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Abstract

Background: Identification of multi-markers is one of the most challenging issues in personalized medicine era.
Nowadays, many different types of omics data are generated from the same subject. Although many methods
endeavor to identify candidate markers, for each type of omics data, few or none can facilitate such identification.

Results: It is well known that microRNAs affect phenotypes only indirectly, through regulating mRNA expression
and/or protein translation. Toward addressing this issue, we suggest a hierarchical structured component analysis
of microRNA-mRNA integration (“HisCoM-mimi”) model that accounts for this biological relationship, to efficiently
study and identify such integrated markers. In simulation studies, HisCoM-mimi showed the better performance
than the other three methods. Also, in real data analysis, HisCoM-mimi successfully identified more gives more
informative miRNA-mRNA integration sets relationships for pancreatic ductal adenocarcinoma (PDAC) diagnosis,
compared to the other methods.

Conclusion: As exemplified by an application to pancreatic cancer data, our proposed model effectively identified
integrated miRNA/target mRNA pairs as markers for early diagnosis, providing a much broader biological interpretation.

Keywords: miRNA, mRNA, Integration analysis, Generalized Structured Component Analysis (GSCA), Hierarchical
structured component analysis of miRNA-mRNA integration (HisCoM-mimi)

Background
Presently, numerous types of “omics” data are generated
by many accurate and cost-effective methods. For instance,
next-generation sequencing (NGS) technology is used to
find DNA or RNA variations, bisulfite sequencing is used
to find DNA-methylated variants, and multiple reaction
monitoring (MRM) is applied to measure protein abun-
dances [1–3]. These efficient omics data platforms allow
researchers to use multi-omics data, obtained from the
same subjects, for analyzing huge numbers of variants. As a
result, efficient multi-omics data analysis is becoming more

important in integrating large-scale data sets, making it
possible to interpret fundamental biological systems [4].
MicroRNAs (miRNAs) are noncoding RNAs having a

length less than 25 base pairs, regulating the expression
of specific genes by mRNA degradation or blocking
translation by binding to the 3′ regions of their “target”
mRNAs. Many recent studies have now implicated
miRNAs in the pathogenesis of cancer, including
triggering cancer initiation and progression. MiRNAs
have been shown to have tissue-specific and disease-
specific expression patterns [5–8]. Intensive investigation
is now underway for using applying miRNAs’ inhibitory
information to mRNAs. For example, Nam et al. developed
“miRNA and mRNA integrated analysis” (MMIA) to
examine biological functions of miRNA expression [9].
Moreover, Buffa et al. used pathway information to inde-
pendently validate miRNAs significant for breast cancer [10],
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while Cho et al. performed network analysis, and hierarchical
clustering, to find biological “signatures” of interstitial lung
diseases [11]. Most miRNA and mRNA integration analyses
focus on first identifying miRNAs significantly associated
with the phenotype of interest, and then experimentally
validating those miRNAs’ phenotype involvement by inhibit-
ing or ectopically overregulating their expression [9–11].
Although these approaches are effective at validating signifi-
cant miRNAs, they do not provide information on how they
regulate expression of their target mRNAs, as relevant to the
pathway level.
In this work, we propose a structured component-

based analysis, for integrating omics data for identifying
multiple accurate biomarkers. It is well known that
miRNAs affect phenotypes indirectly, by regulating
mRNA expression or protein translation [8]. Herein, we
propose hierarchical structured component analysis of
miRNA-mRNA integration (HisCoM-mimi) analysis,
which models biological relationships as structured
components, to efficiently yield integrated markers. Our
proposed model is based on generalized structured
component analysis (GSCA), which tests hypothesized
relationships between observed and latent variables [12].
GSCA is a component-based method whereby each
component represents a latent variable. Extending GSCA,
we previously developed Pathway-based approach using
hierarchical components of collapsed rare variants
(PHARAOH) [13]. PHARAOH uses a hierarchial
structure of rare variants, genes, and pathways. The
advantage of such hierarchical structural component
models is their generation of (unobservable) latent
variables, such as genes and pathways, which are
inferred by observed variables, such as rare variants.
Using latent variables, we can collapse unstructured
data into a structured form, providing less ambiguous
biological explanations of the results. In this current
work, mRNAs, inhibited by miRNAs, can be merged
into latent variables.
Accordingly, our proposed HisCoM-mimi model can

efficiently account for biological relationships between
miRNA and mRNA, in the structured component, and
effectively provide integrated (e.g., miRNA-to-target-mRNA)
markers. As an illustration, we tried HisCoM-mimi for
identifying biomarkers for the early diagnosis of pancreatic
cancer (PC). Note that PC is one of the most fatal diseases
in the world, having a mere 8% five-year survival rate in the
USA and a 9.4% survival rate in the Republic of Korea
[14–16]. In particular, the tumor heterogeneity in PC
patients’ tumors makes early diagnosis harder than
cancers of most other organs [17]. To adjust for hetero-
geneity among tumor cells, we need a more robust and
complex statistical model which can interpret and inte-
grate several causes of cancer altogether. Although many
bioinformatics research studies have been performed to

find diagnostic markers for PC, to date, no clinically
approved prognostic markers exist [18].
Here, we applied HisCoM-mimi to computationally

identify diagnostic markers of pancreatic ductal adeno-
carcinoma (PDAC), the most common type of PC. By
applying the HisCoM-mimi approach to miRNA and
mRNA microarray data from PDAC patients, at Seoul
National University Hospital (SNUH), we identified
numerous cognate miRNA-mRNA partners, as markers
for diagnosis of PDAC. Finally, our HisCoM-mimi
provided integrated marker sets, with more biological
and intuitive interpretation, than other existing methods.

Methods
Pancreatic ductal adenocarcinoma (PDAC) samples
Between the years 2009 and 2012, 200 pancreatic ductal
adenocarcinoma (PDAC) samples were collected by the
Department of Hepatobiliary and Pancreas Surgery of
Seoul National University Hospital. The study protocol
was approved by the Institutional Review Board of Seoul
National University Hospital (IRB H-0901-010-267) and
written, informed consent was obtained from each
patient or legally authorized representative.
Of the 200 tumors, 96 were excluded because of RNA

degradation or insufficient RNA content, leaving 104
samples valid for microarray analysis. After quality
control, 97 PDAC samples remained for microarray
assessment. The PDAC patients’ average age was
64.3 years (standard deviation (SD): 9.7). Twenty-nine
patients were male, and 31 female. For the normal
groups, 17 benign pancreatic tissues were used. Subse-
quently, we built and implemented our mini model,
using the 97 PDAC and 17 normal tissues, respectively.

HisCoM-mimi model
To perform the integration analysis of miRNA and
mRNA data, we developed and implemented our
HisCoM-mimi approach. This model analyzes multiple
subnetworks simultaneously, with specific regard to in-
verse correlations between mRNA and miRNA. Figure 1
shows the flowchart of the method. First, for a given
miRNA, a miRNA-mRNA subnetwork, consisting of one
miRNA and multiple potential target mRNAs, is
constructed if the following two conditions are satisfied:
(i) the mRNAs are reported as target of the miRNA by
TargetScan 7.1 (targetscan.org) [19], and the negative
correlation coefficients between the mRNA and miRNAs
are significant (p-value < 0.05). Second, for all entities
deemed significant, we derived our hierarchical structural
component model by using all miRNA-mRNA subnetworks.
As shown in Fig. 2, there are three structures to

consider: miRNA-mRNA structure, miRNA integration
latent structure, and phenotype-latent structure. Each
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structure can be represented as a generalized linear
model, similar to PHARAOH [13].

miRNA-mRNA structure

X̂ijk ¼ xijk−γ jkzi j; j ¼ 1;…;Gj; ð1Þ

Equation (1) shows how to obtain mRNA expression
before inhibition by miRNA, subscript i means i th
individual, xijk represents the mRNA expression of the
kth gene related with j th miRNA, zj the j th miRNA
expression, γjk the inhibition coefficient for the j th

miRNA for the k th gene, and Gj is the number of
inhibited mRNAs by the j th miRNA. By estimating the
coefficients γjk, mRNA expression after removing the
inhibition effect of miRNA can be obtained.

miRNA latent structure

f ij ¼ γ j0z jþ
XG j

k¼1
X̂ijkwjk ð2Þ

The miRNA latent variable is defined in Eq. (2). The
miRNA latent variable is built by linearly combining
miRNA expression values. While γj0 denotes the direct

Fig. 1 Flow chart for analyzing mRNA-miRNA integration

Fig. 2 Network Diagram for HisCoM-mimi model
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effect of the miRNA on the phenotype. Then, the latent
variable fij represents the global effect of the miRNA’s
activity through its inhibited mRNAs.

Phenotype-latent structure

logit πið Þ ¼ β0 þ
X J

j¼1

XG j

k¼1
xgeneij kð Þwjk

h i
β j

¼ β0 þ
X J

j¼1
f ijβ j ð3Þ

Let the phenotype variable yi be a binary variable, dis-
tinguishing PDAC from normal tissues. Let πi be the
probability of yi = 1 (PDAC). logit(πi) is the logit link
function, βj represents the effect of fij on the phenotype,
as interpreted as a log-odds ratio.

Fitting the HisCoM-mimi algorithm
To estimate the parameters for HisCoM-mimi, we
adopted our previously developed PHARAOH algorithm
[13], which is based on the alternating least squares
algorithm for the penalized log-likelihood function, with
ridge parameters. Then, the objective function to
maximize is given as follows:

logit πið Þ ¼ β0 þ
X J

j¼1

XG j

k¼1
xgeneij kð Þwjk

h i
β j

¼ β0 þ
X J

j¼1
f ijβ j; ð4Þ

φ1 ¼
Xn

i¼1
log p yi; β j; δ

� �
−
1
2
λm

X J

j¼1

XG j

k¼1
w2
jk−

1
2
λmm

X J

j¼0
β2j

ð5Þ

where p(yi; γi, δ) is the probability distribution for the
phenotype of the ith individual. λm and λmm are ridge
parameters for miRNA-mRNA pairs of interest, repre-
senting the integrated latent components.
To maximize the objective function, φ1, the iterative

reweighted least squares (IRWLS) algorithm is used.
Note that when using IRWLS, maximizing φ1 is equiva-
lent to minimizing the object function φ2.

φ2 ¼
Xn

i¼1
vi zi−

X J

j¼1
f ijβ j

� �2
−
1
2
λm

X J

j¼1

XG j

k¼1
w2
jk−

1
2
λmm

X J

j¼0
β2j

ð6Þ

Comparative models
To compare the results of HisCoM-mimi with other
methods, we considered several alternative regression-
based methods.

logit πið Þ ¼ β0 þ
X J

j¼1
θ jzij þ

XK

k¼1
ρkxijk ; j

¼ 1;…; J ð7Þ

φLR β0; θ; ρ; δ;X;Z
� � ¼

Xn

i¼1
log p yi; β0; θ; ρ

� �
−δPα θ; ρð Þ; j ¼ 1;…; J

ð8Þ

Firstly, we considered the ordinary penalized logistic
regression (LR) methods such as lasso or elastic-net
(EN) [20, 21]. Equation 7 shows the LR model, where θj
and ρk represent the effect of the jth miRNA and the kth
mRNA, respectively. Equation 8 is the objective
function to maximize for finding optimal parameters
with the penalty function Pα(θ, ρ). When lasso is used,
Pα(θ, ρ) =∑k ∣ ρk ∣ + ∑j ∣ θj∣.
If EN is used, Pαðθ; ρÞ ¼ αðPkjρk j þ

P
jjθ jjÞ þ ð1−αÞ

ðPkρ
2
k þ

P
jθ

2
j Þ . Lasso or EN can then select the

miRNAs and/or mRNAs of interest. However, these
methods cannot use group information. Thus, ordinarily
penalized LR methods cannot adequately account for
the biological structure of miRNA-mRNA.
Secondly, we considered LR with a group lasso penalty

(GL) [22], which has the benefit of using group information
among the miRNAs and mRNAs of interest. In our
analysis, a group can be defined as a set of one miRNA and
its corresponding inhibited target mRNAs. GL uses the
same LR in (8) with a different penalty function

Pðθ; ρÞ ¼ P J
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2j þ

PG j

k¼1jρk j
q

. Via this penalty function,

miRNA integration set can be selected together. However,
the GL approach does not easily provide p-values for each
set of independent variables.
To fit the penalized LR models, we first performed 3-fold

cross-validation to find the optimal tuning parameter, δ.
after which we fitted the models with all the data sets.

Simulation study
To compare HisCoM-mimi to the other three methods,
we performed simulation studies and computed type I
errors and power, simulating data from the same miRNA
and mRNA data structure in our pancreatic cancer data-
set. That is, we selected miRNA and mRNA data from
the pancreatic cancer dataset, and then generated
phenotype data iteratively from the LR model. We then
considered two simulation scenarios. Scenario 1 assumed
that a true causal integration set contains two mRNAs,
with the same effect size. Scenario 2 assumed that a true
causal integration set contains five mRNAs, with the same
effect size. For each scenario, we randomly selected one
causal miRNA-mRNA subnetwork, and then randomly
selected another 9 miRNA-mRNA subnetworks, for which
the number of inhibited mRNAs was less than 10. The
selected miRNA-mRNA subnetworks for Scenario 1 are
summarized in Table 1 and for Scenario 2 are in Table 2.
For Scenario 1, we used miR-217 as a true causal

miRNA. To generate phenotypes, we considered the
following LR model.
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logit πð Þ ¼ βmiRNAz1 þ β1x1 þ β2x2; ð9Þ

where π is the probability of observing a disease (Y = 1),
z1 represents the true causal miRNA expression, and x1
and x2 represent two causal mRNA expression values.
For type I error evaluation, we assumed βmiRNA= β1 = β2 = 0.
For power comparison, we generated simulation data sets
under the assumption that βmiRNA= β1 = 0.2, 0.25, 0.3, 0.35.
For the given 114 (97 PDAC and 17 normal tissues) values
of (z1, x1, x2), from our pancreatic cancer dataset, we
simulated 1000 datasets.
For Scenario 2, we assumed that a true causal integration

set contains five mRNAs, with the same effect size. In our
dataset, miR-381 was the only miRNA having five inhibited
target mRNAs. To generate phenotypes, we considered the
following LR model:

logit πð Þ ¼ βmiRNAz1 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ β5x5;

ð10Þ

where x1, …, x5 represent five causal mRNA expression

values. As in Scenario 1, we assumed βmiRNA = β1 = β2
= β3 = β4 = β5 = 0, for type I error evaluation, and βmiRNA

= β1 = β2 = β3 = β4 = β5 = 0.2, 0.25, 0.3, 0.35, for power
comparison. For the given 114 values of (z1, x1, x2, x3,
x4, x5) from the pancreatic cancer dataset, 1000 simulation
datasets were generated. We used the significance level
α = 0.05 for HisCoM-mimi, as an false positive rate
(FPR) criterion. For lasso, EN, and group-lasso, we
selected a threshold T which provides a comparable
FPR to the type I error 0.05. T was determined by
calculating the FPR for simulation settings such that a
miRNA-mRNA subnetwork is selected when βmiRNA ≠ 0
and Kð¼ PL

l¼1Iðβl≠0ÞÞ exceeded the threshold T. Here,
L is the number of inhibited mRNAs for true causal
miRNA for each scenario: L = 2 for Scenario 1, and L = 5
for Scenario 2.

Results
Simulation results
For our analyses, we first determined the false positive
error rates (FPRs) of each method, and chose the
threshold values of T to make each penalized method
provide (hold) FPRs close to 0.05. In Scenario 1, the type
I error rate of HisCoM-mimi was 0.048 when α = 0.05.
The FPRs of lasso were 0.054, when T was 1, and that of
EN was 0.064, when T was 1. Since type I error rates of
lasso and EN were nearly 0.05 when T = 1, we set T = 1
to evaluate power of those two methods. The FPR of GL,
when choosing a causal miRNA integration set, 0.064.
For Scenario 2, Table 3 shows the FPRs for lasso and

EN, when varying the threshold T. For this result, we
found that the type I error of lasso and EN were similar
to 0.05, when T = 1 and 2, respectively. The type I error
rate of HisCoM-mimi was 0.054. On the other hand, GL
did not select a causal miRNA integration set at all, such
that the type I error rate was 0. Secondly, we compared
the powers of each method for Scenarios 1 and 2. Figure 3
shows bar plots of powers for scenario 1, where the
x-axis shows the effect sizes (i.e., beta coefficients),
and the y-axis shows the power. HisCoM-mimi showed
the highest power, while EN was second, Lasso was third,
and GL was last. The same tendency is shown in Fig. 4,
for Scenario 2. Figure 5 shows that the differences of
power between HisCoM-mimi and the others were much
larger than those of Scenario 1. Consequently, GL could
not find any significant miRNA-mRNA integration sets

Table 1 List of used miRNAs and mRNAs for simulation Scenario 1

miRNA Role in simulation Inhibited mRNA

miR-217 Causal ITGBL1, ATP10A

miR-215 Non-Causal CDC6, CTH, DNAJC19, DPP10, ELP4,
FUNDC2, GLP1R, B3GALNT2, SLC39A8

miR-485 Non-Causal CDX1, CTDNEP1, GPR3, HDAC5, KCNJ11,
RASL10A, SLC39A14

miR-195 Non-Causal CNDP2, SLC45A2, SLC7A2

miR-381 Non-Causal DKK3, IGFBP5, LAMA4, OSBPL3, BAMBI

miR-132 Non-Causal GLRB, GMPR, ARX, SALL3

miR-363 Non-Causal SOSTDC1

miR-1 Non-Causal FAM150B

miR-28 Non-Causal SRPRB

miR-200 Non-Causal NRG3

Table 2 List of used miRNAs and mRNAs for simulation Scenario 2

miRNA Role in simulation inhibited mRNA

miR-381 Causal DKK3, IGFBP5, LAMA4, OSBPL3, BAMBI

miR-215 Non-Causal CDC6, CTH, DNAJC19, DPP10, ELP4,
FUNDC2, GLP1, B3GALNT2, SLC39A8

miR-32 Non-Causal COL1A2, BGN

miR-195 Non-Causal CNDP2, SLC45A2, SLC7A2

miR-501 Non-Causal PARM1, SLC32A1

miR-1 Non-Causal FAM150B

miR-212 Non-Causal KCNK2

miR-204 Non-Causal CDH11

miR-200 Non-Causal NRG3

miR-363 Non-Causal SOSTDC1

Table 3 False positive rate when varying the number of selected
mRNAs for lasso and EN

T 5 4 3 2 1

Lasso 0 0 0.007 0.022 0.053

EN 0 0.002 0.014 0.055 0.204
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under Scenario 1, due to its GL’s penalty being too strict
for many mRNAs, whose beta values were small.

Constructing miRNA-mRNA subnetworks
To use human mRNA and miRNA probes, we first
filtered out non-annotated mRNA probes and non-
human miRNA probes. After filtering, there were 22,077
mRNA probes and 3391 miRNA probes. To construct
miRNA-mRNA subnetworks, we checked predicted
target mRNAs, for each miRNA, from TargetScan 7.1
(targetscan.org) [19, 23]. Among predicted targets, we only
selected mRNAs having significant Pearson correlation co-
efficients with a specific miRNA. After filtering, there were
55 miRNAs, and 2411 edges connected with mRNAs.

Integration analysis for the PDAC data
Table 4 shows the top significant weights of miRNA-
mRNA integrations derived from HisCoM-mimi. To
perform multiple comparison, we used false discovery
rate (FDR) q-values summarized in the 7th column [24].
We could only find 12 miRNAs having q-values below
0.05. Tables 5 and 6 show the lists of the selected
markers by lasso and EN, respectively. Since lasso and
EN select markers without any group information, they
selected miRNA and mRNA markers independently.
There were no miRNAs selected by lasso or EN directly,
with lasso yielding only two significant mRNAs, both re-
lated to miR-326. Other mRNAs were independently se-
lected from different miRNAs. Consequently, there were
only 12 markers selected by lasso. For EN, 58 mRNAs

Fig. 3 Power comparison for scenario 1

Fig. 4 Power comparison for scenario 2
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were selected. Similar to the lasso result, there were no
selected miRNAs, although four miRNAs (miR-206,
miR-3064, miR-222, and miR-326) connected to more
than three mRNAs. Figure 5 shows a Venn diagram of
the number of miRNAs selected by each method. Each
number represents the total number of detected miR-
NAs and one in the parenthesis does the number of de-
tected miRNAs whose relationship with pancreatic
cancer were reported. HisCoM-mimi selected larger num-
ber of unique miRNAs and the majority of them were
already were reported.
For the lasso group only one miRNA (miR-32) and

whose related two mRNA (COL1A2, and BGN) were
selected. Although miR-32 is not reported as pancreatic

cancer marker, there were some reports that miR-32 is
related with other cancers [25, 26].
Table 7 summarizes miRNAs detected by HisCoM-

mimi, lasso, EN, or GL. Previously, miR-93, miR-219,
miR-141, miR-222, miR-203, miR-132, miR-96, and miR-
206 were reported to be pancreatic cancer-related
markers [27–35]. Although other miRNAs detected by
HisCoM-mimi, lasso, EN, or GL have not been reported
for pancreatic cancer relation, miR-532, miR-590, miR-
133b, miR-326, miR-708, miR-3064, and miR-32 were
reported to associate with other cancer types [25, 36–42].
Table 8 shows the cross-validation (CV) results for

comparing prediction performance for marker-sets
selected by HisCoM-mimi, Lasso, EN, and Group Lasso.
The first column indicates methods used to construct
prediction model and the second column does the
method to select marker sets. The third column shows
the area under the Receiver Operating Characteristic
curve (AUC) results performed by leave-one-out cross
validation (LOOCV). This setting is from the previous
study of Kwon et al. [23]. The fourth column indicates
the average AUC values performed by four-fold CV with
a hundred iterations. Here, we used four-fold and eight-
fold CV to balance the number of samples in CV data-
sets. The fifth column indicates the average AUC values
performed by eight-fold CV with a hundred iterations.
For all selected marker-sets, all prediction models built
by HisCoM-mimi showed the best performances yielding
AUC values higher than 0.9 except the marker-set
selected by Group lasso in which the number of markers
is less than five and one path coefficient exists.

Discussion and conclusion
In this paper, we proposed and developed a novel
method, hierarchical structured component analysis of
microRNA-mRNA integration (“HisCoM-mimi”), to
construct a component model to identifying significantly
integrated miRNA-target-mRNA cognate pairs. Since
HisCoM-mimi could use subgroup information, it yelded
more results, as related to phenotypes (e.g. cancer, meta-
bolic syndrome, and etc.), than those of other existing
methods that lack network information.

Fig. 5 Venn Diagram for number of detected miRNAs for each method

Table 4 Significant miRNAs produced by HisCoM-mimi

Order miRNA Number of
inhibited
mRNAs

Number of
significant
mRNAs

βmimi PHisCoM-
mimi

qHisCoM-
mimi

1 miR-133b 81 29 0.319 0.0008 0.0126

2 miR-141 105 57 0.638 0.0008 0.0126

3 miR-222 127 70 0.587 0.0010 0.0126

4 miR-532 11 0 0.190 0.0010 0.0126

5 miR-93 80 36 −0.573 0.0014 0.0126

6 miR-219 26 3 0.278 0.0016 0.0126

7 miR-590 24 4 −0.183 0.0016 0.0126

8 miR-326 13 0 0.172 0.0022 0.0151

9 miR-203 65 11 −0.261 0.0026 0.0159

10 miR-132 4 0 −0.204 0.0034 0.0187

11 miR-96 109 42 0.701 0.0038 0.0190

12 miR-708 43 3 −0.181 0.0102 0.0468

Table 5 Selected markers by lasso. Twelve markers (12 mRNAs)
were selected. No miRNAs were selected

Selected
marker

Beta Connected
miRNA

Selected
marker

Beta Connected
miRNA

NSD1 − 0.704 miR-206 PLCE1 0.129 miR-1271

EMX2 −0.336 miR-222 TFCP2 0.112 miR-497

BBC3 0.329 miR-222 AKAP7 −0.017 miR-1297

GSG1 0.005 miR-3064 MAMDC2 1.044 miR-670

ZRANB3 −0.414 miR-326 DRGX 0.393 miR-96

MLEC 0.051 miR-362 FBXL2 −0.187 miR-133b
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In simulation studies, we compared the performances of
HisCoM-mimi, lasso, EN, and GL. From that comparison,
HisCoM-mimi showed better performance than the other
three methods. Controlling type I error, by HisCoM-mimi,
was easier for controlling FPRs than other methods,
because HisCoM-mimi uses permutation based p-values.
In particular, HisCoM-mimi could identify miRNA-
mRNA integration sets in a much more flexible way, due
to better use of a standard multiple testing framework, as
compared to the other methods. In real data analysis,
HisCoM-mimi succesfully identified more miRNA-mRNA
integration sets for pancreatic ductal adenocarcinoma

(PDAC) diagnosis, compared to the other methods.
Among 12 miRNAs, whose q-values were below 0.05 by
HisCoM-mimi, 7 miRNAs were previously reported to
associate with a panreatic cancer [27–35]. EN found two
miRNAs (miR-222, and miR-206) [30, 34]. Among two
miRNAs selected by lasso, only miR-222 was reported to
associate with pancreatic cancer.
Although HisCoM-mimi worked well for the PDAC

data sets, further biological verification of those results
are needed. In future studies, we will perform additional
simulation analyses to evaluate the performance of
HisCoM-mimi, under numerous conditions. Furthermore,

Table 6 Markers selected by EN

Selected mRNA Beta Connected miRNA Selected mRNA Beta Connected miRNA Selected mRNA Beta Connected miRNA

NSD1 − 0.340 miR-206 NUP214 −0.103 miR-3064 TFCP2 0.216 miR-497

FRS2 −0.046 miR-206 TCP11 −0.077 miR-3064 KDM5B 0.040 miR-524

MGAT4A 0.004 miR-206 BCL2L13 −0.022 miR-3064 RNASEH2C −0.043 miR-670

SLC8A1 0.022 miR-206 SLC16A10 −0.016 miR-3064 MAP3K10 0.163 miR-670

PI4KA 0.027 miR-206 GSG1 0.034 miR-3064 MAMDC2 0.395 miR-670

MATR3 0.034 miR-206 LRRC34 −0.159 miR-326 TCEB3 −0.286 miR-93

OSBPL8 0.088 miR-206 ZRANB3 −0.127 miR-326 RASL11B 0.036 miR-93

EMX2 −0.275 miR-222 AQP2 −0.037 miR-326 KIAA0087 0.182 miR-96

KIAA0430 −0.039 miR-222 CTRC −0.007 miR-326 DRGX 0.249 miR-96

AXIN2 0.003 miR-222 MLEC 0.034 miR-362 HS3ST2 0.016 miR-100

PRUNE 0.013 miR-222 NOTCH1 0.003 miR-367 SYDE2 0.098 miR-107

SHISA9 0.016 miR-222 SH3PXD2A 0.014 miR-367 AKAP7 −0.207 miR-1297

SHC3 0.031 miR-222 PTDSS1 0.017 miR-372 FBXL2 −0.373 miR-133b

RBL1 0.044 miR-222 CATSPER4 0.002 miR-378 CLIP2 0.005 miR-141

SOCS1 0.053 miR-222 TRIM55 0.071 miR-378 LYPD3 0.188 miR-152

SH3BP4 0.057 miR-222 SLC35E2B −0.128 miR-488 PAQR9 0.308 miR-152

BBC3 0.074 miR-222 SALL4 −0.080 miR-1271 SCN1A 0.017 miR-203

SEC23IP 0.077 miR-222 MAGI3 0.009 miR-1271 CCPG1 0.070 miR-211

ESR1 0.085 miR-222 PLCE1 0.198 miR-1271 BGN −0.161 miR-32

DGKI −0.003 miR-330-5p

Table 7 Cancer related miRNAs detected by methods

Method miRNA Number of used mRNA Reported cancer
relationship

Method miRNA Number of used mRNA Reported cancer
relationship

HisCoM-mimi miR-93 80 Pancreas HisCoM-mimi miR-132 4 Pancreas

HisCoM-mimi miR-219 26 Pancreas HisCoM-mimi miR-96 109 Pancreas

HisCoM-mimi miR-532 11 Other HisCoM-mimi miR-708 43 Other

HisCoM-mimi miR-590 24 Other Lasso miR-222 2 Pancreas

HisCoM-mimi miR-141 105 Pancreas EN miR-206 7 Pancreas

HisCoM-mimi miR-133b 81 Other EN miR-222 12 Pancreas

HisCoM-mimi miR-222 127 Pancreas EN miR-3064 5 Other

HisCoM-mimi miR-203 65 Pancreas EN miR-326 4 Other

HisCoM-mimi miR-326 13 Other cancer GL miR-32 2 Other
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HisCoM-mimi can be extended in many ways, for other
types of phenotypes, such as time to event. Second, it can
be easily applied to other cancer studies to identify
miRNA-mRNA integration sets for early diagnosis and
prognosis. Third, it can be extended to combine other
types of omics data such as genomics, epignomics, and
proteomics data. It is now established that dysregulated
miRNAs play substantial roles in a myriad of diseases [43].
We firmly believe that these methods for miRNA identifi-
cation and their target transcripts could yield effective bio-
markers and therapeutic targets, in addition to providing
better understanding of disease mechanisms and etiology.
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