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Abstract

Background: As one possible solution to the “missing heritability” problem, many methods have been proposed
that apply pathway-based analyses, using rare variants that are detected by next generation sequencing
technology. However, while a number of methods for pathway-based rare-variant analysis of multiple phenotypes
have been proposed, no method considers a unified model that incorporate multiple pathways.

Results: Simulation studies successfully demonstrated advantages of multivariate analysis, compared to univariate
analysis, and comparison studies showed the proposed approach to outperform existing methods. Moreover, real
data analysis of six type 2 diabetes-related traits, using large-scale whole exome sequencing data, identified
significant pathways that were not found by univariate analysis. Furthermore, strong relationships between the
identified pathways, and their associated metabolic disorder risk factors, were found via literature search, and one of
the identified pathway, was successfully replicated by an analysis with an independent dataset.

Conclusions: Herein, we present a powerful, pathway-based approach to investigate associations between multiple
pathways and multiple phenotypes. By reflecting the natural hierarchy of biological behavior, and considering
correlation between pathways and phenotypes, the proposed method is capable of analyzing multiple phenotypes
and multiple pathways simultaneously.

Keywords: Pathway-based analysis, Next-generation sequencing data, Multivariate analysis, Generalized structured
component analysis, Hierarchical analysis

Background
In the past decade, genome-wide association studies
(GWAS) have played a key role in identifying genetic asso-
ciations between Single Nucleotide Variants (SNVs) and
many complex biological pathologies, including type 2
diabetes (T2D), heart disease, and schizophrenia [1–3].
However, large-scale genetic analyses continue to suffer
from incomplete association, of single nucleotide variants

(SNVs), with distinct phenotypes (“missing heritability”),
and difficulties of biological interpretation [4].
Among many proposed solutions to solve the missing

heritability problem, many researchers have focused on
“rare variants”. Methods for rare variants analysis arose
from extending individual variant-level approaches to
those at the gene-level [5, 6], and extending those at the
gene level, to multiple phenotypes [7–9].
As the number of publicly available biological resources

is increasing, recent methods for analyzing rare variants
utilize pathway knowledge as a priori information. Since
most biological behaviors manifest from a complex inter-
action of biological pathways [10, 11], analyzing pathway
information for identifying rare variants has several advan-
tages. In contrast to variant-level analysis, the number of
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statistical tests is substantially smaller in pathway analysis,
resulting in less strict multiple testing corrections. More-
over, since pathways explain curated biological behaviors
with multiple genes, it is easier to interpret statistically sig-
nificant pathways than variant- or gene-level analyses. In this
respect, many pathway-based approaches have been pro-
posed especially using the pathway databases, which resulted
in improvement of the interpretation of discoveries [12, 13].
Another effort to enhance the power of rare variants is

to develop multivariate analysis methods. In general, many
complex diseases arise from multiply correlated traits. For
example, according to American Diabetes Association
guidelines, diabetic status is diagnosed based on four
traits: fasting glucose, two hours after plasma glucose, ran-
dom plasma glucose, and HbA1c [14]. In that regard, sim-
ultaneous analysis of those correlated traits offer two
substantial advantages over univariate analysis. First,
multivariate analysis can elevate statistical power to iden-
tify additional causal biomarkers, which are not discovered
by single phenotype analysis. Second, by analyzing mul-
tiple traits at once, the required number of statistical tests
can be reduced, compared to those of univariate analysis.
Those advantages have been well documented in past
studies of large-scale sequencing datasets [15, 16].
There have now been many applications of multivariate

analysis to large-scale datasets. In particular, for variant-
and gene-level analysis, many multivariate methods, for
common and rare variants, have been proposed [8, 15].
Despite those efforts, only a number of pathway-based
multivariate analyses have been deemed feasible. Recently,
three multivariate approaches, for region-level analyses,
were proposed: MARV, aSPU, and MURAT. MARV [17]
uses a statistical approach, reverse regression, to investigate
associations between genetic regions and multiple pheno-
types, by treating phenotypes as independent variables,
hence enabling rapid multivariate analysis of large-scale
datasets. On the other hand, aSPU [18], extends an original
concept, data-adaptive sum of powered score test, to multi-
variate analysis, using summary statistics from single SNVs.
For multivariate extension of powerful gene-based tests,
MURAT (Multivariate Rare-variant Association Test) ex-
tended the original SKAT (sequence kernel association test)
method to multiple phenotypes [19]. However, it might not
be adequate to apply SKAT-based methods to pathway-
based analysis, as we have previously demonstrated [20].
Moreover, none of the above methods are available for
multivariate pathway-based association tests for rare vari-
ants with multiple pathways. Since the established pathway
databases have substantial overlap among their pathways,
they may ignore significant correlations between pathways,
leading to misleading biological interpretations [21, 22].
In this report, we introduce a new method, “PHARAOH-

multi” (Pathway-based approach using HierArchical com-
ponent of collapsed RAre variants Of High-throughput

sequencing data), for analyzing multiple phenotypes. Previ-
ously, we proposed a component-based hierarchical model
for analysis of multiple pathways with a single model [20].
Here, while keeping the advantages of our previous
approach, we extend it to enable analysis of multiple traits
using hierarchical components of genetic variants. In
addition, the proposed model can identify associations
between multiple phenotypes and multiple pathways, with
a single model, in the presence of subsequent genes within
pathways, as a hierarchy.

Methods
Exome sequencing dataset for discovery study
To demonstrate the validity of the proposed method for
examining large-scale datasets with multiple phenotypes, in
real (biological) data analysis, we analyzed whole-exome se-
quencing (WES) data from a Korean population study. In
brief, the dataset consists of next generation sequencing of
1087 individuals’ genomes, using the Illumina HiSeq2000
platform (Illumina, Inc., San Diego, CA), selected by the
Korean Association REsource (KARE) study [23], as a part
of the T2D-GENES consortium. For pathway-gene
mapping, we retrieved pathway information from MSigDB
[24], and mapped the genes to 217, 186 and 674 pathways
extracted from the Biocarta, KEGG [25] and Reactome
[26], respectively.

Exome chip dataset for replication study
For replication of the identified pathways from the discover
study, an independent cohort from Koreans, the Health
Examinee shared control study (HEXA), was used. HEXA
is a part of the KoGES population based cohort, initiated in
2001 [27]. In total, genotypes of 3445 individuals were ac-
quired using the HumanExome BeadChip v1.1 (Illumina,
Inc., San Diego, CA). With same quality control criteria,
24,474 rare variants were used in the analysis.

PHARAOH-multi method
Our ultimate goal was to find an association between Q
phenotypes and K pathways, each of whose number of genes
was T1, …, TK, under the presence of distinct parameters for
ridge penalization. The proposed method is based on
Generalized Structural Component Analysis (GSCA) [28],
and an exemplary structure of the model is shown in Fig. 1.
Let Y = [y11…y1Q;…; yN1…yNQ] be the matrix of pheno-

types for N samples, where yiq is the observation of the
ith sample on the qth phenotype, and let X be the matrix
of gene-level collapsed variables generated by summing
rare variants according to their gene variant-gene map-
ping. Let gij ∈ {0, 1, 2} be the number of minor alleles
for the jth genetic variant of the ith sample. Regarding
the elements of X, xikt is a gene-level summary of rare
variants which is defined as weighted sum of the ith sam-
ple’s rare variants in the tth gene of the kth pathway,
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denoted by xikt ¼ Σ j∈Mktω jgij , where Mkt is an index set

that defines which rare variants are mapped onto the tth

gene in the kth pathway. Several weighting parameters,
ωj, can be used, as previously described in [20]. By im-
posing two penalty parameters λG and λP on the genes-
pathway and pathways-phenotype, we sought to address
potential multicollinearity problems, in both genes and
pathways, in the proposed method. Such problems may
adversely affect the estimation of weights and coeffi-
cients. The proposed model assumes that the phenotype,
yiq, arises from the multivariate normal distribution with
mean μ and covariance Σ (i = 1,…,Q and j = 1,…,N).
Then we define the proposed PHARAOH-multi model
as.

yiq ¼ β0q þ
XK
k¼1

XTk
t¼1

xiktwtk

 !
βkq þ ~ϵi

¼ β0q þ
XK
k¼1

fikβkq þ ~ϵi ¼ Fi~βq þ ~ϵi: ð1Þ

Here, fik ¼
PTk

t¼1xiktwtk and Fi indicate the ith observa-
tion’s score of the kth pathway, and its matrix form
across Q phenotypes, respectively. Moreover, ~βq ¼ ½β0q
β1q⋯βKq� is a vector of coefficients for the qth pheno-
type, and ~ϵi ¼ ½ϵi1⋯ϵiQ� is a vector of residuals for the
ith sample.

Parameter estimation
The proposed model seeks to associate pathways and
phenotypes. The effect of the kth pathway, on multiple
phenotypes, can be determined by testing all coefficients
of the pathways simultaneously (H0 : βk1 =… = βkQ = 0).
Moreover, by its nature, the proposed method can fur-

ther assess three more associations: (1) the effect of a
gene on multiple phenotypes conditioned by a given
pathway; (2) the effect of a gene on a phenotype condi-
tioned by the pathway; and (3) the effect of a pathway
on a phenotype. Detailed characteristics of the proposed
model (PHARAOH-multi), including relationships and
coefficients, are shown in Table 1.

Let B is a matrix of ~β1;⋯; ~βQ . From the above model,
we seek to maximize the penalized log-likelihood func-
tion, to estimate the parameters wtk and βkq, subject to

the conventional scaling constraint
P
i¼1

N
f 2ik ¼ N [29]. The

penalized log-likelihood function is expressed to

ℓ B ; W ;
X

Y i;Xjð Þ ¼ −
NQ
2

log π−
N
2

log det
X

−
1
2

XN
i¼1

Y i−B
0
Fi

� �0X−1 Y i−B
0
Fi

� �

−
1
2
λG
XK
k¼1

XTk

t¼1

wtkk 2k −
1
2
λG
XQ
q¼1

Xk
k¼1

βkq 2k
���

ð2Þ

where λG and λP are the penalty parameters for each

Fig. 1 A graphical representation of PHARAOH-multi. The exemplary model is described with the number of pathways K = 3, the number of
phenotypes Q = 3, the number of covariates L = 2, and the number of genes for each pathway T1, T2 and T3 are 2, 3 and 2, respectively. Variable
wkt denote the weights assigned to the collapsed genes, and βik are coefficients on the pathway latent variables. Residual terms were omitted

Table 1 Parameters related to specific relationships for the proposed model

Coefficients Coefficients

Relationship Pk→ Y∗ βk1, ..., βkQ Relationship Gtk→ Y∗ wtkβk1, ..., wtkβkQ

Pk→ Yq βkq Gtk→ Yq wtkβkq
Pk indicates the kth pathway, Yq is the qth phenotype, Y* indicates all phenotypes, and Gtk indicates the tth gene in the kth pathway
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specific gene and pathway, respectively, and ‖wtk‖2 and
‖βkq‖2 are the ridge penalty function.
We previously introduced an iteratively reweighted least

square (IRLS) method to minimize an univariate version
of (2) under the presence of ridge penalties [20], which is
similar to the alternating regularized least-squares algo-
rithm [30]. Here we extend the previous algorithm to
multivariate analysis. Let Ri be a “column-trimmed”
matrix of GSCA [30], defined by Fi⊗ IK, where ⊗ is
Kronecker product, and IK is K ×K identity matrix.
Maximization of (2) in respect of B and W is equivalent to
minimizing the following least-square functions:

ϕB ¼
XN
i¼1

Y i−B
0
Fi

� �0X−1 Yi−B
0
Fi

� �
þ λp

XQ
q¼1

XK
k¼1

∥βkq∥2

¼
XN
i¼1

Y i−Rivec Bð Þð Þ0X−1 Y i−Rivec Bð Þð Þ þ λpvec Bð Þ0vec Bð Þ

¼ vec Yð Þ−Rvec Bð Þð Þ0 vec Yð Þ−Rvec Bð Þð Þ þ λpvec Bð Þ0vec Bð Þ
ð3Þ

ϕw ¼
XN
i¼1

Y i−B
0
XiW

� �0X−1 Y i−B
0
XiW

� �
þ λG

XK
K¼1

XTk

t¼1

∥wtk∥2

¼
XN
i¼1

Y i−ΦiWð Þ0X−1 Y i−ΦiWð Þ þ λG
XK
k¼1

w 0
k wk

¼ vec Yð Þ−ΦWð Þ0 vec Yð Þ−ΦWð Þ þ λG
XK
k¼1

w 0
k wk

ð4Þ
These least-square functions are subject to diag(R′

R) =NINQ, where Φi is a column-trimmed matrix of
B′⊗ Xi [30], and vec(·) is a vectorization operator.
Then, it can be easily shown that the covariance
matrix Σ is not related to the above equations since
the PHARAOH-multi model uses multivariate linear
model. An estimation of Σ can be done after conver-
gence of B and W, by minimizing the first derivate
of (2) with respect to Σ, as:

Σ̂ ¼ 1
N

Y−Rvec Bð Þð Þ0 Y−Rvec Bð Þð Þ ð5Þ

Similarly, B and W can be updated by equating (3) and
(4) to zero. This then gives the estimating equation of B
and W as:

vec B̂
� � ¼ R0Rð Þ−1R0vec Yð Þ ð6Þ

vec ŵð Þ ¼ Φ0Φð Þ−1Φ0vec Yð Þ ð7Þ
Taken together, the overall procedure of the proposed

algorithm is as follows:

1. Let t = 1.
2. Assign random initial values to W, which are then

represented by W(0).
3. Calculate F(t), using W(t − 1).
4. Update B(t), using F(t).
5. Update W(t), using F(t) and B(t).
6. Repeat until the sum of the differences |W(t) −

W(t − 1)| + |B(t) − B(t − 1)| converges the threshold.

Finally, we determine the values of λG and λP, be-
fore applying the parameter estimation procedure. To
that end, we can implement k-fold cross-validation
(CV) to determine the values of λG and λP. First, we
construct a two-dimensional grid of different λG and
λP values. Then we compute the deviance of each
model with the given λG and λP, for all CV fold
values. Finally, λG and λP are selected by their average
deviance, which is minimized.

Significance testing
To assess the significance of genes or pathways, resampling
methods can be used to test the statistical significance of the
estimated effects of all pathways on the phenotype. In the
proposed method, we utilize a permutation test to obtain
p-values. By permuting the given phenotype, our method
first generates null distributions for both pathways and gene
coefficients. By computing the quantile of estimated pathway
and gene coefficients, from the non-permuted dataset in
each empirical null distribution, we can obtain an empirical
p-value for any specific pathway and gene.
The testing of joint effects, between multiple pheno-

types, is crucial. As shown in Table 1, PHARAOH-multi
provides the individual effects of a pathway on each
phenotype through βk1, ..., βkQ. The global effect of a
pathway, on all phenotypes, can be evaluated by jointly
testing βk1, ..., βkQ. Here, we introduce two different
schema for determining a joint p-value for the kth path-
way, from multiple phenotypes.
Our first approach was to combine the individual

p-values (referred as “P_K”). Since there are consider-
ations among the estimated coefficients βk1, ..., βkQ,
these correlations should be accounted for combining
multiple p-values. Let the p-values from the kth path-
way be denoted by Pk1, …, PkQ. The simplest way to
combine those p-values is to use Fisher’s method,

which is denoted by Ψk ¼ −2
PQ

i¼1 logPik under the
independence assumption. Then, the statistic, Ψk, fol-
lows the χ2 distribution, with the degrees of freedom,
2Q, under the null hypothesis. An extended version of
Fisher’s method, Brown’s method, can combine dependent
p-values using a rescaled χ2distribution and covariance of
p-values [31]. However, an analytical computation of the
covariance is not feasible for large-scale datasets, due to
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their computational complexity. A solution for this
problem [32] introduced an approximation using a
third-order polynomial for the covariance, denoted
by covð−2 logPi;−2 logP jÞ ≈ 3:263ρij þ 0:71ρ2ij þ 0:027ρ3ij .

To that end, Kost’s approach has been shown to be one
of the best working methods for combining p-values
[33]. Here, we adopt Kost’s method by substituting ρ
to the empirical correlation of estimated coefficients,
βk1, ..., βkQ, and derive the statistic for joint effect be-
tween the kth pathway and multiple phenotypes, as
follows:

Pkost;k ¼ 1−Φ2dk Ψk=ckð Þ; ð8Þ

where ck, dk and Φ2dk are the scale parameter, the re-
scaled degree of freedom, and the cumulative distribution
function of χ2, with the degree of freedom 2dk for the kth

pathway, respectively [32].
Our second approach was to construct a single stat-

istic that combines all Q coefficients (referred as
“P_M”). Here, we define a Wald-type statistic, T, as
below, and utilize T for the following permutation
testing scheme:

T ¼ ~β 0
k cov−1 ~βk

� �
~βk ð9Þ

Then, the estimated covariance covð b~βkÞ can be directly

estimated using (6) with equation covðb~βÞ ¼ ðF 0F þ λPIÞ−1
F 0FðF 0F þ λPIÞ−1 � Σ̂ [34], or can be altered by calculat-

ing sample covariance of ~βk , from permutations.

Multiple testing correction
Since the number of pathways is far less than those
of genes or genetic variants, the “multiple testing
problem” remains. While Bonferroni correction can
be a straightforward approach for adjusting for mul-
tiple testing, it may impose an adjustment that is too
stringent, especially for correlated results [35]. To
overcome this issue, we applied two types of multiple
testing corrections.
First, PHARAOH-multi corrects p-values using the

Westfall & Young permutation procedure [36], which can
be easily adopted, since PHARAOH-multi already uses a
permutation scheme. Let T(0) be a vector of the statistics
calculated using observed, unpermuted phenotypes, and
let T(j) be those from the jth permutation. First, we rank
the values of T(0) in ascending order, and let the rank of
the kth pathway, and the kth index, be rk and r(k), respect-
fully. Then, for each permutation j = 0, 1, ⋯, J, let T 0

ð jÞ be

T ð jÞrð1Þ ;⋯;T ð jÞrðKÞ , to define TM
ð jÞ as a cumulative max-

imum of T 0
ð jÞ . Let Ij, k be an indicator function that re-

solves to 1.0, if T 0
ð0Þrk < TM

ð jÞrk , or 0.0, if that condition

does not hold. The adjusted p-value for the kth pathway,
by the Westfall & Young procedure, is then defined as:

Padj
k ¼ 1þP J

j¼1I j;k
1þ J

ð10Þ

Second, PHARAOH-multi provides False Discovery
Rate (FDR) adjustment, by calculating q-values [37].
Here, we first obtain K as the number of permutation
p-values, and from those, we can derive q-values, using
the Benjamini-Hochberg step-up procedure.

Simulation study
To evaluate the performance of the proposed method, we
conducted simulation studies, under various scenarios.
For generating rare variants, we first produced a pool of
genetic variants, using SimRare [38], a rare variant simula-
tor with well-established genetic assumptions. A pool was
then generated, with default settings and gene lengths of
1Kbp. Next, we generated a simulation dataset of 10 path-
ways, with 1000 samples, for each replicate. All simulation
scenarios were evaluated, using 1000 replicates. Based on
the genotypes, the simulated phenotypes were generated
by the following model, with an assumption that only the
first pathway is causal to the phenotypes:

yiq ¼ β1q~f i1 þ ∈iq ¼ β1q
XH1

t¼1

w1txi1t þ ∈iq

¼ β1q
XH1

t¼1

w1t

XM1t

j¼1

γ1tjgi1tj

 !
þ ∈iq

ð11Þ
This is then subject to diag(F′F) =NIK, where H1 is the

number of causal genes in the first pathway, and M1t is
the number of rare variants in the tth gene of the first
pathway (i.e., causal pathway).
In the above model (eq. 11), γ1tj denotes the effect of

the jth genetic variant, of the tth gene, set to |log10-
MAFtj|, such that ϵiq denotes the residual and follows
MVN(0, Σ). In our simulation, the settings q = 1,2, and
H1 = 1, 2, 5, 10, were used. For each replicate, all rare
variants were collapsed into genes.

Results
For the simulation and the analysis of the real dataset, a
workstation system with two Intel Xeon E5–2620 CPUs,
with a combined RAM of 128GiB, were used. Note that
the aSPU and MARV analyses were performed using the
default settings, except that aSPU was performed without
“genetic variant pruning” capability, as we observed that
aSPU raises “unrecoverable error” with that capability. For
our proposed method and aSPU, the number of permuta-
tions was 5000, to prevent possible lower bound limitation.
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Simulation study
For PHARAOH-multi, we selected the tuning parameters
λG and λP, based on three-fold CV for each replicate, using
two-dimensional grids of λG and λP, with six different
starting points of ridge parameters, ranging from 101 to
106 (on a logarithmic base 10 scale). In the simulation, we
considered the following conditions: number of effective
genes in the causal pathway (H1), gene-level effect (wt1),
pathway-level effect (β1q), and residual correlation (ρ). In
our simulation, H1, wt1, β, and ρ were assumed to be 1, 2,
and 5; 0.1 and 0.2; 0.1, 0.15, and 0.2; and 0, 0.25, 0.5, re-
spectively, with evaluation of their exhaustive combina-
tions. Other parameters, Q, K and TK, were fixed to 2, 10,
and 10, respectively.
We first compared the type 1 error rates of the pro-

posed method vs. the traditional methods. Here, type 1
error rate was computed as a proportion of p-values for
the pathways with no effect, and was less than the sig-
nificance level, across 1000 replicates of permuted phe-
notypes. As shown in Fig. 2, we evaluated the type 1
errors using two significance levels, 0.01 and 0.05. As a
result, type 1 errors were controlled well in the trad-
itional methods, but PHARAOH-multi showed a moder-
ately deflated type 1 error rate (P_M), while the inflated
rate is P_K, when ρ = 0. In contrast, the quantile-
quantile (Q-Q) plots in Fig. 3 show no inflation or defla-
tion pattern, in all the methods, except for P_K, with no
correlation between phenotypes.

It was also worthwhile to assess the gain of power in
the multivariate analysis, as compared to univariate ana-
lysis. In this respect, our simulation study was conducted
to compare the power gain from multivariate methods,
and between multivariate and univariate analyses.
First, we checked whether PHARAOH-multi with

multiple phenotypes boosts power compared to PHAR-
AOH with a single phenotype, under the same scenarios
of the power simulation. As a result, we observed that
the power of PHAROH-multi was at least 2.52 times lar-
ger than PHARAOH, and this difference becomes even
larger, as w and β increase (data not shown).
Second, we assessed the statistical power of PHARAOH-

multi and the compared methods, defined as the propor-
tion of the adjusted q-value of the simulated causal pathway
(the first pathway) being less than the significance thresh-
old, e.g., 0.05. Despite the proposed method supporting the
Westfall-Young permutation procedure, it was not
considered in the simulation study, due to the absence of
corresponding adjustments in the compared methods.
Figures 4 and 5 show comparison results of statistical

power simulation from 1000 replications. Each row in
the grid of plots represents the same settings of w and β,
with different numbers of causal genes in the causal
pathway, and each column represents the same number
of causal genes, with different effect settings.
In most scenario comparisons, the two proposed sta-

tistics obtained by PHARAOH-multi (P_M) and p-value

Fig. 2 Type 1 error simulation result. Plots in the first and second row represent the type 1 error at α = 0.05 and α = 0.01, respectively. Each bar is
the mean and the error bars represent SD
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aggregation (P_K) showed greater power than the other
two approaches, aSPU and MARV. However, this did not
hold when 50% of the genes were causal for a specific path-
way, with effect sizes of w = 0.1 and β = 0.1. In order to in-
vestigate whether or not there are significant differences

among powers, we performed paired t-tests between a pair
of methods. In Fig. 4 for the case of w = 0.1, the p-values
were 3 × 10− 7 for comparing powers of P_M and aSPU,
and 4.2 × 10− 6 for comparing those of P_M and MARV. In
Fig. 5 for the case of w = 0.2, the same pairwise comparison

Fig. 3 Quantile-Quantile plots of type 1 error evaluation, without multiple testing adjustment

Fig. 4 Comparison of simulation results of statistical power from various methods of multiple testing adjustment. The value of w= 0.1. Red and green bars
represent results obtained by the PHARAOH-multi (“P_M”, using joint testing) and p-value aggregation (“P_K”) methods, respectively. Teal and purple bars
represent the aSPU and MARV methods, respectively. Powers were calculated by the proportion of the causal pathway’s q-value, obtained by the
Benjamini-Hochberg procedure (< 0.05). Paired t-test p-values are 7.3 × 10− 7 and 4.2 × 10− 6 for P_M vs. aSPU and P_M vs. MARV, respectively
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for the p-values were 7.3 × 10− 7 and 4.2 × 10− 6, respect-
ively. In overall scenarios, powers of P_M were larger up to
18%p compared to aSPU in H1 = 5, w = 0.2 and β = 0.2, and
were larger up to 83%p compared to MARV. Generally,
P_K exhibited smaller power than P_M, and showed com-
parable or slightly smaller power, than aSPU.
Here, we observed three interesting patterns in the re-

sults. First, the proposed P_M and aSPU methods showed
lower power, when the proportion of causal genes increase,
compared to MARV. Second, the power rapidly increased,
as β increased, as shown in Fig. 4. Third, the contribution
of w to the power was relatively moderate, compared to β,
as shown in corresponding scenarios of Figs. 4 and 5. The
reason for the occurrence of those two patterns is
that the model(s) generate phenotypes for power
simulation, and eq. (11) requires the constraint of the
so-called “latent variable,” in GSCA (see Methods). While
both PHARAOH-multi and aSPU construct hierarchies of
genes and pathways, MARV essentially treats a pathway as
a large set of SNVs, since the motivation of MARV is for
region- vs. pathway-based tests. The simulation setting and
its overall effect on phenotypes is summarized, first at the
gene-level, and then by the expression of a linear combin-
ation of those genes. In this respect, the results of
PHARAOH-multi and aSPU were more plausible than
those of MARV, because those two methods more properly
reflected the simulation settings.

To confirm the above hypothesis, we performed an add-
itional comparison using the same dataset, except that the
phenotypes were generated without the constraint. As
shown in Fig. 6, PHARAOH-multi (“P_M”) showed larger
power than in the previous simulation, while the power of
MARV increased as the number of causal genes increased.
However, in contrast to the previous results, the powers of
PHARAOH-multi and aSPU also increased.
Finally, we investigated whether or not the statistical

power changes by Mkt. For simplicity, we split 1000 simula-
tion datasets into two groups: the first group where the
number of variants is small and the second where it is large.

Fig. 5 Comparison of simulation results for statistical power using multiple testing adjustment at w= 0.2. Red and green bars represent results obtained
by the PHARAOH-multi (“P_M,” using joint testing) and p-value aggregation (“P_K”) methods, respectively. Teal and purple bars represent the aSPU and
MARV methods, respectively. Powers were calculated by the proportion of the causal pathway’s q-value obtained by the Benjamini-Hochberg procedure
(< 0.05). Paired t-test p-values are 3.4 × 10− 6 and 1.8 × 10− 6 for P_M vs. aSPU and P_M vs. MARV, respectively

Fig. 6 Result of additional power simulation, without constraint of
manifest variables
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Then, we compared the power of each method between
two groups using t-test. As a result, the p-values were 0.097
for aSPU, 0.684 for MARV, and 0.825 for PHARAOH-
multi. Thus, we concluded that Mkt is unlikely to affect the
simulation result regardless of the methods.

Real data discovery from whole-exome sequencing dataset
To evaluate the practical performance of PHARAOH-multi,
we conducted a discovery study using a large-scale sequencing
dataset. Many studies suggest that the major underlying risk
factors for metabolic disorders include high density lipoprotein
(HDL), blood pressure (SBP, DBP), waist circumference
(WAISTC), fasting glucose (FAST_GLU), and triglycerides
(TG). In this regard, we conducted a multivariate analysis of
metabolism-related traits, using a large-scale sequencing data-
set, obtained from the Type 2 Diabetes Genetic Exploration
by Next-generation sequencing in multi-Ethnic Samples
(T2D-GENES) Consortium, comparing our proposed (PHAR-
AOH-multi) and other common methods. In detail, we ana-
lyzed a dataset consisting of 1086 samples selected from the
Korean Association REsource (KARE) study [23].
After removal of samples with any missing observations

of the aforementioned six phenotypes, we included 1085
samples for analysis. The quality controls with genotype
call rates were < 95%, or for Hardy-Weinberg Equilibrium
(HWE) test P < 10− 5, the minor allele frequency was < 5%
and the minor allele count was > 2, resulted in 198,761
variants. The final dataset was then mapped to genes,
using the human genome-19 (hg19) reference genome co-
ordinates, with 10Kbp flanking regions. The gene range of
hg19 reference, was extracted from RefSeq track of UCSC
Table Browser, as of October 2014. Finally, the gene-level
collapsed variable was generated using Workbench for In-
tegrated Superfast Association study with Related Data
(WISARD), with beta-transformation weighting, as sug-
gested in [5], with the number of genes being 4388.
Next, we compared our multivariate and univariate ana-

lysis results, using PHARAOH-multi and PHARAOH. As
shown in Figs. 7 and 8, Q-Q plots of the results showed no
substantial inflation or deflation pattern for either the multi-
variate or univariate results. However, with regard to path-
way discovery, the results did show significant differences.
These comparisons clearly support the one advantage of

multivariate analysis that we discussed above: elevation of
statistical power. As with multivariate analysis, we calcu-
lated q-values for each univariate result. Interestingly, no
univariate analysis identified significant pathways, except
for SBP with KEGG, which identified three pathways (drug
metabolism cytochrome P450, glutathione metabolism and
progesterone-mediated oocyte maturation). As shown in
Table 2, only one pathway, glutathione metabolism, was
identified in the univariate analysis, and the q-values of uni-
variate analyses for pathways identified by multivariate ana-
lysis, were not significant.

Second, we compared the result of multivariate analyses,
using PHARAOH-multi, aSPU and MARV. As shown in
Fig. 8, PHARAOH-multi exhibited generally acceptable p-
value trends, despite the result from KEGG being modestly
deflated, due to the optimization of lambda. The Q-Q plots
of MARV look similar to PHARAOH-multi. In contrast,
aSPU showed unacceptably inflated patterns of Q-Q plots,
regardless of the pathway databases, which were not used
in the simulation study. This could possibly be due to sub-
stantial overlap of existing pathway databases.
As shown in Table 2, the multivariate analysis success-

fully identified eight pathways from three pathway
databases, with Benjamini-Hochberg q-value < 0.1. Inter-
estingly, PHARAOH-multi identified glutathione-related
pathways in both KEGG and Reactome pathway data-
bases, which supports the result of PHRAOH-multi. As
shown in Fig. 8, the quantile-quantile plots of aSPU for
the real dataset are highly inflated (i.e., their p-values are
very small). As a result, 57.7% (Reactome), 29.5% (Bio-
carta) and 71.5% (KEGG) of the tested pathways by aSPU
were statistically significant (q-value < 0.1). Unfortunately,
these pathways are highly false positives. In this respect,
we included the results of significant pathways identified
by either PHARAOH-multi or MARV.
The identified pathways suggested evident relation-

ships with metabolic syndrome. Since the peroxisome
pathway elucidates peroxisome biogenesis, which con-
tributes to fatty acid oxidation and biosynthesis of ether
lipids, many studies have discussed interrelationship be-
tween peroxisomes and metabolic processes [39, 40].
Likewise, identification of the GABA pathway can also
be explained by the relationship between GABA and
peroxidation, and putative relationship of obesity [41,
42]. Moreover, identification of glutathione metabolism,
and its conjugation, explain that PHARAOH-multi suc-
cessfully captured a key process of metabolic disorders
[43]. Finally, another report suggested a putative role of
adhesion molecules in metabolic diseases, as explained
by “cell2cell” pathway [44]. For the two pathways identi-
fied by MARV, we found that Caspase pathway has been
known to be related to metabolic stress or perturbation
[45], but no evidence for D4GDI pathway was found.

Replication study using independent exome chip dataset
We conducted a replication study using exome chip dataset
from an independent cohort, using the identified pathways
in the discovery study. Despite the insufficiency of detected
variants in the exome chip dataset, as a result, we success-
fully replicated two pathways with p-value < 0.1, the peroxi-
some pathway in KEGG (p = 0.059) and cell2cell pathway
in Biocarta (p = 0.093). As shown in the literature search,
the two pathways we replicated have strong relationships
with metabolic disorders.
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Discussion
Compared to univariate approaches, which analyze
each phenotype individually, our real data analysis suc-
cessfully demonstrated that the multivariate approach
could identify pathways commonly associated with

specific traits. It is important to construct a systematic
analysis that considers the correlation between complex
diseases and their underlying biological traits. In
addition, our results from two well-established pathway
databases were strongly supported by many existing

Fig. 7 Q-Q plots of univariate PHARAOH for each pathway database

Fig. 8 Q-Q plots of discovery study using multivariate methods. The first to third rows show the results of P_M, aSPU and MARV, respectively. The
plots were drawn by unadjusted p-values. For each method, three pathway databases (Biocarta, KEGG and Reactome) were used. Many p-values
of aSPU are not appear in the Q-Q plots since aSPU reports many zero p-value that cannot be drawn in log scale
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publications, thus demonstrating the advantage of our
proposed approach.
Compared to existing multivariate analysis methods,

PHARAOH-multi features several advantages. Firstly, by
constructing a hierarchical structure of genes-pathways-
phenotypes, four types of associations (gene-single pheno-
type, gene-multiple phenotypes, pathway-single phenotype,
and pathway-multiple phenotypes) can be estimated simul-
taneously. Compared to our proposed method, existing
methods of multivariate analysis were limited to gene-level
analysis, and hence, the combinatorial effect of multiple
genes, via biological pathways, was impossible to estimate.
In addition, the proposed method considers the correlation
between genes, pathways, and phenotypes, by imposing
penalty parameters on the estimation procedure.
Secondly, PHARAOH-multi provides multiple options

for correcting for the multiple testing issue. Although Bon-
ferroni correction is simple, and powerfully controls type 1
error, it is a well-known fact that the Bonferroni correction
often results in controls that are too stringent, when the
tests are correlated. Under such conditions, application of
the Westfall-Young permutation procedure can be an ap-
propriate alternative, since its asymptotic optimality under
dependence is known [35]. In this respect, the proposed
method has the advantage of identifying causal pathways,
by considering correlation among pathways.
For analysis times of both simulation and real datasets,

MARV was the fastest among all the methods, while
PHARAOH-multi ran slightly faster than aSPU. For ex-
ample, in the analysis of simulation dataset of 100 genes
with 1000 samples, the running times of MARV,
PHARAOH-multi, and SPU were 13, 67 and 235 s, respect-
ively. The trends of execution time were consistent

regardless of simulation parameters or datasets. However,
PHARAOH-multi can be further accelerated with multi-
threading which is not supported by MARV and aSPU.
With multithreading of 8 threads, the analysis time of
PHARAOH-multi was reduced to 12 s.
At this point, there are a number of subjects we can con-

sider for future research. Our current analysis is limited
only to Korean population. In our future study, we apply
our method to the whole data of 13,000 WES dataset of
T2D-GENES consortium [46] which contains our KARE
samples. It would be a challenging work to identify novel
pathways across multiple populations. For the methodo-
logical aspect, our approach uses gene-level collapsing of
multiple rare variants. Although the collapsing method has
the advantage that the analysis of very rare variants is pos-
sible, it cancels out the effects of variants with opposite dir-
ection (e.g, gene upregulation vs. downregulation). Despite
such limitations, our method showed great potential in
identifying causal genetic structure in the real data analysis.
However, further research, on a more sophisticated ap-
proach that can consider the effect direction of variants, is
needed. Moreover, we plan to improve our proposed multi-
variate analysis by applying Generalized Estimating Equa-
tions (GEE) or Linear Mixed Model (LMM). Our method
can be extended to prediction models, rather than associ-
ation tests, using other types of penalization, such as
LASSO or SCAD [47]. Lastly, our method can also be
extended to pathway interaction analysis that has been
commonly performed in gene expression data analysis [48].

Conclusion
In this study, we proposed a novel statistical approach for
multivariate pathway-based analysis of rare variants, from

Table 2 Significant pathways of PHARAOH-multi and MARV, and their q-values of multivariate and univariate analyses

DB Pathway # of
variants

Multivariate q-value Univariate q-value (PHARAOH)

P_M aSPU MARV tg sbp dbp fastglu hdl waistc

KEGG

Peroxisome 421 0.0396 0 0.9826 0.6886 0.7 0.9138 0.9899 0.9942 1

Glutathione metabolism 187 0.044 0.0076 0.9826 0.999 0.0939 0.9138 0.993 0.9942 1

Biocarta

CDMAC pathway 63 0.0858 0.5739 0.9638 0.9817 0.1094 0.5743 0.953 0.9967 0.9962

Cell2cell pathway 112 0.0208 0 0.9638 0.7293 0.3063 0.5722 0.8234 0.9967 0.9962

GABA pathway 46 0.0497 0.0085 0.8134 0.9783 0.1094 0.5722 0.8234 0.9967 0.9962

MPR pathway 179 0.0208 0 0.9638 0.9783 0.1094 0.2188 0.8234 0.9845 0.9962

Caspase pathway 649 0.8358 0.1741 0.0634 0.997 0.8863 0.6418 0.7584 0.999 0.9928

D4GDI pathway 422 0.7626 0.3727 0.0634 0.997 0.9867 0.6418 0.4377 0.999 0.995

Reactome

Glutathione conjugation 99 0.0979 0.0567 0.9979 0.9813 0.3859 0.9254 0.999 0.9793 0.979

Phase II conjugation 270 0.0571 0 0.9979 0.9813 0.3859 0.9254 0.999 0.9793 0.99

Bold numbers are the q-values below the significance threshold 0.1. P_M, aSPU and MARV indicate q-values from the joint testing method of multiple
phenotypes, and univariate q-values indicate the q-values of PHARAOH analysis for each phenotype
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large-scale sequencing datasets. Analyses of multiple phe-
notypes have been successful in analyzing various complex
diseases, including type-2 diabetes (T2D) or hypertension.
In general, curated guidelines suggest diagnosing T2D ac-
cording to traits observed in the individual. Consequently,
incorporating multiple correlated traits, to be investigated
for association with specific diseases, via multivariate ana-
lysis, elevates the statistical power. In this respect, our
simulation study reflects the relationship between diseases
and their related traits. Throughout the simulation study,
PHARAOH-multi outperformed existing multivariate
methods. In addition, our proposed method successfully
demonstrated several advantages of multivariate analysis,
including significantly improving the detection power of
causal pathways, as compared to univariate analysis, while
also retaining detection power for the individual pheno-
type. Moreover, we successfully demonstrated that the
proposed method is capable of identifying plausible path-
ways in the real dataset, by identifying eight pathways in
the discovery study, and replicating two pathways in the
replication study. We firmly believe that the proposed
method will assist researchers in understanding the gen-
etic structures that underlie many complex diseases.
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