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Background: Thanks to a reasonable cost and simple sample preparation procedure, linear MALDI-ToF spectrometry
is a growing technology for clinical microbiology. With appropriate spectrum databases, this technology can be used
for early identification of pathogens in body fluids. However, due to the low resolution of linear MALDI-ToF
instruments, robust and accurate peak picking remains a challenging task. In this context we propose a new peak
extraction algorithm from raw spectrum. With this method the spectrum baseline and spectrum peaks are processed
jointly. The approach relies on an additive model constituted by a smooth baseline part plus a sparse peak list
convolved with a known peak shape. The model is then fitted under a Gaussian noise model. The proposed method is
well suited to process low resolution spectra with important baseline and unresolved peaks.

Results: We developed a new peak deconvolution procedure. The paper describes the method derivation and
discusses some of its interpretations. The algorithm is then described in a pseudo-code form where the required
optimization procedure is detailed. For synthetic data the method is compared to a more conventional approach. The
new method reduces artifacts caused by the usual two-steps procedure, baseline removal then peak extraction.
Finally some results on real linear MALDI-ToF spectra are provided.

Conclusions: We introduced a new method for peak picking, where peak deconvolution and baseline computation
are performed jointly. On simulated data we showed that this global approach performs better than a classical one
where baseline and peaks are processed sequentially. A dedicated experiment has been conducted on real spectra. In
this study a collection of spectra of spiked proteins were acquired and then analyzed. Better performances of the
proposed method, in term of accuracy and reproductibility, have been observed and validated by an extended

statistical analysis.
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Background

Linear matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-ToF MS) has now
revolutionized identification of bacteria, yeasts and molds
in clinical microbiology [1]. The technology is simple,
accurate, fast, and for large laboratories less expensive
than conventional methods. Despite a lower resolution
than other analyzers used in modern proteomics, linear
ToF are preferred in microbiology because of a better sen-
sitivity in the 2-20 kDa mass range, where proteins contain
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phylogenic information. Moreover, the lower cost of linear
instruments favored a wider adoption by health institu-
tions. In essence, identifications are performed in minutes
by simply acquiring an experimental spectrum of the
whole microorganism cells and comparing the resulting
peak list with a database [2, 3]. In this context we propose a
new method for peak extraction especially adapted to lin-
ear MALDI-ToF spectra. The usual approach for MALDI
mass spectra processing generally consists of chaining
several procedures. Most of the times we have a smooth-
ing step, a baseline correction step and only then the final
the peak extraction [4]. The main idea of our new method
is to jointly perform these steps with the aim of reduc-
ing the potential unrecoverable artifacts introduced by
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a sequential processing. In the next sections we briefly
present the three main steps of the usual approaches. We
then describe our method and its detailed derivation.

Smoothing

A popular [5] smoothing technique in the spectrometry
community is the use of Savitzky-Golay linear filters [6, 7].
These moving average filters perform a least squares fit of
a small set of consecutive data points to a polynomial. The
value of this fitted polynomial at the window central point
is the filter output. One can also compute a smoothed
derivative by using the derivative of the fitted polynomial
to compute the central point value. This smoothed deriva-
tive can also be used by peak picking algorithms [4]. This
method is versatile and efficient. However, its main draw-
backs are that we have to manually choose the polynomial
degree and the window length. Some studies to automati-
cally choose the former [8] or later [9] exist but to the best
of our knowledge they are not used as often as the original
approach.

A more recent approach to smooth spectra is the use the
wavelet transform. The Undecimated Wavelet Transform
(UDWT) [10, 11] is generally preferred to the Discrete
Wavelet Transform (DWT) as it produces less artifacts
after coefficient thresholding. The UDWT is equivalent to
an averaged DWT computed for all integer shifts of the
signal and is thus a redundant and shift invariant trans-
form. In applications it has been reported to yield better
qualitative denoising [12].

Baseline correction

Baseline correction is a difficult problem that poten-
tially also introduces artifacts [13]. There are at least
two kinds of approaches for baseline correction. One
category of methods is close to mathematical morphol-
ogy. In these methods a lower envelope of the spectrum
[14, 15] is computed. Methods of this category gener-
ally need a smoothed signal (see “Smoothing” section).
The other category contains methods using an asymmet-
ric loss function to fit spectrum baseline without being
biased by peaks [16, 17]. Finally some other methods mix
the two previous approaches [18].

Peak picking
After baseline removal the next step is generally a peak
picking procedure. Several approaches are possible. Per-
haps the most intuitive approach is to compute a regu-
larized second order derivative (using Savitzky-Golay for
instance) of the spectrum and to extract local minima [4].
The use of second order derivative minima instead of the
zero-crossing of the first order derivative allows, to some
extend, to detect overlapping peaks [19].

A second kind of approach, especially useful in case of
overlapping peaks, is peak deconvolution. Overlapping of
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complex peak patterns can be deconvolved if one uses
specially tuned point spread function and judicious reg-
ularizations (positivity constraint and sparsity-inducing
norms, like the /1 norm) [20-23]. Further generaliza-
tions can be obtained in case of blind-deconvolution [24].
However these kinds of approaches are much more com-
putationally intensive and are not widely used in mass
spectrometry.

Finally we can mention the Continuous Wavelet Trans-
form (CWT) [25, 26] which can be efficiently computed
using the Fast Fourier Transform. The idea is to follow
wavelet modulus maximum. Theses ridges characterize
the regularity of the signal [27] and can be used to detect
peaks.

Contributions

Computing the baseline correction and finding peaks are
two strongly linked problems, it is thus natural to perform
these two operations jointly. In this work we propose such
an approach.

In the first part of the paper we describe a direct model
with an additive noise where the spectrum is modelized
by a smooth baseline plus a sparse peak list convolved by a
given peak shape function. We describe how we chose our
priors to enforce baseline smoothness and sparsity of the
peak list. We then assume a Gaussian distribution for the
noise. This allows us to use Euclidean distance to quantify
the error between our model and the measured spectrum.

Next we show how the unknown baseline can be elimi-
nated from the model. This manipulation leads to a modi-
fied problem very close to the classical deconvolution one.
We underline this similarity and rigorously describe the
two limiting cases, zero or infinite penalization for the
baseline smoothness. As a by product we can interpret
that our new deconvolution method is equivalent in some
way to deconvolve a regularized second order derivative
of the initial spectrum.

We then carefully examine the behavior of the com-
puted baseline at the spectrum boundaries. We observed
that when the smoothness penalty is too strong, the com-
puted baseline can become overly flat. To avoid this effect
a correction allowing to define baseline values at bound-
aries is proposed. With this modification the behavior
of the baseline at the boundaries is no more affected by
strong baseline smoothness penalty.

An effective optimization method to compute the
solution of the deconvolution problem is exposed. This
optimization algorithm is used twice in our two-passes
deconvolution procedure. In the first pass a sparsity prior
is used and a first optimization problem is solved to
find peak centers. In the second pass the sparsity prior
is replaced by the previously found peak positions. This
second optimization problem is solved to compute peak
height values.
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Finally the new method is compared to one instance of
the smoothing/baseline correction/deconvolution clas-
sical approach. The advantage of the joint baseline
computation and peak deconvolution is demonstrated on
synthetic data. An example on “real” data is shown and
a reference to a more detailed comparison between our
method and classical ones is given.

Method

Problem definition

The proposed developments are founded on a natural
model for the observed spectrum y as a spiky signal
X, convolved with a peak shape p superimposed onto a
smooth baseline x;,

Yy=Xt+Xx,xp+e (1)

where e includes measurement and model errors. It is a
common linear model with additive uncertainties. These
quantities are represented by vectors of size n, where # is
the number of m/z channels of the original spectrum y.

The problem at stake is to recover both the signal of
interest x,, and the baseline x,,. It is a difficult task at least
for three reasons.

e It is underdetermined since the number of unknowns
is twice the number of data.

e The convolution reduces the resolution due to peak
enlargement and possible overlap.

e Measurement noise and possible model inadequacy
induce additional uncertainties.

As a consequence, information must be accounted for
regarding the expected signals x, and x;. In the follow-
ing developments, x,, is expected to be smooth while x,, is
expected to be spiky and positive. This knowledge will be
included in the next sections.

Xp Smoothness
A simple way to account for smoothness of x; is to
penalize its fluctuations through

n—1
Po(xs) = 53 (xp Lk +1] =%, [K)” = £ 1Dx13
k=1

()

where D is a finite differences matrix of size (n — 1) x n
(given in Appendix “Smoothness and convolution
matrix”) and p > 0.

Xp sparsity and positivity

In order to favor sparsity for x,, (spiky property) an elastic-
net penalty is introduced

A
Ppp) = h s, + 5 %3 ®)
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The degree of sparsity is controlled by A;. The coefficient
Ao is generally set to zero or to a very small value. The
reason why we have introduced this extra regularization is
that a small positive value can sometimes improve conver-
gence speed of the algorithm. In practice this only happens
for spectra of several thousand of m/z channels and always
has a limited impact on the obtained solution.

In addition, the solution also requires positivity of x,,
i.e. positivity for each component x,[k]. The /; norm then
simplifies

n
Il =Y x, [K] = 1%,
k=1
where 1,, is the # dimensional column vector with each
entry to 1. This substitution turns the convex, but nons-
mooth, penalty P,(x,) into a smooth quadratic one. This
idea has already been used in [23, 28].

Data-fidelity term

A common and natural way to quantify data - model dis-
crepancy founded on Eq. 1 relies on a squared Euclidean
norm:

1
Tobs (Xp,Xp) = 3 Iy — (xo + Lx) ||§ )

where the # x n band matrix L represents the convolution
with the peak shape p.

Complete objective
Using Egs. 2, 3 and 4, we get a first expression of the
complete objective:

J (xb:xp) = Jobs (xb!xp) + Py (xp) + PP (Xp) (5)
that is to say:

1
T (xp,xp) = Sy — (xp +1x,) I3 (6)

jz A2
+ S IDX 13 + Alixpll + - 1%, 115

The minimization of this objective function

(X,,Xp) = argmin J (xp,Xp) (7)
xp>0,xp

gives the desired solution (X, X}).

Elimination of x,

To find the solution of problem Eq. 7 we begin by solv-
ing it for the x; vector. This is an unconstrained quadratic

problem and an analytical solution can be found. We shall
first write down the gradient of 7 with respect to x;:

Vi, J = (I + uD'D) x, — (y — Lx,) (8)
Solving Vy, J = 0yields the minimizer:
X = (I, + MDtD)_1 (y - Lx,)
= B;l (y - pr) 9)
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where B, = I, + uD'D. This operation is always possible
since B, is invertible (sum of the identity matrix and a
semi-positive matrix).

It is then possible to substitute x; for X, in objective
Eq. 5 to obtain a reduced objective. After some alge-
bra (proof is given in Appendix “Derivation of reduced
objective”), we have

T xp) =T Rpyxp) +C

where C is a constant, and j (xp) is defined by:

~ 1
T (xp) = Ex; (L'ALL + A21p) x,

—x, (L'Auy — Aily) (10)
The matrix A, is defined by:
A, =1, — 3;1 =1, — (I, + p,DtD)f1 (11)

and its interpretation is discussed in detail in “Analysis of
the A, matrix” section).

This quadratic form 7 (x;) is our objective function and
the solution X,, is its minimizer subject to positivity:

X, = arg minJ (xp) (12)

Xp>0
Once this constrained quadratic problem is solved, we can
retrieve X, using Eq. 9:
Xp = B;l (y — LSZP)
then the initial problem Eq. 7 is solved.

The gradient of J (xp) is easily deduced form Eq. 10 and
reads:
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Vi, J = (L'A,L + 2oL,) x, — (L'A,y — q1,)  (13)
Interpretation of the reduced criterion

We can make a pause here to interpret Eq. 12. If there
was no baseline a natural way to deconvolve the spectrum
would be to solve:

1 2
axgmind |y — L, |2 + 4
Xp=0

If we use the positivity constraint and expand this objec-
tive function we get the following equivalent problem:

1
arg min>x, L°Lx, + X}, (211, — L'y) (14)
Xp>0 2
Now if we look Eq. 10 and set 1 = 0 we get:
are mi 1y ¢ 9t
gmin_x;L AuLx, +x,(A 1, — L'A,y) (15)

Xp>0

The two equations are very similar apart from the fact that
the operator A, is applied to the reconstructed peaks Lx,
and to the raw spectrum vy. It could be interpreted as the
precision (inverse of the covariance) matrix in a correlated
noise framework. Instead of this classical approach and to
better understand its role in our deconvolution context we
study the evolution of A, in the two limiting cases © — 0
and u — oo.

Analysis of the A, matrix
Figure 1 shows the column j = | 5] of A, for two different
values of .

0.4 -

02 -

0.6 -

0.4 -

-0.2 -

Fig. 1A, operator. A, (, L%J) column plot for 4 = 1 and u = 100. A, operator acts like a regularized second order derivation. The regularization
strength increases as p increases (u is the background smoothness parameter)
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For small u, the A, operator acts like a regularized
second order derivation. For a sufficiently small x (such
that the spectral radius satisfies p(uD'D) < 1) a Taylor
expansion gives:

Ay = I, — (I + uD'D) !
= I — (I — uD'D + o(w))
= uD'D +o(n)

Hence compared to Eq. 14, one can interpret Eq. 15 as an
usual deconvolution applied on the second order deriva-
tive A,y of the initial spectrum y. The used point spread
function is also the second order derivative A, L of the ini-
tial peak shape p introduced in Eq. 1. The overall effect of
the A, operator is to cancel the slow varying component
of the signal. In another terms, the baseline is removed
thanks to a derivation.

The regularization strength increases as the baseline
parameter u increases. At the limit 4 — oo (proof given
in Appendix “Expression of lim A,”) we get:

H—>00

1

lim [All«] 51',]' — ;

H—>00 B

When applied to any vector y we get
lim A,y=y—-vyl,
JL—> 00

Thus the action of A, centers the signal y by subtracting
the constant y1, vector, where the scalar y is the mean
value of the y vector’s components. The same centering
holds for the peak shape function p. It follows that in
this limiting case the solved problem is the usual decon-
volution procedure applied on the centered spectrum.
The computed baseline is simply a constant equal to the
spectrum mean.

Debiasing

The /; penalty acts as a soft threshold to select peaks ([29],
Section 10). This leads to a bias in peak intensity estima-
tion. These intensities are artificially reduced when the
[ penalty increases. We use the ideas introduced in [28]
to get corrected peak intensities. This yields a resolution
procedure involving two stages. The first stage selects the
peaks, the second one corrects their intensities.

First stage: peak support selection

Given u, A1 and Ay, we solve the minimization problem
Eq. 12. The obtained solution X,, is a sparse vector con-
taining peak intensities. The intensities are biased if the A
hyper-parameters are not null. However we can use X, to
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define the peak support Q. In the present work the peak
support is simply defined by keeping the local maxima
of Xp.

Q = {i, (Xp[i] > Xpli = 1]) A Kp[i] = Xp[i + 1])) Vv
(Xpl] = Xp[i — 11) A (Xpli] > Xp[i + 11))}  (16)

The peak intensities are going to be corrected in the sec-
ond stage, but their final positions are defined by the
condition Eq. 16. More complex procedures can be used to
find the peak support. One such example is the procedure
presented in [22], Post-processing and thresholding. These
more refined methods can be introduced in a straightfor-
ward way in our approach by using them instead of the
basic condition Eq. 16.

Second stage: peak intensity correction

In the second step, as we have peak support 2, we do
not need the /; regularization anymore. Hence we simply
ignore it and solve the simplified optimization problem:

/4

c Xp[k]=0 1if k ¢ Q
S I xlkl=0if ke Q

T tyt
Xp = argminzx L'A,Lxp, —x,L'Ayy

(17)

Despite its more complex appearance, this problem is no
more complicated than Eq. 12. Solving this problem will
correct peak intensities by removing the bias induced by
the previously used /; penalty.

Boundary conditions

There is a possible improvement of the method concern-
ing boundary conditions. As Eq. 2 suggests, a strong u
penalty forces the baseline to be constant. In Fig. 2 we see
that this phenomenon is especially present at the domain
boundaries.

We solved this problem by imposing baseline values at
boundaries. This corrected solution is also shown in Fig. 2
and we can see that the corrected solution does not suffer
from boundary effect anymore. Appendix “Boundary cor-
rection’, page 11, provides all the details on how to modify
Egs. 9 and 13 to introduce some constraints on the base-
line values x;. These modified equations will constitute
our final model formulation.

Final model formulation
After boundary correction, the modified Eq. 9 is

xp = B! (¥ — Lx,) (18)

and the modified Eq. 10 is
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Fig. 2 The boundary problem and its correction The green curve is the baseline x; as computed by Eq. 2, the blue curve is the baseline X, after

~ 1 ~
Ja(xp) = 5";’ (ral, + L'A, L) xp+

x, (M1, — L'A§ - L'y -9) (19)

The solution X,, is the unique minimizer of 7> subject to
positivity constraint:

X, = arg minJa (xp) (20)

Xp>0

The gradient is obtained by a straightforward computation:

Vy,J2 = (Aol, + L'A,L) x,+211,—L'A, 5L (y—9)
(21)

As before, X, is computed from X, using Eq. 18.
The explicit forms of B,, ¥ and A, are given in
Appendix “Boundary correction”, respectively by Egs. 31,
32 and 33.

Algorithm summary

For ease of reading Algorithm 1 recapitulates the main
steps of the proposed method in its final formulation. The
optimization procedure used to solve efficiently the two
minimization problems will be described in detail in the
next section.

Algorithm 1 Global view of the proposed method
Require:
* the y spectrum

* its baseline value at boundaries y[1] and y[#]

* the penalty parameters A1, A5 and

> Boundary correction

Compute KW ﬁ,l and y, defined by Egs. 31, 32 and 33.
> Stage 1: deconvolution with /; penalty

Minimize (with Algorithm 2)

X, = argminJ>(x,)
Xp>0

(jz and prjz are defined by Egs. 19, 21)
> Stage 2: deconvolution with peak support
Find peak support 2 (see Eq. 16) _
Set A1 < 0and Ay < O (this modifies 7>)
Minimize (with Algorithm 2)
X, = arg minjg (Xp)
Xp
c Xp[k] =0 if k ¢ Q
S5 %kl = 0 if ke Q

> Post-processing

Compute: ~

* baseline X, = B;l(y —1X,) (Eq. 18)
* reconstructed peaks LX),

* reconstructed spectrumy = X;, + LX,,
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Effective minimization
Quadratic programming with bound constraints
To solve the optimization problems Eq. 12 or Eq. 20 and
their associated debiasing step Eq. 17 we use the projected
Barzilai-Borwein method described in [30]. The Barzilai-
Borwein method [31] dramatically improves the classical
steepest descent with Cauchy step.

For a convex quadratic form

Xp = arg minJ (x)
X
1
= argmin-x’Qx + ¢‘x
x 2
the steepest descent direction is defined by
KD — x® _ oy o 7
with
Vo T = QP +q
The associated Cauchy step is defined by
*Cauchy = argmin J (x(") —aVywJ )
A straightforward calculation leads to:
I Vew T3
Vo T Q Ve I
The Barzilai-Borwein method uses the same steepest
descent direction but replaces the Cauchy step by one

(or an alternating sequence) of the two so-called Barzilai-
Borwein steps. These step lengths are defined by [30]:

®Cauchy =

[x® — x*k=D ||§
(x6) — x*k-D) (VT — Vi1 T)

(x® — xEDY (V0T — Vya 1.7)
|Vt T — Vx(k_Dj”;

Despite its simple update formula the Barzilai-Borwein
method works surprisingly well [32, 33]. This method has
no line search and exhibits a non-monotonic convergence.
It has been shown to be globally convergent for the strictly
convex quadratic case [34]. A direct extension to the con-
strained case is obtained by replacing the iterate x**1) by
its projection on the feasible domain:

xkD — p (x(k) —aVim j)

(22)

OBB1 =

(23)

OBB2 =

(24)

For bound constraints x € [1, u] the projection operator P
is simply defined (in a component wise fashion) by

P(x) = min (u, max(l, x))

Without any line search [30] gives a counter-example
where this method is not convergent. However in prac-
tice the method is generally successful, especially for badly
conditioned problems where it can outperform the con-
strained conjugate gradients algorithm [35].
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For its simplicity and good behavior in practice we have
chosen to use this method. Our implementation is given
in pseudo-code in Algorithm 2.

Algorithm 2 Projected Barzilai-Borwein algorithm used
to minimize arg min%xt Qx + g’x
x€[Lu]

Require:
* the Q matrix and the q,1 and u vectors
* the initial x vector
* 3 extra storages X, 8, S
for iter = 0...maxlter do
> Project and compute gradient Eq. 24
X < P(x)
g« Qx+q
> Stopping criterion Eq. 25
if Stop(x, g,1,u) < € then
Exit on success
end if
> Compute « step Eqs. 22, 23
if iter = 0 then

2
o < Ll

g'Qg
else

if iter is odd then
lIx =X 1
(X—Xy)" (§—8m)

(x—xm)" (8—8m)

o <
lg—gml?

end if

end if

> Prepare next iteration

o < max (i, Min(eax, o))

X < X

8n < §

X < Xy
end for
> Did not converged
Error message & Exit

—08m

Variants of this method with non-monotone line search
[36, 37] have been tested. Theoretically this allows
to prove global convergence, but in practice we have
observed a performance degradation compared to the
simpler method presented in [30].

Stopping criterion

Algorithm 2 stopping criterion needs to be defined.
We use a rigorous one based on Karush-Kuhn-Tucker
(KKT) conditions [38]. For a smooth convex optimization
problem

X, = arg minJ (x)
x€(Lu]

necessary and sufficient conditions are:
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1 Stationarity Vy, F + A" — A1 =0
2 Primal feasibility x,, € [1, u]
3 Dual feasibility

e Lower bounds A1 > 0
e Upper bounds A" > 0

4 Complementary slackness

e Lower bounds Vi, A [i] (1[i] — x, [i]) = 0
e Upper bounds Vi, A" [{] (x, [i] —u[i]) =0

Our stopping criterion reflects KKT conditions violation.
Enumerating all possible cases this criterion is computed
as follow

stopping criterion = Z [s[d] |

14

with s[i] defined by:

+00 if x[i] ¢ [1[i],u[i]]
min (0, Vi, F [i]) if (x[]] =1[i]) A A[{] < uli])
max (0, Vi, F [i]) if (x[i] =u[i)) A A[i] <uli])
Vi, F 1] if x[i] €11[i],u[i] [
0 if 1[i]] =x[i] = uli]
(25)

s[i] =

lllustration of the method

We give in Fig. 3 typical convergence behavior for the

proposed method applied to problem Eq. 12 or Eq. 17.
We observe the non-monotonic convergence behavior

of the Barzilai-Borwein method. As reported by [30], we
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observe that it is more effective to alternate between BB1
Eq. 22 and BB2 Eq. 23 steps than using only one type of
step update.

Results and discussion

Synthetic data

The presented algorithm has been tested on synthetic
data. The synthetic spectra consist of y vectors of n = 500
components. Each y is generated by summing contribu-
tions from a synthetic baseline x;, a synthetic peak list
X, convolved by a Gaussian peak shape p and a Gaussian
noise €:

Y=Xp+Xp*kp+e€

The detailed description of these three contributions
follows.

e Synthetic baseline
The analytic expression of the baseline is

Xp [i] = C(s) +sexp (—3;) — 21

n
where s can take one of the following values s = —1,
0,or 1.
For s = 0 the baseline is a straight line, for s = —1 the

baseline is concave, for s = +1 it is convex.
The constant C(s) insure a positive spectrum. Its
value is C(s) = 5 for s = 1 and C(s) = 2 otherwise.

T T T T T T T T T
: : Alternate BB1 & BB2 — |
100 12 ' BB1 step only
' ' BB2 steponly ——
1 T I S
0.01 L L111 B
< | | | |
= 0.0001 [ TS RN o B RS LR [RERRRREREEES SR
< : : : :
2 | ! !
> | i i
g, 065 3 ; ; : ; 3 3
e-06 [r--"""mrmt Ao [ V0 | e el il ks [ S i A S e R e e e e R et b
X | | | s s | |
R S S e e SRALN
teto P P R P i VIR
0 50 100 150 200 250 300 350 400
Iterations

Fig. 3 Typical convergence behavior of the PBB algorithm given in Algorithm 2. Alternating between BB1 and BB2 steps leads to faster convergence
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e Synthetic peak list
The analytic expression of the peak list contribution is:

p

(xp*p) [i1=")_ aap (11, 0, i)

k=1

where we have taken 1, = 10 and

. 1(i— e\
P(Mkrap’l):exp<_2< - ))
)4

These 1, Gaussian peaks are defined by a constant
shape factor 0, = 10. The individual heights o4 and
centers ju; are tabulated in Table 1.

e Simulated zero mean Gaussian noise
The noise € follows a Normal law of zero mean and
Onoise Standard deviation:

eli] ~ N (0, onoise)

Algorithm implementation

We provide a reference implementation ! that can be used
to reproduce the results of the following sections. This
implementation is coded in C++ and runs under Linux.
The main page of the project details all the steps to repro-
duce the results of the “Joint baseline computation-peak
deconvolution’, “Comparison with the usual sequential
approach” and “Real data” sections. Typical run-times are
one second for the synthetic data and three seconds for
the examples using real spectra data. To keep this imple-
mentation as simple as possible a basic projected gradient
descent is used instead of the more effective Algorithm 2.
Also note that this implementation requires CSV input
files. A more versatile version of our algorithm, using

Table 1 True peak centers uy and intensities k. All peaks have a
common shape factor o = 10

k Mk k
1 50 1

2 90 05
3 170 0.5
4 200 3

5 230 2

6 260 1

7 350 0.5
8 370 3
9 390

10 410 1
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Algorithm 2, is used in [39]. However, this implementa-
tion is not yet publicly available.

Joint baseline computation-peak deconvolution

As explained in “Final model formulation” section, page 8,
the joint baseline computation and peak deconvolution is
performed in two steps:

1 afirst resolution of Eq. 20 is performed with a strong
A1 penalty. The role of this step, is to obtain peak
centers from the noisy spectrum. This set of peak
centers is denoted by Q. This step is illustrated in
Figs. 4 and 5.

2 asecond resolution, is then performed with a null 11
penalty. This penalty is replaced by the restricted
support 2 for peak centers we found in the first step.
The role of this step is to correct peak heights and
baseline values which were biased by the presence of
the strong A1 penalty of the first step. Illustrations are
given in Figs. 6 and 7.

The baseline approximation obtained at the end of the
first step is given in Fig. 4. This figure shows a common
flaw of most of the baseline removal methods which is an
ascent of the baseline under the peaks .

The deconvolved peaks obtained after the first step are
given in Fig. 5. We notice the negative impact of a strong
A1 penalty which leads to an underestimation of the peak
heights. The figure also shows that the deconvolved solu-
tion is less spiky in regions of strong peak overlaps (right
part of the spectrum).

The baseline computed after the second step is shown in
Fig. 6. During this second stage, the 11 penalty is removed
and replaced by a restricted support  computed using
Eq. 16. We see that the ascent of the baseline under the
peaks has been corrected (c.g. x-axis ranges from 150 to
250 and from 350 to 400).

The new peak heights are shown in Fig. 7. The main role
of this second stage is to debias peak heights. Compared
to Fig. 5 we can see that this objective is quite well fulfilled.

Comparison with the usual sequential approach

In this second part we provide a comparison between our
new method and a common procedure used to extract
peaks. The objective is to validate the approach and to see
if there are some advantages to use the joint baseline com-
putation and peak deconvolution over more traditional
approaches. Our method essentially depends on 3 hyper-
parameters Aj, Ay and u. The parameter Ay is of minor
importance and is constantly set to 0.1. The two other
hyper-parameters are:

1 the A; parameter enforcing the sparsity of the
solution x,,

2 the u parameter enforcing the smoothness of the
baseline xj,.
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Fig. 4 Step 1:first baseline approximation with A; > 0, comparison between the true baseline. We notice an ascent of the baseline under the peaks

In order to perform a fair comparison with another 1 Baseline subtraction: the Statistics-sensitive
approach we tried to stick to an approach that also only Non-linear Iterative Peak-clipping (SNIP) algorithm
uses two hyper-parameters. The usual approaches in spec- [40—42] is an efficient algorithm to compute
tra processing generally chain at least two procedures [4]. spectrum baseline. It generally gives good results and
In peculiar, the baseline subtraction procedure is followed is easy to implement. It uses only one parameter, the
by a peak picking procedure. window width mgyip, but requires a smoothed

5 T T T T T T T T T
True peaks ——
Computed peaks ——
True spikes ——
Computed spikes ——
4F _
sl _
5| _
ik _
o | | | |‘n JM I

0 50 100 150 200 250 300 350 400 450 500

Fig. 5 Step 1: peak selection, comparison between the true peak support and the deconvolved peaks. The negative impact of a strong A1 penalty is
showed, the peak heights are underestimated
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Fig. 6 Step 2: final baseline approximation with A1 = 0 and  peak support regularization. The baseline under the peaks has been corrected

spectrum. To smooth the spectrum we use a have only one parameter, a fixed window width
Savitzky-Golay filter [6, 7]. The idea is to locally fit msg = 39 is used for the smoothing step.
the spectrum by a polynomial. This least-squares 2 Peak picking: once the baseline has been subtracted
fitted polynomial of degree d is computed using msg from the original spectrum, there are a large panel of
points of a running window. For each window methods to extract peaks [4]. We can mention simple
position, the spectrum value at the window center is thresholding [42], second derivative computation
then replaced by the polynomial value. In order to using Savitzky-Golay filters, extraction from wavelet
5 T T T T T T T T T
True peaks ——
Computed peaks ——
True spikes ——
Computed spikes ——
4 F i
3 i
2F i
1F i
0 /] |

0 50 100 150 200 250 300 350
Fig. 7 Step 2: peak debiasing, comparison between the true peak support and the deconvolved peaks

400

450 500
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coefficients or deconvolution. For our comparison
we are more interested by deconvolution-like
methods [21, 22] which are closer to our approach.
By consequence we have decided to extract peaks
thanks to the usual sparse deconvolution problem:

o1 2 A 2
argmin o [y =Ly, + 1 [l + 5 [, 26)

As for our method, the coefficient A5 is not critical
and we set it to a constant value Ay = 0.1. The
remaining A; is our second free parameter. To solve
Eq. 26 we use the same Barzilai-Borwein solver,
detailed in Algorithm 2 and the same two-steps
procedure which consists in peak selection (high A1)
and peak heights debiasing (A1 = 0).

To compare the two approaches we perform a system-
atic grid search for the two hyper-parameters. The grid
for our new method is given Table 2, whereas Table 3 is
used by the usual method, that sequentially removes the
baseline and then performs the peak deconvolution.

For each processed spectrum we perform a systematic
parameter grid search and report the best result obtained
by the two methods. To find the best solution we com-
pare the deconvolved peaks with the ground truth of our
synthetic data. We use the following procedure to com-
pare these two peak lists. As defined in our model, a peak
list is stored in a sparse vector x,. To each nonzero com-
ponent X, [i] corresponds a peak at position i and height
%p [i]. Like computed peak centers and ground truth peak
centers might not be perfectly aligned we reconstruct a
continuous signal by convolving the two peak lists by the
known peak shape p. This blurring is required later to
compute the Euclidean distance between these two peak
lists. This reconstruction is performed by the following
matrix-vector products: Lxj for the ground truth peak
list and Lx, for the peaks extracted by the algorithm.
Using these vectors we can now compute a normalized
Euclidean distance defined by:

&%),

&= -
[Lx;

For each noise level and each algorithm the computations
are performed 10 times, each time with a different noise
realization. From these 10 replica we report the obtained

Table 2 Our method: used grid for parameter search

Parameters Min Max Step
m 100 4000 100
A 0 4 0.2

Xy = 0.1 is constant
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Table 3 Usual method, baseline removal then peak deconvolution:
used grid for parameter search

Parameters min max step
msNip 20 40 2
A 1 15 0.2

Ay = 0.1 and msg = 39 are constant

mean and standard deviation of the &£ merit factor. The
results are given in Table 4 and plotted in Fig. 8.

On this example the joint evaluation of the baseline
and of the deconvolved peaks outperforms the sequential
approach in nearly all configurations except for the noise-
free case. In this condition, as we are using synthetic data,
a perfect reconstruction of the “ground truth” spectrum is
possible. By consequence, the reconstruction error is very
small. To explain this result, we think that our iterative
solver had stopped its iterative resolution too early.

To get more intuition on what is happening we provide
Fig. 9 illustrating the baseline computation using the SNIP
algorithm.

As explained the SNIP algorithm needs to work on a
previously smoothed spectrum. This smoothing is per-
formed using a Savitzky-Golay filter. This sequential
approach, smoothing then SNIP baseline, can introduce
an important bias on the computed baseline. This error is
then transferred to the peak picking algorithm. The result
can be a poor peak extraction.

Baselines obtained by our method and by the classical
SNIP algorithm are shown in Fig. 10.

We see that the simultaneous baseline and deconvolu-
tion approach allows a nearly perfect reconstruction of the

Table 4 Comparison between the two methods, for convex

baselines = —1
Onoise Sequential processing Proposed method
E. x 1073 E, x 1073
0. 15. 27.6
0.2 478 +£876 452+£9.12
04 886+ 156 81.6£11.9
0.6 131.£214 118. £ 18.
0.8 176. £ 26. 154. & 20.1
1. 217.+£ 337 184.+£21.3
12 262.+ 457 215. £ 255
14 295.4+482 245. £ 294
16 330.£525 275.£32.7
1.8 360. £ 59.8 300. 4+ 382
2. 390.+ 704 322. £44.3

&, merit factor, lower is better. Apart from the noise free signal, the joint approach
outperforms the sequential one for all noise levels
The italic means the best result (when comparing the two methods)
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Fig. 8 Box plot of the results presented in Table 4. €, merit factor, lower is better

baseline. Unlike our approach, the SNIP algorithm suffers
from initial filtering of the spectrum and presents baseline
ascent below peaks.

Real data
We present some results obtained by our algorithm on real
MALDI-ToF mass spectra. The Fig. 11 shows the peaks

obtained when the low resolution spectrum is decon-
volved with a tight peak shape. We have used a Gaussian
peak shape with opeak = 0.4 m1/z. The goal is to evaluate
the behavior of the algorithm when we try to deconvolve
isotopic motifs. The notable result here is to see that the
returned peak centers are approximately spaced by 1 m/z
which is the expected value. This result is encouraging

10 T T T T

T T T T T
Raw spectrum ——

Smoothed spectrum ——

SNIP baseline

4 1 1 1 1
0 50 100 150 200

250

Fig. 9 Details of the Savitzky-Golay smoothing + SNIP baseline, opoise = 1,
sequential approach these artifacts directly affect the peak picking algorithm

300 350 400 450 500
msnip = 28. The baseline removal can introduce serious artifacts. In a
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Fig. 10 Computed baselines comparison. The blue curve is the baseline obtained by our method whereas the black one is the baseline computed
by the SNIP algorithm. Our method is able the recover a nearly exact baseline unlike the usual one that presents artifacts and ascent below peaks.
This result is for opeise = 1,5 = —1 (convex baseline) and parameters given in Table 4

as this information was not provided to the algorithm to
perform its deconvolution.

However isotopic motif deconvolution without using
any extra information (like an expected 1 m/z spacing
between peaks) can lack robustness. That is the reason
why it is certainly safer to use a wider peak shape to model
the unresolved isotopic motif as a whole. This is illustrated
by Fig. 12. We have run the algorithm twice. The first run
used a sparsity promoting regularization of 1; = 1, the
second run used A; = 0.5.

The developed algorithm can also be used with high
resolution MALDI-ToF mass spectrum (reflectron mode).
Figure 13 gives such an example. A Gaussian peak shape
with opeak = 0.15 m/z is used for the deconvolution. As
before, we have used two values for the sparsity promoting
regularization. The first run used A; = 0.5, the second run
used A1 = 0.2. We clearly see the impact on the results,
in the first case only the main peaks are extracted, in the
second one very small peaks are also extracted. For the
moment this A; parameter has to be manually tuned by
the user.

It is generally quite difficult to evaluate peak picking
methods on real spectra because we do not have the
ground truth at our disposal. However, in our case we have
expensively used the proposed approach in the BHI-PRO
project. The study [39] compares our method against a
more usual one on mass spectra of spiked proteins. This
study quantifies the algorithmic part of the variance of the

measured protein abundances and shows a clear gain in
favor of our algorithm.

Conclusions

We have introduced a new method for peak deconvolu-
tion. This new approach jointly performs baseline com-
putation and peak deconvolution. The baseline equation
can be solved in a closed form and is substituted into the
deconvolution equation. The new deconvolution equation
contains a linear operator A, acting as a smoothed
second order derivator. The problem of boundaries is
exposed and tackled rigorously leading to a modified
equation. The problem is efficiently solved by the pro-
jected Barzilai-Borwein algorithm. A comparison with
a traditional approach relying on a sequential baseline
removal and peak picking is detailed. The benefits of our
new approach are put in evidence, including a better base-
line approximation avoiding ascent below the large peaks,
and a better reconstruction of the deconvolved peaks.
Finally the method has been tested on real data.

Perspectives

There are two main directions we want to explore. The
first direction is to go one step further in a joint processing
approach by allowing automatic adjustment of the peak
shape function. Ideally, with such an approach, the base-
line, the peak shape and the deconvolved peaks would be
computed jointly. The second direction would be to devise



Picaud et al. BMC Bioinformatics (2018) 19:123

Page 15 of 20

a 9000 T
Y raw
8000 F reconstructed —— |
baseline
N convolved peaks i
7000 peaks ——
6000 B
5000 B
4000 N
3000 B
AP AN
2000 F B s s st i Vooryscha i i
1000 ‘ ‘ :
0 1 1 ‘ 1 1
1540 1545 1550 1555 1560 1565 1570
b 5000 T
Yraw ——
4500 reconstructed ——
baseline
4000 + convolved peaks B
peaks
3500 B
3000 B
2500
2000 - T W,
oy va‘u“'/"r’v‘vﬁ”\"»r'u‘v‘wMW‘wv"’ Pl i il WY‘VK n “WW"‘M"'M*"’“W\
1500 - B
1000 -
0 1 1 ‘ 1 L [ 1 1
2560 2580 2600 2620 2640 2660 2680 2700
Fig. 11 Low resolution MALDI-ToF spectrum, isotopic motifs deconvolution obtained for tight Gaussian peak shape of opeak = 04 m/z

a procedure for automatic tuning of the two main hyper-
parameters. The resulting algorithm would be of great
value to process a large number of spectra in batch mode.

Endnotes

https://github.com/vincent- picaud/Joint_Baseline_
PeakDeconv

2No off-diagonal element is null

Appendix

Smoothness and convolution matrix

To enforce baseline x;, smoothness the first order finite
differences matrix D of dimension (n — 1) x n

1-1
1-1

1-1

has been introduced. For ease of reading we also provide
the D’D matrix expression. Its dimension is # x # and its
components are:

1-1
-1 2-1
D'D = N
2 -1
-1 1

-1

The matrices D’D and B, = I, + uD’D are tridiagonal
matrices. Hence the associated matrix-vector products
can be computed efficiently. The Thomas algorithm [43],
which is a Gaussian elimination optimized for tridiagonal
matrices, also provides an efficient way to compute the
matrix-vector products associated to the A, = I, — B;l
operator.

In the presentation the convolution product between
the peak list and peak shape function, x, * p, is often
represented by the Lx, matrix-vector product. However,
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Fig. 12 Low resolution MALDI-ToF spectrum, deconvolution obtained when considering unresolved isotopic motifs as an unique peak. The
Gaussian peak shape is opeak = 2 m/z. The regularization is A1 = 1 for the top plot and Ay = 0.5 for the bottom one
. . . o . 1 -1
5 t o2
in practical computat10n§ the L matr.lx is never expllatly 9(2) = —=Vg(0) [V (0(0)] Vo(0) + ¢(0) 27)
formed and the convolution product is computed directly 2
using a specialized subroutine. If we consider Eq. 6 as a function of x;,
1. 2 M 2
Derivation of reduced objective xp = T (Xp,Xp) = 2 [y = ”2 + B | Dx;, “2 + 40
This appendix focuses on the reduced criterion Eq. 10. where
Let ¢ be a function which takes as input a vector z of
size n and produces as output the scalar quantity y=yv-Lx,
A2 2
1 qgo = M|[Xp|; + =X
0~ Lz o, + 22 2
and
where ¢ is a scalar, q is a vector of size n and Q is a 1,_5
strictly positive-definite symmetric matrix of size n x n. J0,xp) = 2 IYll2 + g0
The minimizer of ¢ is Z = —Q~!q and the minimum is <
v Qg Vi T(0,%,) = —F

A 1 _ v2 7(0,x,) = B
¢ (2) = —eqQ 'q+q0 xJ (0:%p) i
then application of Eq. 27 directly leads to Eq. 10:
If we introduce the gradient Vp(z) = Qz + q and the F) = 7 (%,

- ’ + C
Hessian V2¢(z) = Q we notice that the previous relation (x») (o)

takes the following form: with a constant term C = — %ytAMy.
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Fig. 13 High resolution MALDI-ToF spectrum, peak extraction with a Gaussian peak shape of opeak = 0.15 m/z. The reqularization is A1 = 0.5 for the
top plot and A, = 0.2 for the bottom one

Expression of lim A,
L= 00

The matrix D?D is real and symmetric, hence it admits an
eigen decomposition

n

= kavk ® Vi

k=1

D'D = VAV*

where A is a diagonal matrix of eigenvalues vx and V
is an orthonormal matrix. Each column k of V is an
eigenvector vi.

Let’s write down two basic statements about eigenpair
(v,v) of any square matrix M:

- the first one, where I denotes the identity matrix, is:

Mv=vw& I+Mv=_>1A+v)Vv

- the second one, that requires M to be invertible (hence

v # 0), is:

1
Mv=w& Mlv="v
v

Now observe that like I, + uD’D is a strictly diagonally
dominant matrix it is invertible [44]. Using the two pre-
viously enumerated relations it is easy to show that this
matrix admits the following eigen decomposition:

n

(I, + uD'D) " =

— Vi Q Vg

P

By construction (first order finite differences) the product
of the matrix D with a constant vector is the null vector.
It follows that we have D'Dv; = 0 where v; = ﬁ]ly,.
Thus v; is the normalized eigen vector associated to the
v1 = 0 eigenvalue. Moreover, as DD is an unreduced?
real symmetric tridiagonal matrix, all its eigenvalues are
simples ([45], Lemma 7.7.1). By consequence we can write:
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n
_ 1
(I, + uD'D) 1="1®V1+Z Vi ® Vi
k=2

— 14 pvg
with vy # 0 for all k > 2. It is then trivial to compute the
limit:

_ 1
lim (I, + uD'D) ™" = v @ vi = —TLuxs
=00 n

which is a square matrix of dimensions # x n with all
entries equal to 1.
From the definition of A, in Eq. 11 we get the expected
result:
li !
MLngo[A“]i’/ =6 — -
with §;; equals to 1 if i = j and 0 otherwise.

Boundary correction
Our boundary correction approach exploits the opportu-
nity to convert an equality constrained problem

oLy ¢
arg min —x'Qx+x'q (28)
x, x[k]=jx 2
into a unconstrained modified problem
1 ,~ ~
arg min EXth +x'q (29)
X

Let begin by writing the Lagrangian [38] associated to
Eq. 28.

1 ~ ~ _
L(X, Ag) = 5x':Qx +x'q+ )\kelt( (x [k] — ¥x)

The KKT conditions are then easily obtained by dif-
ferentiating the Lagrangian and by imposing constraint
satisfaction:

(VxL (%, Af) = Qx+ q + Arer = 0) A (x [k] = ¥i)

where Ay is the Lagrangian multiplier associated to the
constraint x[ k] = y; and e the vector of component & (7).
We can expand the VyxL(x, Ax) = 0 equation to get:

Q| v Ut X~ q 0
vi QK k) | wt x[K |+ alkl |+ 4 | =0
U w [QF xt qt 0

It is then obvious that if we take:
M= — (V'x7 + 7 QUk, k) + wixt + q[k])

then the constraint x[ k] = ¥y is fulfilled. Substituting this
into the VxL(x, 1x) = 0 equation we get:

Q| v |U X q
0 |Qk,k)| 0 x[k] | + | =% Q. k) | =0
U w |QF X q"

This equation is usable but its drawback is that we have
lost the symmetry of the modified Q matrix. This can
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be fixed by another modification of the vector term q.
Exploiting the fact that by construction x[k] = yx we have
the following equivalent system:

Q| o |U X~ q~ +nv
0 |Qk k)| O x(k] | + | —Qk,k) | =0

U 0 [QF xt qt +nw
(30)

By identification we can write down the announced result:
N t~
arg min 3X Qx +x'q
X

which is an unconstrained system for which the minimizer
satisfies x [k] = yi. For presentation clarity we only have
considered one constraint, but this scheme can be used
sequentially for any set of constraints

{x[k] =y k € K}

Now we can see how to use this technique to our decon-
volution problem. We must go back to Eq. 8:

VyJ = (I, + uD'D) x; 4+ Lx, — y
—_— —

B,

By identification the role of the matrix Q is played by the
B, matrix. Furthermore all the modifications done on the
vector q can be transposed to modifications associated to
the —y vector.

As an illustrative example, we consider the most usual
case that consists of imposing the left y; and right y,
baseline values at boundaries. Direct application of Eq. 30
provides the result. The modified B,, matrix is:

14+ O
0 1+2u —pn
- 14+2u —p
ﬁu = . .
—n1+2n —p
—u 1+2n 0
0 1+un
(31)
The modified y vector is:
1+ wn
y[2] + wyn
y[3]
y= : (32)
yl[n—2]
Y [I’l - 1] + /’Lyn
1+ wyn
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With these modifications, the modified Eq. 9 that allows
to retrieve the baseline x;, from the deconvolved peaks x,
is now:

Xp = §;1 (¥ - Lxy)

The modified A, operator Eq. 11 is computed as before

A, =1,-B* (33)
The final quadratic form Eq. 13 must be replaced by:
~ 1, e
J2(xp) = 5% (halp + 1L A,L) x,+
x, (1, ~LAJ-L'y-9) 69
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