizing statistical
analysis across disciplines [8] and presents new oppor-
tunities for controlling the FDR. In particular, in big data
analysis, a wealth of control data is often available, either
from separate controlled experiments or from internal
negative controls. Control data can be obtained from a
broad range of experimental and data collection regimes.
A controlled experiment can be a separate protocol in
which all environmental and experimental variables
match as closely as possible with those of the test
experiment except for the treatment applied. Alterna-
tively, internal negative controls may consist of a subset
of data points within the test experiment which are a priori
determined to be unaffected by the treatment [9, 10].
Control data has been used to improve FDR estimates
through improved parametric or non-parametric models.
However, we show that the frequently-available large
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amount of control data in the big data setting permits esti-
mates of the FDR that rely on fewer assumptions and are
simpler and more direct. Here we describe an FDR-control-
ling procedure that dispenses with often complicated inter-
mediate calculations of p-values, model adjustments, and
extrapolation and instead models the tails of the null distri-
bution directly. This is demonstrated below with kernel
density estimation.

Many extant methods assume that the tail behavior of
the null distribution can be accurately estimated via ex-
trapolation and rely on an assumed parametric model
for this purpose. But these assumptions are difficult to verify,
and when misspecified, can compromise the performance of
the FDR-controlling procedure [7]. To address these prob-
lems, control data has been used for assessing significance
and improving FDR estimates in various manners. For
instance, some approaches use control data to obtain more
accurate p-values by estimating the parameters of an as-
sumed parametric distribution for the null [10-16], but
subsequent application of an extant FDR-controlling pro-
cedure is still subject to model misspecification [7].

Some procedures use control data to obtain more ac-
curate p-values from non-parametric methods [17, 18],
but continue to rely on extrapolation into the tails of the
null distribution through an extant FDR-controlling pro-
cedure. Additionally, as FDR estimates are sensitive to
small absolute errors in p-value calculations, often ex-
cessive non-parametric sampling is necessary to ensure
reliability [19]. Further, p-values obtained from resampling
are often reported incorrectly, further compromising FDR es-
timates [20]. Thus, while control data in principle permits ac-
curate p-value computation and FDR estimation, in practice
the intermediate step of accurately calculating small p-values
for the entire set of test data is frequently problematic.

Control data has also been used to make more direct
estimates of FDR. For instance, an algorithm that makes
positive calls is applied to both the test data and the
control data, separately, and the FDR is then estimated
from a ratio involving positive calls for test and control
data [21-24]. While these kinds of methods are non-para-
metric, empirical, and informed by control data, they re-
turn a point estimate of FDR rather than distributions of
test statistics and FDR estimates. Thus, they do not yield
q-values [25] or local FDR estimates per data point.

Here, we extend direct empirical approaches to describe
a general method for empirically estimating both local and
global FDR in big data settings by utilizing control data to
directly compare the test and control distributions. Our
procedure avoids the intermediate step of calculating
accurate p-values, which is can be challenging and compli-
cated and often compromises the reliability of a subse-
quently applied FDR controlling procedure [7, 19, 20]. By
using control data, as is frequently found in big data studies,
we model the tails of the null distribution directly and forgo
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extrapolation steps common to many extant FDR control-
ling procedures. The empirical nature of this approach
permits us to assume only that the control data is a reliable
representation of the experimental variability, rather than
having to invoke stronger assumptions about the paramet-
ric forms of the distributions and the dependence structure
of the observations. Omitting potentially problematic steps
in FDR calculations, the simplified method presented here
adheres more closely to a core tenet of experimental sci-
ence: that significance is assessed by directly comparing test
data to control data. As the big data revolution continues
to expand across and within disciplines, the procedure de-
scribed here offers a new tool for reliable assessment of
statistical significance.

Methods

Bayesian formulation of the FDR

We formulate the test data as a finite mixture drawn from
unaffected and affected distributions, as is common for
FDR-controlling procedures:

J(®) =Afo(x) + (1-1)-f1 (%) (1)

where fis the mixture density of the test data; fo, fi are
the unaffected and affected densities by treatment of
domain-specific processes, respectively; and A is the mix-
ing proportion, i.e. the a priori probability that a data
point was drawn under the null hypothesis. Adopting
the Bayesian perspective, we determine statistical signifi-
cance via the posterior,

P(x is unaffected | %1, ...,x,) = ,

which is called the local FDR [7].

Often in high-throughput experiments, only a modest
subset of the test variables are expected to be affected.
Therefore, in practice we approximate the local FDR by
the upper bound for the posterior probability that a data
point is unaffected,

fol®)
flx)’

(%) <

P(x is unaffected | x1, ... (2)
as used by Efron [7].

The global FDR is the ratio of the expected number of
unaffected observations N, above a specified critical
value x. of the test statistic, to the expected total num-
ber of observations N, in the test set above x,:

EIN, nyP(X,=zx.)

FDR(.?CC) = E[Nt] = Vl:'P(thxc) (3)

where n,, n, are the observed numbers of unaffected and
total data points, respectively, and X,, X; are random
variables denoting the unaffected and total test statistics,
respectively. Many extant methods use the number of
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observations in the treated sample above the critical
value to estimate the denominator and extrapolate from
a parametric null distribution to obtain an estimate of the
numerator. With empirical controls, both the numerator
and the denominator of the global FDR can be estimated
by counting the number of observations above the critical
value for each sample.

Assumptions
The empirical nature of our method means that we require
two assumptions inherent to experimental science:

1. The controls in the study reasonably represent the
unaffected data points in the test set. Specifically, the
process that generates the unaffected observations
within the test data is the same as the stochastic
process which generates the control data; that is, the
processes contain similar errors, biases, artifacts, etc.

2. The control data is drawn from the unaffected
population and does not contain affected data points.

The implication of the first assumption is that the tails
of the control and test distributions are qualitatively simi-
lar. The contribution of this work is based on the convic-
tion that the tails of the unaffected distribution are better
estimated by control samples than by p-values obtained
from parametric or non-parametric methods, and thus
rests on the two assumptions above. In contrast to many
extant FDR-controlling procedures, we do not assume a
parametric form or dependence structure for the data.

Algorithm: Control data-based empirical FDR
A general algorithm for our approach is as follows:

1. Define a test statistic X appropriate for the
application.

2. Empirically construct f; the mixture distribution of
the test statistic, from the test data.

3. Compute X,, the set of observed test statistics for
the control data.

4. Empirically construct f, from X,.

5. (optional) Identify the modes m1, and m, of the
control and test distributions, respectively. If these
modes differ due to technical artifacts such as
sampling error or the method of density
construction, then construct f; from f, and fby
translating f; by y, where y = m, - m, is the
difference of the modes of the test and control
distributions, respectively. Specifically: fo(x) = f.(x + y).
Otherwise, set f; = f.. Note that if y is large, then this
suggests that the control data does not accurately
represent the experimental condition of the test data,
and the results may be unreliable.
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6. Determine the local FDR via equation (2) or global
FDR via equation (3).

This approach is demonstrated below.

Results

Application background

Our motivating example is from molecular biology: the
problem of identifying regions of the human genome
which have been deleted or duplicated via non-allelic
homologous recombination (NAHR). NAHR is a common
cellular mechanism that causes large rearrangements of
the genome by incorrect DNA repair in long, highly simi-
lar (homologous) regions of the genome, known as seg-
mental duplications. In brief, pairs of long, homologous
loci (each =1 kb in length, > 90 identity) may recombine
during replication or repair, resulting in the deletion,
duplication, or inversion of large segments (1 kb to 1 Mb
in length) of intervening DNA sequence (reviewed in
[26-28]). Because NAHR occurs at highly similar
sequences, the number of genomic loci that are suscep-
tible to NAHR is relatively small: only thousands of
genomic loci in the human genome of approximately 3 bil-
lion nucleotides. All other regions of the human genome
are not susceptible to NAHR or are exceedingly unlikely to
undergo NAHR since they do not fulfill the stringent hom-
ology requirements of NAHR.

In previous work, we developed a Bayesian algorithm for
genome-wide detection of NAHR events using high-
throughput DNA sequencing data [29]. Our study focused
on a subset of n = 324 regions susceptible to deletions and
duplications via NAHR across 44 human individuals. These
regions were obtained from a segmental duplication data-
base [30] of the human genome. An unusually high or low
number of reads mapped to a particular NAHR-susceptible
region (called read-depth) may indicate the occurrence of a
duplication or deletion via NAHR. There are several known
sources of bias that affect read distribution [29]. Benjamini
& Speed found that an adjustment for guanine/cytosine
(GC) content addressed such biases [31], which lead to our
choice of a test statistic.

Our test statistic is the ratio of observed read-depth to
mean read-depth for an a priori defined NAHR-suscep-
tible interval of the genome. Namely, the observed
read-depth is the number of reads mapped to the given
region, and the mean read-depth is the average number
of reads mapping to that region, taking into account
various sequence composition characteristics known to
affect read-depth (see [29, 31]). For a particular genome,
the empirical distribution f of test data across the n = 324
regions that are susceptible to NAHR deletion or duplica-
tion is shown in Fig. 1. We expected that only a modest
subset of the NAHR-susceptible genomic loci actually ex-
perienced an NAHR deletion or duplication.
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m control
m test

Fig. 1 Empirical probability density functions f and f. for the observed
read depth ratios for the test and control data, respectively. Both
density functions were obtained by kernel density estimation with a
Normal kernel. The vertical black line indicates y =1

Constructing a control distribution from control data

In our big data scenario, with many data points from re-
gions throughout the human genome, we realized that we
could empirically construct a control distribution f, from
data known to be drawn from the null hypothesis, and use
f. to derive the null distribution f; directly, without further
assumptions about the test data.

Because the mechanism of NAHR is well-established
[26-28], it is possible to confidently delineate regions of
the genome that are not susceptible to rearrangement
via NAHR to define a set of internal control regions. Since
only a relatively small number of loci in the human gen-
ome are susceptible to NAHR, we sampled regions from
the large remaining portion of the human genome to ob-
tain internal control data points, or negative controls, and
sought to empirically define f, from these regions. For the
purpose of defining the control distribution, negative con-
trols from within the test dataset and data obtained from
separate, controlled experiments serve the same purpose.

We randomly sampled 324 - 10 internal control regions
for each of the 44 genomes separately, i.e. regions not
susceptible to NAHR. The distribution of read-depth
across the genome in whole genome sequencing experi-
ments has been extensively studied, and GC content has
been found to be the major source of variation in read-
depth by genomic region [31-36]. It has been shown
that GC content-specific correction factors can be used
to remove dependence on GC content in the analysis of
read-depth [31]. By employing a test statistic based on
GC content-specific correction factors, our test data and
control data are expected to follow the same distribution
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under the null. We performed kernel density smoothing
with a Normal kernel to obtain f, from the control data
points. Alternatively, other methods of empirical density
construction can be used. Figure 1 shows f and f. for a
representative genome analyzed. The control distribu-
tion f, has long tails that are inconsistent with a normal
distribution or a mixture of Gaussians. With this large
number of controls, there is little advantage in using a
parametric control distribution rather than a non-para-
metric distribution.

Deriving the null distribution from the control
distribution

It is tempting to declare that the unaffected distribution f,
is equal to the control distribution f.. However, due to arti-
facts arising from the method of density estimation used
to construct the test and control distributions, the modes
of the test and control densities may differ slightly and
compromise subsequent analysis. For instance, many
density estimation methods depend critically on the
smoothing parameter, which is often difficult to choose
[37]. The principal purpose of using control data is to
learn the shape of the tails of the null distribution, which
may be difficult to model with a parametric form. At the
discretion of the statistician, it may therefore be more
conservative, within the context of the specific application,
to obtain the null distribution by shifting the control dis-
tribution so that the modes of the test data and control
data agree. This optional step employs an additional as-
sumption: that most of the test data is drawn from the un-
affected distribution, and therefore the mode of the test
data is in fact the mode of the unaffected distribution.
Nevertheless, this optional step adheres to the purpose of
using control data; that is, to inform on the shape of the
tails of the null distribution.

For the sake of demonstration, we introduce a location
parameter y and define fy(x) = f.(x + y). Under the assump-
tion that most of the test data is drawn from the unaffected
distribution, we reason that the mode of the test data is in
fact the mode of the unaffected distribution. Thus, y is the
difference in the modes of the control distribution f, and
test distribution f. With m, and m, being the mode of the
control and test distributions, respectively, then y = m, — m,.
We found y to be consistently small across the 44 individ-
uals analyzed (Additional file 1: Figure S1), consistent with
the difference in modes of the control and test distributions
arising merely as an artifact of the empirical density con-
struction, and not due to confounding factors affecting the
control and test data differentially.

Results for the NAHR application
We applied our control data-based local FDR procedure
to data obtained from the 1000 Genomes Project [38]
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for 44 human genomes. In particular, for each of the 44
individuals separately, we constructed the empirical null
distribution by randomly sampling data from the control
regions of the genome, and compared the test data to
the control data as outlined in the algorithm above. The
test data (Additional file 2: Table S1) was derived from the
read counts for a subset of 324 regions of the genome that
are a priori susceptible to NAHR rearrangements according
to the established mechanistic knowledge of NAHR
[26-28, 30], i.e. the same 324 regions for each of the
44 individuals. On the other hand, for each of the 44
individuals, a different set of 3240 control regions
were randomly sampled to form the control data
(Additional file 3: Table S2).

We found that the numbers of significant calls (local
FDR < 0.05) varied modestly among the 44 individuals
analyzed in this study (Additional file 4: Figure S2). All
of the individuals analyzed are considered to be normal,
healthy individuals, so we did in fact a priori expect
similar results across individuals. Further, the location
adjustment applied to the control distribution to obtain
the null distribution was similarly small across all indi-
viduals (Additional file 1: Figure S1). Altogether, these
similarities across all individuals, despite that the analysis
of each individual involved an entirely distinct control
dataset, demonstrate the robustness of the procedure to
variability in control data.

In our previous work [29], using a local FDR threshold
of 0.05, we found that numerous genes are affected by
the NAHR-mediated genomic rearrangements, including
genes implicated in genetic disorders and with clinical
relevance. For example, we called an NAHR deletion on
chromosome 5 that deletes gene GTF2H2. This gene en-
codes for a transcription factor and has been linked to
spinal muscular atrophy, a common and lethal auto-
somal recessive neurodegenerative disorder [39, 40].

Comparison to existing FDR-controlling procedures
Assumed parametric forms

A typical statistical approach to address the multiple com-
parisons problem is the following: (i) specify some para-
metric model for the test statistic (read-depth of a
genomic region in our example) under the null hypoth-
esis, or a non-parametric method; (ii) calculate a p-value
from this model; (iii) control the FDR by some procedure
(e.g. [1, 2, 7]). But posing a parametric model that reliably
models the tails of the null distribution of the test statistic,
the first step in the approach, is difficult [29, 31, 32].
Non-parametric procedures can avoid extrapolation but
require immense computational resources in studies in-
volving more than hundreds of simultaneous tests, and
are still subject to model misspecification if the assump-
tions about how the samples were drawn are incorrect [7].
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Extant FDR-controlling procedures assume that accurate
p-values have been obtained. Indeed, it is likely that in
many cases when FDR methodology is applied, the p-values
were generated from a misspecified model, which has been
shown to hinder FDR-controlling procedures [7]. By empir-
ically constructing the null distribution directly from the
control data, our strategy relieves the researcher of having
to derive accurate p-values. In practice, this will often play
to the researcher’s strengths. For instance, following our
strategy, an experimental biologist can focus on designing
an appropriate controlled experiment or confidently identi-
fying reliable negative controls, rather than attempting to
obtain accurate p-values, which may not be the researcher’s
area of expertise.

Other uses of control data

Control data has been used to empirically estimate the
EDR by swapping samples: switching the role of control
data and test data, and computing the global FDR as the
number of calls made for the control data divided by the
number of calls made for the test data [21, 23, 24].
These methods do not specify or use a test statistic, but
rather, they calculate the ratio of the number of calls for
different thresholds of some parameter, say 6, of the
algorithm employed. By varying the parameter threshold
of the algorithm, a function 4(6) for the empirical FDR
is obtained. The number of data points whose score 6
exceeds a given threshold does not define a test statistic
because it collapses the data into a single value. As such,
in these methods, no null distribution nor test distribu-
tion is constructed, and so the local FDR or g-value
cannot be computed.

Efron’s local FDR

Efron’s local FDR approach [7] attempts to address this
model misspecification problem by allowing the null dis-
tribution of the inverse standard normal transformed
p-values to deviate from the theoretical null distribution
of N(0,1). Namely, a small portion of the test data
around the mode, assumed to be almost entirely drawn
from the null, is used to obtain empirical estimates of
parameters y,0 to define the null distribution as N(u,0).
While this is shown to yield improved results over the
classical parametric approach, this procedure still has
two key assumptions: first, that the correct distribution
for the test statistics was employed to obtain accurate
p-values; and second, that extrapolation of tail values
from a selected subset of the p-values is accurate.

We emulated the local FDR approach described by Efron
[7] to compare it to the control data-based approach de-
scribed here. While Efron’s local FDR approach was applied
to z-transformed p-values, here we applied the procedure
to the test statistic directly. This is appropriate because the
genomes analyzed have large numbers of mapped reads,
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and thus for long regions such as those vulnerable to
NAHR events (1 kb to >100 kb) [30, 41], hundreds to
thousands of reads are expected to have been sampled
from these regions under the null hypothesis. Further, case
studies of the genetic mechanism at hand indicate that the
rate of NAHR is relatively low [29], and thus the local
FDR assumption that the bulk of the test data is from the
null is indeed valid. As such, the central limit theorem’s
asymptotic properties apply and it is reasonable to assume
that our test statistic is approximately normally distrib-
uted, and thus we can apply Efron’s local FDR procedure
to the test statistic itself.

Following the local FDR procedure, we defined the
half-height region to be the region about the mode of the test
distribution where the test density is half of the test density

at the mode, i.e. H = (x,7) where x < m,y > m, f(x) = f(y)

portion of the test data is expected to be drawn from the
null, the half-height region should be composed almost
entirely of data points from the null model. We then fit vari-
ous parametric distributions to the subset of test data points
lying within the half-height region. Local FDR values were
obtained via equation (2). Our main result, that parametric
models poorly fit the tails of the unaffected distribution lead-
ing to underestimates of the FDR, also holds for several other
distributions (Table 1; Fig. 2).

The control data-based approach is more conservative
than semi-parametric approaches in the manner of [7].
As shown in Table 1, about half as many tests pass an
FDR 0.05 threshold for the control-based approach as
under the local FDR approach under several assumed
parametric distributions. Indeed, this is because the
control-based approach reflects the true tail behavior
better than these parametric models (Fig. 2).

The values taken by the null distribution are the focus
of FDR-controlling procedures and parametric hypothesis

and m is the mode of the test density f. Since a large

Table 1 Number of test data points that are significant (FDR
< 0.05) according to various strategies for controlling the
FDR. “Control data” indicates the control data-based local
FDR strategy described in the present work. All other
strategies indicate the assumed parametric form for the null
distribution whose parameters are estimated via Efron’s semi-
parametric local FDR method. Results are shown for a
representative individual

null distribution form number of significant calls

control data 47

lognormal 106
2-mix 118
3-mix 119
4-mix 123
normal 106
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Fig. 2 Probability density functions for the test distribution, mode-
shifted control distribution, and 1-, 2-, 3-, and 4- component Gaussian
mixtures fitted to the central region of the test data. The vertical
dotted black line indicates the mode of the test data. The vertical solid
black lines indicate the boundaries of the half-height region

testing in general. The central peak of our control data is
similar to the peak of a Gaussian (Fig. 1), but importantly,
the tails diverge (Fig. 2). Using control data, we see that in
our example such extrapolation would be inaccurate and
compromise the reliability of our results.

Discussion
The complex nature of the data and the large number of
comparisons encountered in large-scale, big data studies
presents serious challenges for traditional hypothesis testing
and p-value approaches. In these studies the main challenge
is often to distinguish events affected by a treatment from
those that are unaffected. The rationale behind the method
proposed here is that control datasets in science offer a
time-tested means to characterize the behavior of un-
affected events. We have outlined a simple method for de-
termining local and global FDR empirically using only
control and test data. Because of the empirical nature of
our approach and its reliance on only two weak assump-
tions, it is robust in different settings. These assumptions
are sufficiently broad to accommodate the use of control
data derived from controlled experiments or negative con-
trols from various experimental protocols. Extant, popular
experimental designs amenable to this statistical framework
in computational biology include chromatin immunopre-
cipitation sequencing (ChIP-seq) analyses of DNA-binding
factors and RNA-seq analyses of differential gene expression.
The usefulness of our approach depends on the quality
of the data. The fundamental assumption of the ap-
proach, and indeed of all experimental science, is that
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the biases, errors, and inherent variation of the experi-
ment are not systematically or selectively different for the
control data than for the test data. Our approach is valid
to the extent that the control data is qualitatively similar
to the test data, and this therefore comprises our assump-
tions. Therefore, the chosen control dataset is an experi-
mental variable affecting the outcome of the procedure.
For instance, in our example, the sampling of internal
negative control regions from the unaffected portions of
the genome may contribute to variability in the results
(Additional file 4:Figure S2). Consequently, verification of
the results of our method are not different than with other
FDR-controlling procedures.

While this empirical method avoids the requirement
that the test statistic follows a specified probability dis-
tribution, it does not completely obviate the need to
take care in the choice of a test statistic. It remains im-
portant to choose a test statistic that neutralizes the
impacts of ancillary features that add extraneous noise.
From this perspective, the optional location parameter
step in our general procedure provides a preliminary
measure of the reliability of the control data and ro-
bustness of the chosen test statistic. In our example set-
ting, the similarly small location parameter differences
across individuals and the similar numbers of signifi-
cant calls of the procedure across individuals indicate
robust results. With this in mind, interpretation of stat-
istical significance according to the FDR produced by
our procedure is the same as with other methods, and
experimental validation remains an important step for
verification of the reliability of the control data and
consistency of the experimental regimes analyzed.

In some studies focused on changes, such as changes
in gene expression, it is appropriate to use test and
matched control experiments to calculate the test sta-
tistics to conduct a hypothesis test. Thus, to obtain
values of the test statistic for the unaffected population,
another set of matched controls is required, yielding
comparisons of the within-treatment control samples
to the between-treatment control and test differences.
While taking this approach may increase the cost of
such studies, it provides the only means known to use
for avoiding the hazards of misspecification and the
mathematical or computational challenge of estimating
accurate p-values.

This approach relies on two key assumptions of experi-
mental science: that controls are obtained in a manner
that reasonably represents the unaffected population, and
that the control data does not contain affected data points.
It capitalizes on these two assumptions by directly com-
paring the test and control distributions. In so doing, our
approach dispenses with p-values by working directly on
the data, rather than relying on the somewhat abstract
concepts of statistical hypothesis testing.
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Conclusions

FDR-controlling procedures employed for multiple compar-
isons problems are a fundamental part of high-dimensional
inference and big data analysis, but they often rely on poten-
tially problematic intermediate steps involving modeling
assumptions and extrapolation. The statistical framework
described here demonstrates a general method for using
control data to reliably control the FDR by relying on direct
empirical comparisons between test and control data,
thereby avoiding complicated intermediate calculations and
modeling assumptions that are difficult to verify. As control
data from controlled experiments or internal negative
controls are a common feature of big data analyses, the pro-
cedure presented here demonstrates a shift in statistical
paradigm to more closely adhere to the basic tenets of
experimental science: that conclusions are drawn from dir-
ect comparison of test and control data.

Additional files

Additional file 1: Figure S1. Histogram of the absolute difference y
between the modes of the empirically constructed test and control
distributions across the 44 human individuals analyzed. (PNG 34 kb)

Additional file 2: Table S1. Test statistics per region and per individual
for the test data analyzed in the present work. (TXT 231 kb)

Additional file 3: Table S2. Test statistics per region and per individual
for the control data analyzed in the present work. (TXT 3328 kb)

Additional file 4: Figure S2. Histogram of the number of calls passing
local FDR threshold of 0.05 using our control data-based method. (PNG 35 kb)
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