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Abstract

Background: Protein secondary structure is the three dimensional form of local segments of proteins and its
prediction is an important problem in protein tertiary structure prediction. Developing computational approaches
for protein secondary structure prediction is becoming increasingly urgent.

Results: We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with
highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer
to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-
range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local
contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and
CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs
better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8
accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction.
Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to
extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource,
but also achieves better predicting performance.

Conclusion: CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing
multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art
methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

Keywords: Protein secondary structure, Convolutional neural network, Highway, Local context, Long-range
interdependency

Background
The concept of secondary structure was first introduced by
Linderstrøm-Lang at Stanford in 1952 [1, 2] to represent
the three dimensional form of local segments of proteins.
Protein secondary structure is defined by the pattern of
hydrogen bonds between the amine hydrogen and carbonyl
oxygen. There are two ways used for the classification of

protein secondary structures: three-category classifica-
tion(Q3) and eight-category classification(Q8). Q3 classifies
target amino acid residues into helix(H), strand(E) and
coil(C) while Q8 classifies target amino acid residues into
(1) 3-turn helix(G), (2) 4-turn helix(H), (3) 5-turn helix(I),
(4) hydrogen bonded turn(T), (5) extended strand in paral-
lel and/or anti-parallel β-sheet conformation(E), (6) residue
in isolated β-bridge (B), (7) bend(S) and (8) coil(C) [3–5].
Most protein secondary structure prediction studies have
been focused Q3 prediction. Q8 prediction is more challen-
ging and can reveal more structural details [6, 7], so we
focus the Q8 prediction in this study.
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Protein secondary structure prediction is secondary
structure inference of protein fragments based on their
amino acid sequence. In bioinformatics and theoretical
chemistry, protein secondary structure prediction is very
important for medicine and biotechnology, for example
drug design [8] and the design of novel enzymes. Since
secondary structure can be used to find distant relation-
ship for proteins with unalignable primary structures, in-
corporating both secondary structure information and
simple sequence information can improve the accuracy
of their alignment [9]. Finally, protein secondary struc-
ture prediction also plays an important role in protein
tertiary structure prediction. Protein secondary structure
can determine the structure types of protein local frag-
ments, so the freedom degree of protein local fragments
in the tertiary structure can be reduced. Therefore
accurate secondary structure prediction is potential for
improving the accuracy of protein tertiary structure pre-
diction [4, 7, 10].
Three experimental methods were proposed to deter-

mine secondary structures for proteins: far-ultraviolet
circular dichroism, infrared spectroscopy and NMR
spectrum. Far-ultraviolet circular dichroism predict
pronounced double minimum at 208 and 222 nm as
α-helical structure and single minimum at 204 nm or
217 nm as random-coil or β-sheet structure, respectively
[11]. Infrared spectroscopy uses the differences in the bond
oscillations of amide groups for prediction [12] while NMR
spectrum predict protein secondary structure by using the
estimated chemical shifts [12]. As experimental methods
are costly and the proteins with known sequence continue
to outnumber the experimentally determined secondary
structures, developing computational approaches for pro-
tein secondary structure prediction becomes increasingly
urgent. Existing computational approaches for protein
secondary structure prediction can be divided into 3
categories. The first category is statistical model based
methods, which can date back to 1970s. Early, this category
uses statistical models to analyze the probability of second-
ary structure elements for individual amino acid residue
[13]. Next, the statistical models were applied for the pre-
diction of segments of 9–21 amino acids. For example, the
GOR method [14] used amino acid segment to predict the
structure of its central residue. However, the performances
(< 60% Q3 accuracy) of this category of methods are far
from practical application due to inadequate features.
Due to the lacking of inadequate features for the statistical

model based methods, evolutionary information based
methods have been proposed. These methods usually used
the evolutionary information of proteins from a same struc-
tural family [15] extracted by multiple-sequence alignment
or position-specific scoring matrices (PSSM) [16] from PSI-
BLAST for prediction. An earlier evolutionary information
based method was developed based on a two-layered feed-

forward neural network, for which the evolutionary infor-
mation in the form of multiple sequence alignment is used
as input instead of single sequences [15]. As SVM [17] is
significantly better than neural network in a wide range of
pattern recognition problems [18–21], Hua and Sun first
proposed a SVM classifier for protein secondary structure
prediction [22]. The input for SVM is evolutionary informa-
tion in the form of multiple sequence alignment. Unbal-
anced data is a challenging problem in protein secondary
structure prediction and existing methods lack the ability to
handle it [23, 24]. So Kim and Park proposed a new protein
secondary structure prediction method, SVMpsi, by an im-
proved SVM, which reduces the influence of imbalanced
data by using different penalty parameters in the improved
SVM [23]. By using different penalty parameters, SVMpsi
resolved the situation where the recall value of the smaller
class is too small. Another SVM based method is PMSVM
which was proposed by using dual-layer support vector ma-
chine (SVM) and evolutionary information in form of
PSSMs [25].
Protein sequence usually contains two types of

sequence information: local context and long-range
interdependencies [4, 26, 27]. Local contexts denote the
correlations between residues with distance less than or
equal to a predefined threshold while long-range correl-
ation are the correlations between residues with distance
more the threshold. Inspired by the success of convolu-
tional neural networks (CNN) [28] for local context
extraction in natural language processing tasks [29, 30],
multi-scale CNN has been used to capture local contexts
for protein secondary structure prediction [31]. For
example, Wang et al. proposed conditional neural fields
(CNF) [7] to extract local contexts for prediction by
integrating a windows-based neural network with condi-
tional random field (CRF). In addition to local contexts,
long-range interdependencies also are important for pro-
tein secondary structure prediction(BRNN) [6, 32–34].
In order to extract both local contexts and long-range
interdependencies for prediction, Zhou and Troyanskaya
proposed GSN [4] by using convolutional architecture
and supervised generative stochastic network, which is a
recently proposed deep learning technique [26]. In
addition to GSN, a novel deep convolutional and recur-
rent neural network (DCRNN) also has been proposed
by Li and Yu [27] for protein secondary structure predic-
tion by extracting both local contexts and long-range
interdependencies.
In summary, the statistical model based methods and

evolutionary information based methods cannot extract
local contexts and long-range interdependencies for pre-
diction. For the deep learning based methods, some
methods cannot extract both local contexts and long-
range interdependencies for prediction. Although several
methods can extract both local contexts and long-range
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interdependencies, such as GSN and DCRNN, they need
extra complex models to extract long-range inter-
dependencies, which are complex and time-consuming.
In this paper, we propose a novel method, referred to as
CNNH_PSS, by combining multi-scale CNN with high-
way network, which has ability to extract both local con-
texts and long-range interdependencies without needing
extra models. CNNH_PSS consists of two parts: multi-
scale CNN and fully connected and softmax layer. In the
multi-scale CNN, any two neighbor convolutional layer
contains a highway to deliver information from current
layer to the output of the next one to keep local con-
texts. As the convolutional kernels in higher layer can
extract long-range interdependencies by using the local
contexts extracted by lower layers, thus with the layer
number increasing, CNNH_PSS can extract long-range
interdependencies covering more remote residues while
keeping local contexts extracted by lower layers by using
highway. So CNNH_PSS can extract both local contexts
and long-range interdependencies covering very remote
residues for prediction. The source code of our proposed
method CNNH_PSS is provided for free access to the
biological research community at http://hlt.hitsz.edu.cn/
CNNH_PSS/ and http://119.23.18.63:8080/CNNH_PSS/.

Methods
As shown by many recently published works [35–37], a
complete prediction model in bioinformatics should con-
tain the following four components: validation benchmark
dataset(s), an effective feature extraction procedure, an
efficient predicting algorithm, a set of fair evaluation
criteria. In the following text, we will describe the four
components of our proposed CNNH_PSS in details.

Datasets
Two publicly available datasets: CB6133 and CB513 were
used to evaluate the performance of our proposed method
CNNH_PSS and compare with state-of-the-art methods.

CB6133
CB6133 was produced by PISCES CullPDB [38] and is a
larger non-homologous protein dataset with known
secondary structure for every protein. It contains 6128
proteins, in which 5600 proteins are training samples,
256 proteins are validation samples and 272 proteins are
testing samples. This dataset is publicly available from
literature [4].

CB513
CB513 is a public testing dataset and can be freely ob-
tained from [4, 39]. For the testing on CB513, CB6133 is
used as the training dataset. As there exists redundancy
between CB513 and CB6133, CB6133 is filtered by
removing sequences having over 25% sequence similarity

with sequences in CB513. After filtering, 5534 proteins
left in CB6133 are used as training samples. Since GSN
[4] and DCRNN [27] as well as other state-of-the-art
methods [31, 40] performed a validation on CB513 to
get their best performance, we also perform a validation
on CB513 to get the best performance of our method
CNNH_PSS to make fair comparisons with them.

Feature representation
Given a protein with L amino acid residues as X = x1, x2,
x3, ⋯, xL, where xi(∈ℝ

m) is the m-dimensional feature
vector of the ith residue, the secondary structure predic-
tion for this protein is formulated as determining S = s1,
s2, s3, ⋯, sL for X where si is a Q8 secondary structure
label. In this study,xi is encoded by both sequence
features and evolutionary information. Sequence features
are used to specify the identity of the target residue.
Two methods are used to encode sequence features: one
hot and residue embedding. One hot encodes sequence
features of each residue by a 21-dimension one-hot
vector, in which only one element equals to 1 and the
remaining elements are set to 0, where 21 denotes the
20 standard types of residues and one extra residue type
which represents all non-standard residue types.
However, one-hot vector is a sparse representation and
unsuitable for measuring relation between different resi-
dues. In order to get dense representation of sequence
features, an embedding technique in natural language
processing is used to transform 21-dimensional one-hot
vector to a 21-dimensional denser representation [41].
The embedding technique maps words or phrases from
the vocabulary to vectors of real numbers. Specifically, it
maps words from a space with one dimension per word
to a continuous vector space with much lower dimen-
sion. So the embedding technique provides a real value
for every dimension. As the dimension of amino acid
representation is already low, we only calculate a real
value for every dimension by embedding technique and
don’t decrease the dimension. The residue embedding in
this paper is implemented by a feedforward neural net-
work layer before multi-scale CNN in CNNH_PSS [42].
Evolutionary information such as position-specific

scoring matrix (PSSM) is considered as informative
features for predicting secondary structure by previous
research [16]. PSSM is a common representation for
evolutionary information and has been used in many
bioinformatics studies including protein functionality
annotation and protein structure prediction [43–47]. In
this study, PSSM is calculated by PSI-BLAST [48]
against the UniRef90 database with E-value threshold
0.001 and 3 iterations. UniRef90 database contains the
known protein sequences with sequence identity less
than 90 from almost all known species. So the PSSM
calculated from UniRef90 database contains the
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common sequence information among the known pro-
tein sequences of different species. Overtime, scientists
have reached a consensus that a protein’s structure pri-
marily depends on its amino acid sequence and con-
cluded that the local and long-range interaction are a
cause of protein second and tertiary structure. Based on
this hypothesis, we can deduce that proteins with similar
amino acid sequence tend to have similar secondary
structure sequence. Therefore, the common sequence
information contained by PSSM can contribute to the
secondary structure prediction. For a protein with length
L, PSSM is usually represented as a matrix with L × 21
dimensions where 21 denotes the 20 standard types of
residues and one extra residue type which represents all
non-standard residue types. Before PSSMs are used in-
puts for CNNH_PSS, they need to be transformed to 0–
1 range by the sigmoid function. By concatenating se-
quence features and evolutional information, each resi-
due in protein sequences can be encoded by a feature
vector with dimension of 42.

Multi-scale CNN with highway between neighbor layers
In CNN model, a kernel can examine a local patch in in-
put sequence and extract interdependence among the
residues contained in the local patch. With stacking of
convolutional layers, the kernels for deep layers have
ability to cover correlations among more spread-out res-
idues in the input sequence. So, CNN model with more
number of convolutional layers have the ability to ex-
tracted long-range interdependencies between residues
with more large distance. However, with the number of
layers increasing, CNN model will lose the local contexts
extracted by lower layers. In this paper, we propose a
novel method, referred to as CNNH_PSS, to resolve this
problem. CNNH_PSS contains a highway between any
two neighbor convolutional layers in multi-scale CNN.
As the number of convolutional layers increases,
CNNH_PSS can not only extract long-range inter-
dependencies by higher layers, but also obtain the local
contexts extracted by lower layers through highway. The
frame of CNNH_PSS is shown in Fig. 1. Figure 1 shows
that CNNH_PSS contains three parts: input section,
multi-scale CNN with highway and output section. In
the input section, xi ∈ R

m denotes the feature vector of
the ith residue in protein, which is the concatenation of
sequence features and evolutional information. Thus
a protein of length L is encoded as a L ×m matrix
x1 : L = [x1, x2,⋯, xL]

T, where L and m denote the
length of protein and the number features used to
encode residues, respectively. In this study, m equals
to 42. In order to keep the output of convolutional
layer have the same height with the input, we need
to pad ⌊h/2⌋ and ⌊(h − 1)/2⌋ m-dimensional zero
vectors to the head and the tail of the input x1 : L,

respectively, where h is the length of convolutional
kernels in the convolutional layer. The second
section contains two parts: multi-scale CNN and
highway, where the multi-scale CNN contains n
convolutional layers. In the (t − 1)th layer, the convo-
lution operation of the kth kernel wt−1

k ∈Rh�m executed
on protein fragment xi : i + h − 1 is expressed as

ct−1k;i ¼ f t−1 wt−1
k � xi:iþh−1 þ bt−1k

� � ð1Þ
where h is the length of convolution kernel,bt−1k is the bias
of the kth kernel, f is activation function and xi : i + h − 1

denotes the protein fragment xi, xi + 1, xi + 2, ⋯, xi + h − 1.
Through executing convolution operation of the kth kernel
on all fragments with length h of the padded input, we get
a novel feature vector

ct−1k ¼ ct−1k;1 ; c
t−1
k;2 ; c

t−1
k;3 ;⋯; ct−1k;L

h iT
ð2Þ

Suppose we have d kernels in the convolutional layer,
thus we can get d novel features vectors. By concatenating
the d novel feature vectors, we can get a novel feature
matrix with dimension L × d

ct−1 ¼ ct−11 ; ct−12 ; ct−13 ;⋯; ct−1L

� � ð3Þ
This novel feature matrix is used as the input of the

next convolutional layer. If there are n convolutional
layers and θt is used to denote the kernels and the bias
of the tth convolutional layer, then the output of the nth

convolutional layer is

cn ¼ f nθn f n−1θn−1 ⋯ f 1θ1 x1:Lð Þ
� �� �

ð4Þ

Finally, the output of the nth convolutional layer is
used as the input of the fully connected softmax layer
for prediction

yi ¼ argmax w � cin þ bð Þ ð5Þ
where w and b is the weight and bias of the fully con-
nected softmax layer, respectively. ci

n is the feature vector
of the ith outputted by the nth convolutional layer and yi
is its predicted secondary structure.
CNN has achieved huge progress in many tasks of

image processing filed, one common sense is that the
successes of CNN are attributed to the multiple convo-
lutional layers in CNN, because CNN with more number
of layers can extract correlations covering more residues.
However, with the increasing of number of layers in
CNN, the information communication between layers
will become more difficult and the gradient will dis-
appear [49]. Furthermore, the local contexts extracted by
lower layers also will lose. Srivastava et al. [49] have pro-
posed highway network to resolve these problems. So
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CNNH_PSS incorporates highway network and multi-
scale CNN to extract both local contexts and long-range
interdependencies for secondary structure prediction.
In CNNH_PSS, each convolutional layer except the

last layer has three accesses to the next layer (shown in
Fig. 1). Two accesses are used to deliver information
from the current layer to the output and convolution
kernels of the next layer, respectively. The other one is a
weight used to determine the share of information in for
information from highway. So the output ct of the tth

convolutional layer is the weighted sum of the informa-
tion delivered by highway from last layer and that out-
putted by the convolution kernels of current layer

zt ¼ δ wzct−1
� � ð6Þ

ct ¼ 1−ztð Þ � f tθt ct−1
� �þ zt � ct−1 ð7Þ

where δ(⋅) is sigmoid function,zt is the weight of the high-
way and f tθt ð�Þ is the convolution operation of current con-
volutional layer. So the output of thetthconvolutional layer
contains two portion: information from the (t − 1)thconvo-
lutional layer delivered by highway and that outputted by
the convolution kernels of current layer.

Results
The purpose of the evaluation is to examine the effective-
ness of our proposed CNNH_PSS over other methods.
Four sets of evaluations are conducted here. The first
experiment evaluates the performance of multi-scale
CNN on CB6133 and CB513. The second experiment
evaluates our proposed method CNNH_PSS on CB6133
and CB513. The third experiment compares CNNH_PSS
with state-of-the-art methods. Finally, based on CB6133,
we analyze the local contexts and long-range interdepend-
encies learned by CNNH_PSS. As we mainly focus the Q8
prediction of protein secondary structure in this study, the
performances of prediction methods are measured by Q8
accuracy [4, 27]. The Q8 accuracy is the percentage of the
amino acid residues for which the predicted secondary
structure labels are correct. The source code of our

proposed method CNNH_PSS is provide for free
access at http://hlt.hitsz.edu.cn/CNNH_PSS/.

The performance of multi-scale CNN model
In this section, multi-scale CNN is used to predict sec-
ondary structure for proteins. The hyper-parameters of
the multi-scale CNN for protein secondary structure
prediction in this study are listed in Table 1. Note that
three kernel lengths are used in the multi-scale CNN
model and 80 kernels are used for each kernel length.
To conveniently encode and process protein sequences,
the length of all protein sequences are normalized to
700. When sequences are shorter than 700, they will be
padded with zero vectors. And when sequences are lon-
ger than 700, they will be truncated. In order to get best
performance, we need to determine how many convolu-
tional layers the multi-scale CNN should contains. We
conduct experiments to evaluate the performances of
the multi-scale CNNs with different number of convolu-
tional layers on CB513. The performances are shown in
Fig. 2, where the x-axis is the number of epochs used to
train multi-scale CNN and the y-axis is Q8 accuracy.
Fig. 2 shows the performances for models with number
of convolutional layers from 1 to 5. From this figure, we
see that the model with 3 convolutional layers gets the
best accuracy. When the number of convolutional layers
is increased to 4 or 5, the accuracy is decreased obvi-
ously. The main reason for this phenomenon may be the
loss of extracted local contexts with the increasing of the

Table 1 Hyper-parameters of multi-scale CNN

Layer Hyper-parameter Value

Multi-scale CNN Kernel length [7, 9, 11]

Number of kernels 80 for each kernel length

Batch size 50

Learning rate 2e-3

Regularizer 5e-5

Decay rate 0.05

Activation function ReLU

Fig. 1 The frame of CNNH_PSS
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number of convolutional layers in CNN. With the in-
creasing of the number of convolutional layers in CNN,
the correlations extracted by higher can cover more resi-
dues so that they contains interdependencies between
more remote residues. When the number of convolu-
tional layers is increased to 3, the CNN may achieve
both local contexts and long-range interdependencies,
which is validated by that the CNN with 3 convolutional
layers gets the best accuracy in our problem. However,
when the number of convolutional layers is more than 3,
most local contexts extracted by lower layers are lost in
the transport processes of information cross layers, caus-
ing the relationships outputted by the last layer in CNN
contains less and less local contexts. So the predicting
accuracy starts to decrease when the number of convo-
lutional layers is more than 3.
The performances of multi-scale CNN with 3 convolu-

tional layers on CB6133 and CB513 are shown in Table 2,
where two sequence features encoding methods for resi-
dues are evaluated: one hot and residue embedding.
Table 2 shows that residue embedding outperforms one
hot on both CB6133 and CB513 by at 0.004 Q8 accur-
acy, indicating that residue embedding is a better encod-
ing method for sequence features of residues. In the
following text, we will use residue embedding method to
encode sequence features in the multi-scale CNN model
and our proposed method CNNH_PSS.

The performance of CNNH_PSS
Local contexts are the relationships among residues at
close range while long-range interdependencies are the
relationships among remote residues. As there is no
strict bounds between local contexts and long-range
interdependencies, we specify the information extracted
by the first convolutional layers as local contexts and
that extracted by all other layers as long-range inter-
dependencies in this study. In CNNH_PSS, any two
neighbor convolutional layers have a highway to deliver
information from current convolutional layer to the out-
put of the next one, so it can make sure that the output
of each layer contains a portion of the local contexts.
Furthermore, the convolution kernels of each layer
except the first one can extract long-range interdepend-
encies by using the information from previous layer.
With the increasing of the number of convolutional
layers, CNNH_PSS can extract long-range interdepend-
encies between more remote residues. Therefore, the
output the last convolutional layer in CNNH_PSS
contains two portion of information: local contexts
extracted by the first layer and long-range interdepend-
encies extracted by all other layers.
Similarly, we evaluate the performances of our pro-

posed method CNNH_PSSs with different number of
convolutional layers on CB513. The performances are
shown in Fig. 3. Figure 3 shows that CNNH_PSS
achieves the best performance when the number of con-
volutional layers is 5. When number of convolutional
layers is more than 5, the performance of our method
starts to decrease. So CNNH_PSS with 5 convolutional
layers is used in the following text. Comparing the
multi-scale CNN model with 3 convolutional layers
described in above section, our proposed method
CNNH_PSS not only contains a highway between any
two neigbouring layers, but also have more number of

Fig. 2 The performance of multi-scale CNN with different number of
convolutional layers

Table 2 The Q8 accuracy of Multi-scale CNN with 3 convolutional
layers

datasets CB6133 CB513

Multi-scale CNN(one hot) 0.721 0.689

Multi-scale CNN(embedding) 0.729 0.693

The data in italic denote the best performance

Fig. 3 The performance of CNNH_PSS with different number of
convolutional layers
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convolutional layers. It makes sure that CNNH_PSS with
5 layers can not only extract local contexts, but also cap-
ture long-range interdependencies between more remote
residues than the multi-scale CNN model with 3 layers.
The performances of CNNH_PSS and the multi-scale
CNN model on CB6133 and CB513 are shown in Table 3.
Table 3 shows that our proposed method CNNH_PSS
outperforms the multi-scale CNN model by 0.011 Q8
accuracy on CB6133 and 0.010 Q8 accuracy on CB513.
The outperformance of CNNH_PSS over the multi-scale
CNN model on both CB6133 and CB513 validates that
the highway in CNN indeed are useful for protein
secondary structure prediction.

Comparison with state-of-the-art methods
Protein secondary structure prediction is an important
problem in bioinformatics and critical for analyzing pro-
tein function and applications like drug design. So many
state-of-the-art methods have been proposed for the pre-
diction. SSpro8 is a prediction method proposed by
Pollastri et al. [6] by combining bidirectional recurrent
neural networks (RNN) and PSI-BLAST-derived profiles.
CNF is a Conditional Neural Fields based method which
was proposed by Wang et al. [40], which can not only
extract relationships between sequence features of resi-
dues and their secondary structures, but also capture
local contexts [40]. Later, an extension version of CNF
(DeepCNF) was proposed by Wang et al. [31] using deep
learning extension of conditional neural fields, which is
an integration of conditional neural fields and shallow
neural networks. It can extract both complex sequence-
structure relationship and interdependency between
adjacent SS labels. These three methods can only extract
local contexts for prediction. Furthermore, GSN is a pre-
diction method proposed by Zhou and Troyanskaya [4]
using supervised generative stochastic network and con-
volutional architectures. Supervised generative stochastic
network is a recently proposed deep learning technique
[26], which is well suitable for extracting local contexts
and also can capture some long-range interdependen-
cies. Finally, DCRNN is the best performing method up
to now, which was recently proposed by Li and Yu [27]
using multi-scale CNN and three staked bidirectional
gate recurrent units (BGRUs) [50]. GSN and DCRNN
can extract both local contexts and long-range inter-
dependencies. We first compare our proposed method
CNNH_PSS with the three state-of-the-art methods
which only can extract local contexts on CB513. The

performances of these three methods and our method
on CB513 are listed in Table 4. Table 4 shows that
CNNH_PSS outperforms the three methods by at least
0.020 Q8 accuracy. The outperformance of CNNH_PSS
over the three state-of-the-art methods which only can
extract local contexts indicates that the long-range inter-
dependencies extracted by CNNH_PSS are indeed useful
for protein secondary structure prediction.
Then, we compare our method CNNH_PSS to GSN

and DCRNN by both CB6133 and CB513, which also
can extract both local contexts and long-range inter-
dependencies. The performances of these two methods
and our method on CB6133 and CB513 are listed in
Table 5. The table shows that CNNH_PSS performs bet-
ter than GSN and DCRNN by at least 0.008 Q8 accuracy
on CB6133 and 0.009 Q8 accuracy on CB513. GSN and
DCRNN consist of CNN for local context extraction and
extra models for long-range interdependencies extrac-
tion. As the extra models of the two methods are com-
plex and time-consuming, these two methods need
consume much computer resource. Trained on GTX
TITANX GPU, CNNH_PSS tends to converge after only
a half hour while DCRNN needs more than 24 h to con-
verge [27]. So CNNH_PSS is almost 50 times faster than
DCRNN. Although we do not known the exact running
time for GSN, we know that GSN needs to be trained
for 300 epochs [4] while CNNH_PSS tends to converge
after training for less than 35 epochs shown by Fig. 3. It
means that CNNH_PSS is almost 9 times faster then
GSN. Therefore, the outperformance of our method over
GSN and DCRNN further demonstrates that CNNH_PSS
can not only cost less computer resource but also achieves
better predicting performance.

Discussion
The advantage of our proposed method CNNH_PSS
over state-of-the-art methods is that it can extract both
local contexts and long-range interdependencies by
using multi-scale CNN with highway. In CNNH_PSS,
any two neighbor convolutional layers have a highway to
deliver information from current convolutional layer to
the output of the next one and each layer except the first
one have convolution kernels to extract long-range
interdependencies by using the information from

Table 3 The Q8 accuracy of CNNH_PSS

Method CB6133 CB513

Multi-scale CNN 0.729 0.693

CNNH_PSS 0.740 0.703

The data in italic denote the best performance

Table 4 The Q8 accuracy of CNNH_PSS and state-of-the-art
methods containing only local contexts

Method CB513

SSpro8 0.511

CNF 0.633

DeepCNF 0.683

CNNH_PSS 0.703

The data in italic denote the best performance
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previous layer. In this section, we use CNNH_PSS with
5 convolutional layers and the kernel length of 11 to
introduce the process for local contexts and long-range
interdependencies extraction, which is shown in Fig. 4.
First, the target protein are inputted to the first layer
and the convolution kernels in the first layer extract
local contexts from the inputted protein. So the output
of first layer contains local contexts among 11 residues.
Then the information in the output of the first layer are
delivered to the output of the second layer by two ways:
highway between them and the convolution kernels in
the second layer. Finally, the output of the second layer
is the weighted sum of the information transmitted by
the two way. As the convolution kernels in the second-
ary layer can extract relationships among 21 residues,
the output of the second layer contains both local con-
texts among 11 residues and long-range interdependen-
cies among 21 residues. And so on, the output of the
fifth layer contains two parts. One part is the informa-
tion from the output of the fourth layer by the highway
between them, which contains local contexts among 11

and long-range interdependencies among 21, 31 and 41
residues. The other part is the information outputted by
the convolutional kernels of current layer, which contains
long-range interdependencies among 51 residues. There-
fore CNNH_PSS can output local contexts among 11 and
long-range interdependencies among 21, 31, 41 and 51
residues while the multi-scale CNN with the same num-
ber of convolutional layer as CNNH_PSS outputs only
long-range interdependencies among 51 residues.
In order to demonstrate the importance of learned

local contexts and long-range interdependencies in pro-
tein secondary structure prediction, we show the local
contexts and the long-range interdependencies learned
in a representative protein PDB 154 L [51], which
obtained from the publicly available protein data bank
[52]. The learned local contexts and long-range inter-
dependencies by CNNH_PSS in protein PDB 154 L are
shown in Fig. 5. In Fig. 5, the five rows correspond to
the predicted results by CNNH_PSS with 5 layers, that
by CNNH_PSS with 3 layers, that by the multi-scale
CNN with 5 layers, real secondary structures and
protein sequence, respectively. The reason for why
CNNH_PSS with 5 layers, CNNH_PSS with 3 layers and
the multi-scale CNN with 5 layers are selected for com-
parison is that CNNH_PSS with 5 layers can extracted
local contexts and long-range interdependencies among
up to 51 residues while CNNH_PSS with 3 layers cannot
extracted long-range interdependencies among more
than 41 residues and the multi-scale CNN with 5 layers
cannot extract local contexts. Fig. 5 shows three
instances for long-range interdependencies: (1) inter-
dependencies among 24th, 25th and 60th amino acid;
(2) that between 60th and 100th and (3) that between
85th and 131th amino acid. As the number of residues
covered by these three learned interdependencies is
more than 31 and less than 51 residues, both
CNNH_PSS with 5 layers and the multi-scale CNN with
5 layers can extract them for correct prediction them
while CNNH_PSS with 3 layers cannot capture them. So
both CNNH_PSS with 5 layers and the multi-scale CNN
with 5 layers make correct prediction for the 24th, 25th,
85th, 100th and 131th residues while CNNH_PSS with 3
layers cannot make correct predictions for them. It
validates that CNNH_PSS with more layers indeed can
extract long-range interdependencies between more
remote residues.
Furthermore, Fig. 4 also shows 4 instances for learned

local contexts: (1) contexts from 31th to 35th residues;
(2) that from 111th to 115th residues; (3) that from
146th to 149th residues and (4) that from 158th to
163th residues. Both CNNH_PSS with 3 layers and that
with 5 layers can learn these four contexts so that the
secondary structures of all the residues in the learned
contexts can be correctly predicted. However, the multi-

Table 5 The Q8 accuracy of CNNH_PSS and state-of-the-art
methods containing both local contexts and long-range
interdependencies

Method CB6133 CB513

GSN 0.721 0.664

DCRNN 0.732 0.694

CNNH_PSS 0.740 0.703

The data in italic denote the best performance

Fig. 4 Extraction process for local contexts and
long-range interdependencies
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scale CNN with 5 layers cannot learn these four con-
texts. So it cannot predict the secondary structures cor-
rectly for these residues. It validates that the highways in
the CNNH_PSS indeed can be used to extract local con-
texts for prediction.

Conclusion
Protein secondary structure prediction is an important
problem in bioinformatics and critical for analyzing pro-
tein function and applications like drug design. Several
experimental methods have been proposed to deter-
mined the secondary structures for proteins, such as far-
ultraviolet circular dichroism, infrared spectroscopy and
NMR spectrum. However, experimental methods usually
are costly and time-consuming. And the proteins with
known sequence continues to outnumber the experimen-
tally determined secondary structures. So developing com-
putational approaches that can accurately handle large
amount of data becomes increasingly urgent. However,
most of these proposed methods cannot extract either
local contexts or long-range interdependencies. Although
GSM and DCRNN can extract both of them, they are
build by combing CNN architecture and extra complex
models. Yet CNNH_PSS is developed by only multi-scale
CNN with highway. So comparing to GSM and DCRNN,
CNNH_PSS may cost less computer resource. We evalu-
ate CNNH_PSS on two commonly used datasets: CB6133
and CB513. CNNH_PSS outperforms the multi-scale
CNN without highway on both datasets, which demon-
strates that the extracted local contexts through highways
are indeed useful for protein secondary structure

prediction. CNNH_PSS also outperforms CNF and
DeepCNF as well as SSpro8 on CB513, which cannot ex-
tract long-range interdependencies. It indicates that long-
range interdependencies extracted by CNNH_PSS are use-
ful for protein secondary structure prediction. Further-
more, CNNH_PSS performs better than GSM and
DCRNN, demonstrating that CNNH_PSS can not only
cost less computer resource but also achieves better pre-
dicting performance than state-of-the-art methods. We
also analyze the local contexts and long-range inter-
dependencies learned by CNNH_PSS in protein PDB
154 L and show their roles in protein secondary struc-
ture prediction. X-ray diffraction crystallography and
NMR can measure the structures of proteins, so these
methods can be used to calculate the distances be-
tween any two residues in a protein sequence. By
analyzing the second structures of long-range residues
but with short distance in space and short-range resi-
dues, we can further demonstrate the importance of
long-range interdependencies and local contexts for
second structure prediction. Therefore, our future
works will validate the conclusions achieved in this
paper by using these experimental methods.

Abbreviations
B: residue in isolated β-bridge; C: coil; CNN: convolutional neural network;
CRF: conditional random field; E: extended strand in parallel and/or anti-
parallel β-sheet conformation; G: 3-turn helix; GSN: generative stochastic
network; H: 4-turn helix; I: 5-turn helix; NMR: nuclear magnetic resonance;
PDB: Protein Data Bank; PSSM: Position Specific Score Matrix; Q3: three-
category classification; Q8: eight-category classification; RNN: recurrent neural
networks; S: bend; SVM: Support Vector Machine; T: hydrogen bonded turn

Fig. 5 Prediction results of 154 L by CNNH_PSS
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