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Abstract

Background: Drug discovery is the process through which potential new medicines are identified. High-throughput
screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which
have successfully discovered a series of drugs. However, development of new drugs is still an extremely
time-consuming and expensive process. Biomedical literature contains important clues for the identification of
potential treatments. It could support experts in biomedicine on their way towards new discoveries.

Methods: Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which
discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical
knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained
by learning the semantic types of paths of known drug therapies’ existing in the biomedical knowledge graph, finally
the learned model is used to discover drug therapies for new diseases.

Results: The experimental results show that our method could not only effectively discover new drug therapies for
new diseases, but also could provide the potential mechanism of action of the candidate drugs.

Conclusions: In this paper we propose a novel knowledge graph based literature mining method for drug discovery.
It could be a supplementary method for current drug discovery methods.

Keywords: Literature-based discovery, Knowledge graph, Drug discovery, Literature mining

Background
Drug discovery is the process through which potential
new medicines are identified. High-throughput screen-
ing (HTS) and computer-aided drug discovery/design
(CADD) are the two main drug discovery methods for
now [1]. Despite advances in technology and understand-
ing of biological systems, drug discovery is still a lengthy
and expensive process with low rate of new therapeu-
tic discovery [2, 3]. Developing a new drug is estimated
to take 14 years and cost approximately $1.8 billion [4].
In contrast, Literature-Based Discovery (LBD) is a safe
and low-cost approach to identify new drugs for indica-
tions. LBD seeks to discover new relationships in existing
knowledge from unrelated literatures [5]. Drugs are often
discovered on the serendipitous observation that a drug
effect may be therapeutically useful if it induces a desired
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effect or counters a disease phenotype [6]. For instance,
Don R. Swanson (1924–2012) proposed fish oil as a new
treatment for Raynaud’s disease in 1986 after noting the
association “high blood viscosity is observed among Ray-
naud’s Syndrome sufferers” in some biomedical articles
and another association “dietary fish oil lowers blood
viscosity” in other articles [7]. This hypothesis was ver-
ified in medical experiments two years later. Basic LBD
techniques search for a set of intermediate terms that fre-
quently co-occur with a source term and a target term
[5]. As shown in the above example, “blood viscosity”
is the intermediate term in associating the “dietary fish
oil” with the “Raynaud’s Syndrome”. In addition, more
sophisticated LBD methods first employ natural language
processing (NLP) techniques to extract relations between
entities from biomedical literature. Then novel discover-
ies could be analyzed from the extracted relations [8]. For
example, Hristovski et al. used SemRep to extract rela-
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tions among entities from biomedical literature [9]. These
extracted relations could then be used for inferring novel
relationships in literatures [8]. More recently, a number of
recent LBD methods have explored methods that utilize
certain graph data structures. For example, Cameron et al.
introduced a graph-basedmethod that automatically finds
clusters of contextually similar paths in a semantic graph
[10, 11]. These clusters are used to elucidate the latent
associations between disjoint concepts in the literatures.
These existing LBDmethods have several limitations. The
main issue of of term co-occurrence approach is that
the extracted relationships lack logical explanations[12].
NLP-based methods strongly depends on the availability
of domain-specific NLP tools [13]. Graph-based meth-
ods don’t consider the different semantic types of nodes
in the graph. Most importantly, all existing methods have
not exploited all available published biomedical litera-
ture for drug discovery. They only focus on part of the
abstracts related to disease of interest. This could lead to
missing the valuable informations existing in the filtered
literature.
In this paper, we propose a biomedical knowledge

graph based inference method to discover drug thera-
pies from literature. Knowledge graphs (KGs) are collec-
tions of relational facts, which have proven to be sources
of valuable information that have become important for
various applications [14]. The famous knowledge graphs
include Freebase [15], DBpedia [16], Nell [17] and YAGO
[18], etc. Here, we first construct a biomedical knowl-
edge graph called SemKG with relations extracted from
PubMed abstracts. Then based on SemKG, a drug dis-
covery method called SemaTyP (Semantic Type Path)
is introduced to exploit the semantic types of paths to
discover drug therapies. The experimental results show
that our method could not only discover new candi-
date drugs for new diseases, but also could provide the
mechanism of action of the candidate drugs. To summa-
rize, the contributions of the paper is: First, we intro-
duced a biomedical knowledge graph - SemKG - which
is constructed by integrating information extracted from
PubMed abstracts. Second, this is the first method that
discovers candidate drugs by using biomedical knowledge
graph. Our method could be a supplementary method for
current drug discovery methods, which could improve the
successfulness in discovering new medicine for recently
incurable diseases.

Methods
Materials and tools
The biomedical knowledge graph used in this study is
constructed based on the predications (subject-relation-
object triples) extracted from PubMed abstracts by Sem-
Rep. In this section, the datasets and tools used in this
study are briefly introduced.

PubMed
PubMed is a free search engine accessing primarily the
MEDLINE database of references and abstracts on life
sciences and biomedical topics. It provides now access
to more than 26 million citations, adding thousands of
records daily [19].

UMLS semantic network
The Unified Medical Language System (UMLS) semantic
network consists of 133 semantic types and 54 relation-
ships that exist between the semantic types. In this paper,
the abbreviations are adopted to represent the semantic
types. For example, ‘podg’ represents ‘Patient or Disabled
Group’ and ‘topp’ is ’Therapeutic or Preventive Procedure’.

Metamap
MetaMap is a widely available program providing access
from biomedical text to the concepts in the unified medi-
cal language system (UMLS) Metathesaurus [20]. It could
be applied for biomedical name entity recognition, word
sense disambiguation (WSD) and other natural language
processing tasks [21].

SemRep
SemRep is a relation extraction tool which first uses
MetaMap to map noun phrases to UMLS concepts [22]
then extracts semantic predications from biomedical free
text [23]. For example, from the sentence “We used
hemofiltration to treat a patient with digoxin overdose
that was complicated by refractory hyperkalemia”, Sem-
Rep extracts four predications:

1 Hemofiltration|topp TREATS Patients|podg
2 Digoxin overdose|inpo PROCESS_OF Patients|podg
3 Hyperkalemia|patf COMPLICATES Digoxin

overdose|inpo
4 Hemofiltration|topp TREATS(INFER) Digoxin

overdose|inpo
On the right of symbol ‘|’ is the abbreviation of entity’s
semantic type (black bold).

Construction of SemKG
Knowledge graph is a multi-relational graph composed
of entities as nodes and relations as different types of
edges. In this work, we constructed a biomedical knowl-
edge graph, called SemKG, with the predications which
are extracted from PubMed abstracts by SemRep. In the
SemKG, let E = {e1, e2, . . . , eN } denote the set of n
entities, R = {r1, r2, . . . , rM} denote the set of relations
between entities and T = {t1, t2, . . . , tK } denote seman-
tic type of entities. The elements of R and T are all from
the UMLS semantic network. The edge between entities ei
and ej is weighted by the number of predications that have
been extracted. Besides, the attribute of edge includes the
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abstracts’ PubMed ID (pmid) from where the predications
are extracted. A prototype example of the SemKG is illus-
trated in Fig. 1. Figure 2 is an illustration of an edge of
the SemKG, it shows that there are three different rela-
tions between “hydrocortisone” and “sleep, slow wave”
which are extracted from four abstracts (pmid 15714228,
3657191, 3725299 and 4495256). The relation “AFFECTS”
is extracted from two abstracts (pmid 15714228 and
3657191) simultaneously. Figure 2 shows the same entity
could be assignedwith different semantic types. For exam-
ple, the “hydrocortisone” is a kind of “hormone” (horm)
in the predications extracted from the two abstracts
(pmid 15714228 and 3657191) and it also could be
“Pharmacologic Substance” (phsu) in other predications
(pmid 4495256).

SemaTyPmethod
Path exploration
Given a knowledge graph KG, a path π is defined as
a sequence of predications e0r0e1r1 . . . r�−1e�, where �

is the length of path π . For a gold standard drugi −
targeti − diseasei case, which provides information about
targeted diseasei and the corresponding drugi directed
at the targeti. SemaTyP first constructs training data by
obtaining all paths π� = ρ(drugi → diseasei; targeti, �),
which encodes a path of length � reaching node diseasei
from source node drugi and crossing node targeti. Then
p� = {

π�
1 ,π

�
2 ,π

�
3 ,π

�
4 . . .

}
is the set of all � length

paths. All paths in ¶ = {p2,p4,p5, . . . ,p�} are con-
sidered as positive training data. The minimum length
of path in ¶ is 2, which represents the path drugi −
targeti − diseasei. Similarly, the corresponding negative
training data is obtained from a set of false cases
drug ′

j − target′j − disease′
j.

SemaTyP feature selection
For each path π�

i , a training data (xi, yi) is constructed,
where xi is a vector of semantic types and yi is a boolean

variable indicating whether π�
i is a positive case. The

process of constructing xi for π�
i is as follows:

xi = ���
n=0

�(cn) (1)

�(c) =
{
T_E, c ∈ E
T_R, c ∈ R (2)

The symbol c denotes component of path π�
i . �(c) con-

structs an occurrence number vector of semantic types
for c. T_E =[ te1, te2, . . . , teK ] is a vector of semantic type
of entities, the entry of vector is the number of occur-
rence of corresponding semantic type. Similarly, T_R =
[ tr1, tr2, . . . , trM] denotes a vector of relations and the
entry is the number occurrence of corresponding relation.
The symbol �� is concatenation of two vectors. For π�

i ,
a length of K ∗ (� + 1) + M ∗ � training vector is con-
structed, where K is the length of T_E andM is the length
ofT_R. Figure 3 shows an prototype example of construct-
ing one training data. As shown in Fig. 3, the T_E collects
the number of occurrence of all semantic types of cor-
responding entity, and the T_R collects the number of
occurrence of all relations between its two entities. For the
drug − entity1 − target − entity2 − disease case, a length
of (K ∗ 5 + M ∗ 4) vector is constructed.
For other path πm

i (m < �), it is extended to length
� by reduplicating entity target. For example πm

i =
e0r0t . . . rm−1em is converted to e0r0tr0tr0t . . . r�−1e�,
where t denotes target in this example.

Trainingmodel
Given a set of training vectors, a logistic regression model
is trained to predict conditional probability P(y|x; θ). We
treat the number of semantic types as features for the
logistic regression model.

θ1te1+ . . .+θK teK +θK+1tr1. . .+θK∗(�+1)+M∗�teK (3)

Where the θi are appropriate weights for the number of
semantic types. The parameter vector θ is estimated by

Fig. 1 The prototype example of SemKG. The symbol e, r and t represent entity, relation and the type of the entity, respectively. no is the number of
occurrences and pmid is PubMed ID
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Fig. 2 An illustration of one edge in SemKG

maximizing a regularized form of the conditional likeli-
hood of y given x. In particular, we maximize the objective
function

O(θ) =
2�+1∑

i
oi(θ) − λ2|θ |2 (4)

Where λ2 controls L2-regularization to prevent overfit-
ting. oi(θ) is the per-instance weighted conditional log-
likelihood given by

oi(θ) = yilnpi + (1 − yi)ln(1 − pi) (5)

Where pi is the predicted probability

p(yi=1|xi; θ)= exp
(
�Txi

)

1+exp(�Txi)
(6)

The trained logistic regression model is used for discover-
ing candidate drugs for each disease.

Implementation of SemaTyP
To evaluate a potential treatment case drugcandidate −
targetcandidate − disease, first a set of paths ¶candidate =
{ρ(drugcandidate → disease; targetcandidate, 2...�)} are
obtained by aforementioned method. Then the score of
the drugcandidate for disease is:

Fig. 3 Feature selection of SemaTyP method
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score(drugcandidate) = 1
n

∑

πi∈¶candidate
p(yi=1|χ(πi); θ)

(7)

where χ(πi) is the feature selection process for πi and n is
the number of paths in ¶candidate.
Since the treatment of the interested disease is

unknown, all drugs or chemicals could be one of candidate
drugs for the disease. Then all combinations of the drugs
and targets are constructed to be hypothetical treatments.
Finally, the candidate drugs are ranked by their score.

Baseline method
Random walk algorithm (RWA) generates finite Markov
chains, which can be viewed as randomwalk on a directed
graph [24]. RWA has been employed to resolve a series
of problems due to the wide applicability of the algorithm
[25]. Here, we compare our method with RWA and other
two RWA-based methods, which are considered as the
baseline methods.

Basic notions of RWA
Let G = (V ,E) be a directed graph with n nodes and m
edges. A randomwalk onG is considered as follows: RWA
starts at a node υ0; if t-th step is node υt , RWA moves to
the neighbor of υt with probability 1/deg(υt). The output
of a random walk is a Markov chain (υt : t = 0, 1, ...). We
denote by Pt the distribution of υt :

Pt(i) = Prob(υt = i) (8)

We denote by M = (pi,j)i,j∈ϒ the matrix of transition
probabilities of this Markov chain. So

pi,j =
{
1/deg(i), if ij ∈ E
0, otherwise (9)

Let AG be the adjacency matrix of G and let D denote the
diagonal matrix with (D)ii=1/deg(i), thenM = DAG. The
rule of the walk can be expressed by the equation

Pt+1 = MTPt (10)

the distribution of the t-th point is viewed as a vector in
R
V , and hence

Pt =
(
MT

)t
P0 (11)

It follows that the probability ptij that, starting at i, the algo-
rithm reaches j in t steps is given by the ij-entry of matrix
Mt .

Two RWA-based competingmethods
In addition to RWA method, we compared our method
with two state-of-the-art drug repositioning methods
which are NRWRH [26] and TP-NRWRH [27]. NRWRH
is a network-based randomwalk algorithmwith restart on

heterogeneous network. TP-NRWRH is a two-pass ran-
dom walk with restart on the drug-disease heterogeneous
network. Both of these two methods focus on predicting
new targets for a drug of interest.

Implementation for drug discovery
To evaluate a potential drugcandidate for treating diseasei,
the starting node υ0 of RWA-based methods is set
to drugcandidate. Figure 4 illustrates an example of
evaluating “chlorpromazine” to be the treatment of
“cardiachypertrophy”. Figure 4a is a weighted semantic
graph with 7 nodes and 9 edges. Figure 4b shows the
results of RWA with starting node “chlorpromazine”. It
shows that when the step of RWA is 1, “chlorpromazine”
can’t reach “cardiachypertrophy”, then the score of “chlor-
promazine” of step_1 RWA is 0. Similarly, the score
of “chlorpromazine” for treating “cardiachypertrophy” is
0.697 when the step is 4. For each diseasei, RWA scores
all candidate drugs of the disease. After that the candidate
drugs can be ranked by their scores.

Results
In this section, we firstly introduce the details of the
SemKG and the training data constructed in our experi-
ment. Then, several metrics are introduced tomeasure the
performance of SemaTyP. After that, case studies are con-
ducted to confirm the ability of SemaTyP to find potential
drugs for indications.

The SemKG and training data
The SemKG
The predications extracted from all abstracts in PubMed
(before June 1, 2013) are used to construct the SemKG.
Since the performance of SemRep is not perfect: its pre-
cision, recall, and F-score are 0.73, 0.55, and 0.63, respec-
tively [28],and the low precision (73%) means many false
semantic associations will be returned [12]. We filtered
out all the predications that are only extracted once in
order to ensure the quality and accuracy of the extracted
predications. Table 1 shows the details about the SemKG.
Figure 5 is the distribution of top 20 types of entities in
the SemKG. For example, the first five types in SemKG
are dysn (Disease or Syndrome), podg (Patient or Disabled
Group), bpoc (Body Part, Organ, or Organ Component),
aapp (Amino Acid, Peptide, or Protein) and topp (Thera-
peutic or Preventive Procedure).

Training set
In this work, 7144 drug − target − disease are extracted
from Therapeutic Target Database (TTD) as true cases
(Additional file 1). The � is set to 4, K is 133 and
M is 52. Based on the aforementioned construction of
training data, 19,230 positive data are obtained. Each
data is a length of 873 (133*5+52*4) vector. On the
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Fig. 4 RandomWalk Algorithm for drug discovery

other side, for each drug − target − disease, we ran-
dom replaced the drug, target and disease with other
drug, target and disease. If the new triplet doesn’t
exist in TTD, then it is considered as a false exam-
ple, which is denoted as drug ′ − target′ − disease′ .

Table 1 The detailed information of SemKG

Materials Number

PubMed abstracts 22,769,789

Predications 39,133,975

Selected predications 17,651,279

Entities of SemKG 1,067,092

Relations of SemKG 14,419,744

Entity types 133

Relation types 52

Similarly, 19,230 negative training data is obtained from
false cases.

Evaluation metrics
To systematically evaluate the performance of our
method, we conduct ten-fold cross validation and drug
rediscovery test.
In the ten-fold cross validation, all training data are ran-

domly divided into ten subsets with equal size. In each
cross validation trial, one subset is taken in turn as the test
set, while the remaining nine subsets constitute the train-
ing set. After performing prediction, each test case is given
a predicted score. According to the final predicted scores,
the case is assigned a boolean label indicating whether
it is a positive case. In this study, the Precision, Recall
and F-score are adopted to measure the performance of
SemaTyP method.
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Fig. 5 The distribution of semantic types in SemKG

In our study, drug rediscovery test is performed to eval-
uate the effectiveness of the SemaTyP when predicting
potential drugs for new diseases. For each disease of inter-
est, a list of candidate drugs are constructed to be scored
by SemaTyP. Considering the fact that the predicted top-
ranked results aremore important in practice, wemeasure
the performance of ourmethod in terms of the top-ranked
results, i.e. themean ranking of true therapies and the pro-
portion of correct therapies ranked in the top 10. Usually,
it is regarded as more effective if the method can rank
more true therapies in top portions.

Ten-fold cross validation
We explored a range of values for the L2-regularization
parameters λ2 using cross validation on the training data.
Figure 6 shows that parameter λ2 ranging from 0.0001 to
100 has little effect on the prediction performance and
a small amount of L2-regularization can slightly improve
performance of SemaTyP. In this study, we set the param-
eter λ2 to 1.0. The precision, recall and F-score are 0.907,
0.879 and 0.892, respectively. In addition, we also com-
pared the L2 penalty with Lasso (L1) regularization [29].
As same to L2 regularization, the parameter λ1 of Lasso

regularization ranges from 0.0001 to 100. Table 2 shows
the comparison results of L1 and L2 regularization. The
results show that the model achieves higher performance
with L2 regularization. This is because L1 regularization is
often used for feature selection [30] when the number of
potentially relevant features is very large. However, in this
work the number of features we selected is not large (873).
We vary the number of training data to see how train-

ing data size affects the quality of the model. Figure 7
shows that our method benefits from more training data,
and it is especially evident when more than half of all
the data are used. Figure 7 shows that the increase in
training data significantly improves the performance of
SemaTyP when less than 50% training data are used. After
that, the increase in training data slightly improves the
performance of the method.
Additionally, we vary the settings of � to see how path-

way length affects the results. The � was set to 2, 3 and
4, respectively. Table 3 shows the results of our model
with different �. It shows that when the � is 2, 32 training
data was obtained by aforementioned method. It means
there are only 32 drugs connect to their indications by
directly crossing corresponding targets. We didn’t train
the model with the training data, since 32 training data
is not enough for training a machine learning model. As
shown in Table 3, 1742 data was obtained when � is 3.
The performance of our model trained by the 1742 data
is shown in Table 3. Table 3 shows that the performance
of our model with � equals 4 is better than � equals 3
as expected. As Fig. 7 shows that the increase in training
data could significantly improve the performance of our
model. When � is 3, the size of training data is 9.06% of the
training data obtained by � equals 4.
In this work, the � is set to a value less than 5,

it’s because: 1) Although more training data could be
obtained when � exceeds 4, Fig. 7 shows that when the
training data exceeds certain size, the performance of our
method is relatively stable. 2) As � increases, longer paths
starting from a drug to a disease are obtained. However,

Fig. 6 The performance of SemaTyP
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Table 2 The results of logistic regression model with different regularizations

λ
Precision Recall F-score

L1 L2 L1 L2 L1 L2

0.0001 0.908 0.923 0.889 0.899 0.903 0.911

0.001 0.907 0.914 0.878 0.88 0.892 0.900

0.01 0.899 0.903 0.869 0.876 0.884 0.889

0.1 0.905 0.903 0.887 0.877 0.896 0.89

1 0.866 0.907 0.849 0.879 0.857 0.892

10 0.847 0.902 0.837 0.877 0.842 0.889

100 0.823 0.893 0.811 0.876 0.817 0.884

more entities in a drug-disease path might reduce the
quality of training data. Therefore, in this work, we set the
� to 4.

Drug rediscovery test
To evaluate the capability of our method in discovering
potential drugs for new diseases, we conduct the drug
rediscovery test. In this test, 360 drug − disease relation-
ships (Additional file 2) are selected from TTD as gold
standard to form test set. Each diseasei in test set has one
known associated drugi, but the drugmechanism of action
is not clear. For each diseasei we randomly selected other
99 drugs or chemicals from TTD as candidate drugs for
this disease. We report the mean of those predicted ranks
of drugi and the hits@10, i.e. the proportion of known
drugs ranked in the top 10. If the known drug of a disease
is not rediscovered, then the score for the drug is set to -
1 and the ranking number is 101. Specifically, for diseasei
and candidate drugj, 5,785 drugj−targetcandidate−diseasei
are constructed. This is due to that the targets of diseasei
are unknown, then each target (protein) in TTD could be
the targetcandidate of diseasei.
For diseasei, the comparison methods also scores and

ranks all 100 candidate drugs. The step of RWA is set
from 1 to 10. The NRWRH and TP-NRWRHmethods are

configured to their recommended settings in their papers.
Table 4 shows the results and the “Not found” column
is the number of known drugs which are not found by
the method. As we can see from Table 4, there are 262
gold standard drugs are not discovered by RWA_1 (ran-
dom walk algorithm and the step is set to 1). It means that
only 98 (360-262) drugs directly connect to the disease
in the SemKG. The “Not found” number decreases when
the step number of RWA increases. Table 4 shows that all
drugs could be found by RWA when step length exceeds
3. It’s because all drugs could be connected to the dis-
ease in the SemKG through a semantic path whose length
is greater than 3. Table 4 shows that there are 19 and 17
drugs are not found byNRWRHandTP-NRWRH, respec-
tively. Although the step of the two RWA-based methods
is 3, NRWRH and TP-NRWRH are both random walk
algorithm with restart. This could result in the diseases
fail to reach the appropriate drugs within 3 steps.
For the “Mean ranking” column, the worst result is

obtained by RWA_1 (72.28), it is due to there are 262
known drugs are not found by RWA_1. As the step length
of RWA increases to 2 the meaning ranking decreases
to 26.59, it’s because more drugs could be discovered by
RWA_2 than RWA_1. But when the step of RWA con-
tinues to grow, the mean ranking improves. It’s because

Fig. 7 Performance of SemaTyP with different size of training data
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Table 3 The performance of our model with different training
data

� Positive cases Precision Recall F-score

2 32 - - -

3 1742 0.791 0.787 0.789

4 19,230 0.907 0.879 0.892

although all known drugs could be discovered when the
step of RWA exceeds 3, more other candidate drugs also
could be found. The more discovered candidate drugs
could lead the ranking of true drugs decreasing. Table 4
shows that NRWRH and TP-NRWRH achieve better per-
formance than RWA method, it’s because: 1) The best
performance of RWAon “Mean ranking” is achievedwhen
the step is 3, and the step of NRWRH and TP-NRWRH
is 3. 2) NRWRH and TP-NRWRH methods integrate
biomedical background knowledge to choose next step
rather than randomly step to next node.
For “Hits@10”, the value of “Hits@10” decreases when

the step of RWA increases. For RWA method, Table 4
shows that RWA_3 and RWA_4 achieve the best perfor-
mance: 1) almost all drugs could be discovered and 2) the
“Mean ranking" value is relatively small and the “Hits@10”
is relatively large. In addition, Table 4 shows NRWRH
and TP-NRWRH achieve better performance than RWA
method. We could see from Table 4, our method achieves
the best performance in both tests. The “Mean ranking”
of our method is 26.31 and the “Hits@10” is 48.61%. The
reasons of our method outperform others are: 1) we could
know from Table 4 that when the step of RWA is 3 or 4 the
RWA achieves the best performance. Our method could
cover all the paths whose length is 2 to 4. 2) Our method

Table 4 The performance of discovering drugs for disease

Method Not found Mean ranking Hits@10 (%)

RWA_1 262 72.28 28.8

RWA_2 57 26.59 24.46

RWA_3 2 32.45 23.37

RWA_4 0 34.26 19.57

RWA_5 0 35.81 18.75

RWA_6 0 39.14 16.03

RWA_7 0 42.13 14.95

RWA_8 0 44.15 13.59

RWA_9 0 45.69 11.96

RWA_10 0 46.19 11.69

NRWRH 19 31.05 29.72

TP-NRWRH 17 29.87 30.83

Our method 0 26.31 48.61

Bold values denote the best scores corresponding to specific metric

scores the semantic path based on the distribution of their
semantic types other than only based on the structure of
the SemKG.

Case study
We conduct 12 case studies to demonstrate the efficacy
of our methods (Table 5). For each disease, SemaTyP can
predict the potential drugs and the corresponding tar-
gets simultaneously. For example, TTD has reported that
testosterone and ap22408 are known drugs for osteo-
porosis. These two drugs are ranked 1st and 3rd as
potential drugs for osteoporosis by our method. What’s
more, SemaTyP also provides corresponding targets for
the drugs, which have not been discovered for now. For
instance, terikalant is predicated to treat cardiac arrhyth-
mia by acting on actin. Aspirin, is predicted to treat
cardiovascular disease by acting lymphoid cell, etc. These
prediction instances further confirm that SemaTyP not
only has the potential to predict novel drugs for disease,
but also could provide potential mechanism of action for
the drugs.

Discussion
To the best of our knowledge, this is the first method
that employs knowledge graph for solving LBD tasks.
This paper showed that use of implicit semantic types to
find drugs from literature can be effective for LBD. Our
overall approach however, has several limitations. The
first limitation is the construction of knowledge graph -
SemKG - relies heavily on effective NLP tools. On one
hand, the accuracy of MetaMap reduces in the presence of
ambiguity, which leads its inability to resolve word sense
disambiguation [20]. On the other hand, although the iso-
lated predications are filtered out in order to improve
the quality of the SemKG, there are still considerable
number of false predications existing in the knowledge
graph, which could lead to our method inferring lower-
quality results. In addition, in the process of constructing
SemKG, more than half the initial predications are fil-
tered out, which might lead to possible selection biases
in the step. The second limitation is SemaTyP relies on
the semantic types of nodes and edges to infer asso-
ciations, hence our method is effective only when the
required ontology are easily available. Another limita-
tion is SemaTyP needs to obtain all paths between can-
didate drug and disease. When the scale of knowledge
graph is large, it’s difficult for our method to obtain
long paths.
These and other limitations suggest the next steps in

this research. In future, high-quality NLP tools need to be
developed to improve the quality of SemKG. Additionally,
another representation of nodes and edges in SemKG -
graph embedding - could be useful for our method to
obtain long paths.
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Table 5 Case study: rediscover known drugs for diseases and provide the new mechanism of action of the drugs

Disease Target Drug Rank

Osteoporosis col18a1 Testosterone 1

Osteoporosis Bone metabolism ap22408 3

Cardiac arrhythmia Actin Terikalant 8

Cardiovascular disease Lymphoid cell Aspirin 1

Cardiovascular disease slc5a1 l-nmma 2

Skin allergie Calprotectin Mometasone 1

Osteoporosis Kinase Calcium-sensing receptor antagonist 3

Anxiety disorder netrin-1 Benzodiazepine 1

Anxiety disorder Urotensin ii Anxiolytic 2

Anxiety disorder Platelet activating factor Buspirone 4

Convulsion epr Anidulafungin 7

Graft-versus-host disease fgf21 Flavopiridol 12

Conclusion
In this work, we have presented a novel method named
SemaTyP uncovering the potential associations between
drugs (chemicals) and diseases from literature. We first
constructed a biomedical knowledge graph by integrating
informations extracted from PubMed biomedical litera-
ture. Then based on the knowledge graph, we devised a
novel model to discover potential drugs and correspond-
ing targets. Finally, we test our method on two different
tests. The experimental results show that our method can
effectively discover drugs for diseases from literature. Our
method has potential to accelerate drug development and
benefit the field of target identification.
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