
Palkowski and Bielecki BMC Bioinformatics (2018) 19:12
DOI 10.1186/s12859-018-2008-6

RESEARCH ARTICLE Open Access

Tuning iteration space slicing based tiled
multi-core code implementing Nussinov’s RNA
folding
Marek Palkowski* and Wlodzimierz Bielecki

Abstract

Background: RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving
code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA
secondary structure approaches, such as Nussinov’s recurrence, involve mathematical operations over affine control
loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral
compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code
implementing Nussinov’s RNA folding. Such techniques are within the iteration space slicing framework – the transitive
dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating
parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality.

Results: To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters
are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed
tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors
available in expressions of those codes. Using this model and known integer factors present in the mentioned
expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer
factor available in the same fixed tiled code position and replace in this code expressions, including integer factors,
with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile
size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension
maximizing target code performance.

Conclusions: For a given search space, the presented approach allows us to choose the best tile size and tile
dimension in parallel tiled code implementing Nussinov’s RNA folding. Experimental results, received on modern Intel
multi-core processors, demonstrate that this code outperforms known closely related implementations when the
length of RNA strands is bigger than 2500.

Keywords: RNA folding, Parametric loop tiling, Computational biology, Nussinov’s algorithm, Parallel computing, Tile
size selection

Background
RNA structure prediction, or folding, is an important
ongoing problem that lies at the core of several search
applications in computational biology. Algorithms to pre-
dict the structure of single RNAmolecules find a structure
of minimum free energy for a given RNA using dynamic
programming. Nussinov’s folding algorithm [1] uses the

*Correspondence: mpalkowski@wi.zut.edu.pl
West Pomeranian University of Technology, Faculty of Computer Science,
Zolnierska 49, 71-210 Szczecin, Poland

number of base pairs as a proxy for free energy, preferring
the structure with the most base pairs.
Nussinov’s algorithm is compute intensive due to a

cubic time complexity. Fortunately, it involves mathemat-
ical operations over affine control loops whose iteration
space can be represented by the polyhedral model [2].
Thanks to the simple pattern of dependences, loop tiling
techniques can be used to accelerate Nussinov’s folding.
Let S be anN ×N Nussinov matrix and σ(i, j) be a func-

tion which returns 1 if (xi, xj) match and i < j − 1, or 0

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2008-6&domain=pdf
http://orcid.org/0000-0002-5932-4523
mailto: mpalkowski@wi.zut.edu.pl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 2 of 12

otherwise, then the following recursion S(i, j) (the maxi-
mum number of base-pair matches of xi, ..., xj) is defined
over the region 1 ≤ i < j ≤ N as

S(i, j) = max
1≤ i<j≤N

⎧
⎪
⎪

⎨

⎪
⎪
⎩

S(i + 1, j − 1) + σ(i, j)
max
i≤k<j
(S(i, k) + S(k + 1, j)).

and S(i, j) is zero beyond that region.
Listing 1 represents the loop nest implementing

Nussinov’s algorithm. It consists of triply nested affine
loops with two statements accessing to two-dimensional
array S.

Loop tiling or blocking is a crucial program transfor-
mation, which offers a number of benefits. It is used to
improve code locality, expose parallelism, and allow for
adjusting parallel code granularity or balance. All those
factors impact parallel code performance [3].
In paper [4], we presented loop tiling based on the

transitive closure of a dependence graph for Nussinov’s
algorithm. It is within the iteration space slicing (ISS)
framework [5]. The key step in calculating an iteration
space slice is to calculate the transitive closure of the data
dependence graph of the program; then transitive depen-
dences are applied to the statement instances of interest to
produce valid tiles. The idea of tiling, presented in paper
[4], is to transform (correct) original rectangular fixed tiles
so that all target tiles are valid under lexicographic order.
We demonstrated higher speed-up of generated tiled code
(for a properly chosen size of original tiles) than that
of code produced with state-of the-art source-to-source
optimizing compilers. But that paper does not answer
what is the best size of original tiles allowing for gener-
ation of tiled code demonstrating the maximal speed-up.
In general, the number of combinations of possible tile
sizes can be very large. For each tile size, it is neces-
sary to generate tiled code, compile and spawn it, and
finally carry out code profiling. This can result in very high
expenses not allowing for discovering the best tile size in
practice.

The goal of this paper is to present an approach allowing
us to determine the best tile size maximizing tiled code
performance to be applied in practice. This approach is
based on parametric tiling.
Parametric tiling is more general, it allows for defining

tile size with parameters instead of constants [3]. With
fixed size tiling, a separate program must be generated
and compiled each time when tile size is changed. In
general, this can be very expensive. Thereby, paramet-
ric tiling is more flexible and time and cost saving when
we deal with code locality analysis and tuning code for
target architectures. However, most state-of-the-art com-
pilation tools do not provide parametric tiling, they are
able to generate tiled code for only fixed tile size. Para-
metric tiling is generally known to be non-linear, breaking
the mathematical closure properties of the polyhedral
model.
To our best knowledge, well-known tiling techniques

and optimizing compilers are based on linear or affine
transformations [6–8], for example, the-state-of-the-art
PluTo compiler [6] generates tiled code applying affine
transformations derived. However, PluTo can only gener-
ate tiled code when tile size is fixed.
PrimeTile [9] is the first system to generate paramet-

rically tiled code for affine imperfectly nested loops. It
uses a level by level approach to generate tiled code, with
a prolog, epilog, and a full-tiles loop nest correspond-
ing to each nesting level of the original code. But loop
tiling is generated seamlessly in the affine transformation
framework.
DynTile [10] utilizes wavefront parallelism in the tiled

iteration space corresponding to the convex hull of all the
statement domains of the input untiled code. Tiles are
scheduled dynamically, i.e., at run time.
PTile [11] is an approach to compile-time generation of

code for wavefront parallel tiled execution.
Although DynTile, PTile, and PrimeTile present very

effective tiling for stencils, using affine loop transfor-
mations, they do not allow us to tile dynamic pro-
gramming kernels efficiently, in particular, they fail
to tile the innermost loop in the code implement-
ing Nussinov’s algorithm [2]. We show in this paper
that tiling of that loop is crucial to achieve high
performance. Furtermore, known techniques of mono-
parametric tiling [3] (tile sizes are multiple of the
same block parameter) do not guarantee notable local-
ity improvements for Nussinov’s algorithm. To our best
knowledge, there does not exist any parametric loop
tiling scheme for the loop nest implementing Nussinov’s
algorithm.
Mullapudi and Bondhugula presented dynamic tiling

for Zuker’s optimal RNA secondary structure predic-
tion [2] to overcome limitations of affine transforma-
tions. 3-D iterative tiling for dynamic scheduling is

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 3 of 12

calculated by means of reduction chains. Operations
along each chain find maximum and can be reordered
to eliminate cycles. Their approach involves dynamic
scheduling of tiles, rather than the generation of a static
schedule.
Wonnacott et al. introduced serial 3-D tiling of

“mostly-tileable” loop nests of Nussinov’s RNA secondary
structure prediction in paper [12]. This approach tiles
non-problematic iterations (iterations of loops ’i’ and ’j’)
with classic tiling strategies while problematic iterations
of loop (’k’) are peeled off and executed later. Unfortu-
nately, the paper does not consider any parallel code, tiling
is represented with serial code.
In this paper, we present an approach allowing for deriv-

ing the best size of original tiles to be used for generation
of ISS based tiled code implementing Nussinov’s RNA
folding.

Methods
Brief introduction
The polyhedral model is a mathematical formalism for
analyzing, parallelizing, and transforming an impor-
tant class of compute- and data-intensive programs, or
program fragments consisting of (sequences of) arbi-
trarily nested loops. Loop bounds, statements condi-
tions and array accesses are affine functions in the
program.
Within the polyhedral model for analysis and transfor-

mation of affine programs, we deal with sets and rela-
tions whose constraints need to be affine, i.e., presented
with linear expressions and constant terms. Affine con-
straints may be combined through the conjunction (and),
disjunction (or), projection (exists), and negation (not)
operators.
An access relation connects iterations of a statement to

the array elements accessed by those iterations. Relations
are defined in similar way as sets, except that the single
space is replaced by a pair of spaces separated by the arrow
sign →. We use the exact dependence analysis proposed
by Pugh andWonnacott [13], where loop dependences are
represented with relations.
Standard operations on relations and sets are used,

such as intersection (∩), union (∪), difference (-), domain
(dom R), range (ran R), relation application (S′ = R(S) ∶
e′ ∈ S′ iff exists e s.t. e → e′ ∈ R, e ∈ S). The detailed
description of these operations is presented in [13].
The positive transitive closure of a given lexicograph-

ically forward dependence relation R, R+, is defined as
follows [5]:

R+ ={e→ e′ ∶ e→ e′ ∈ R ∨
∃e′′s.t. e→ e′′ ∈ R ∧ e′′ → e′ ∈ R+} .

It describes which vertices e′ in a dependence graph
(represented by relation R) are connected directly or tran-
sitively with vertex e.
In sequential loop nests, the iteration i executes before

j if i is lexicographically less than j, denoted as i ≺ j, i.e.,
i1 < j1 ∨ ∃k ≥ 1 ∶ ik < jk ∧ it = jt , for t < k.

Generation of tiles for the Nussinov loop nest
Let us recap tiled code generation for Nussinov’s algo-
rithm presented in [4]. To generate valid 3-D tiled code for
the Nussinov loop nest, we adopt the approach presented
in paper [14], which is based on the transitive closure of
dependence graphs.
The iteration domain of the Nussinov loop nest (see

Listing 1) is represented with the following set.

Iteration Domain =

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

i ∶ 0 ≤ i ≤ N − 1,
j ∶ i + 1 ≤ j ≤ N − 1,

k ∶ { s1 ∶ 0 ≤ k ≤ j − i − 1,s2 ∶ k = 0.

Let vector I = (i, j, k)T define indices of the Nussinov
loop nest, diagonal matrix B = [b1,b2,b3] define tile sizes,
vectors II = (ii, jj, kk)T and II′ = (iip, jjp, kkp)T specify tile
identifiers. Each tile identifier is represented with a non-
negative integer, i.e., the following constraint II ≥0 has to
be satisfied.
First, we form parametric set, TILE(II , B), including

statement instances belonging to a parametric rectangular
tile (parameters are tile identifiers) as follows

TILE =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

i ∶ N − 1 − b1 ∗ ii ≥ i ≥ max(−b1 ∗ (ii + 1),
N − 1) ∧ ii ≥ 0

j ∶ b2 ∗ jj + i + 1 ≤ j ≤ min(b2 ∗ (jj + 1) + 1,
N − 1) ∧ jj ≥ 0

k ∶
⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

s1 ∶ b3 ∗ kk ≤ k ≤ min(b3 ∗ (kk + 1) − 1,
j − i − 1) ∧ kk ≥ 0

s2 ∶ k = 0.

TILE_LT (TILE_GT) is the union of all the tiles whose
identifiers are lexicographically less (greater) than that of
TILE(II , B):
TILE_LT (GT) ={[I] ∣∃ II′ s. t. II′ ≺ (≻) II ∧ II ≥0
∧ B*II+LB ≤ UB ∧ II′ ≥0 and B*II′+LB ≤ UB ∧ I in
TILE(II′, B)}.
For calculating exact relation R+, where R is the union of

all dependence relations extracted for the Nussinov loop
nest, we apply the algorithm presented in paper [15]. Next,
we calculate the following set

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 4 of 12

TILE_ITR = TILE − R+(TILE_GT),

which does not include any invalid dependence target, i.e.,
it does not include any dependence target whose source is
within set TILE_GT.
The following set

TVLD_LT =(R+(TILE_ITR) ∩ TILE_LT)
− R+(TILE_GT)

includes all the iterations that i) belong to the tiles
whose identifiers are lexicographically less than that of
set TILE_ITR, ii) are the targets of the dependences
whose sources are contained in set TILE_ITR, and
iii) are not any target of a dependence whose source
belong to set TILE_GT. Target tiles are defined by the
following set

TILE_VLD = TILE_ITR ∪ TVLD_LT .

Next, we form set TILE_VLD_EXT by means of
inserting into the first positions of the tuple of set
TILE_VLD elements of vector II: ii1, ii2, ..., iid . Nonpara-
metric tiled code is generated by means of applying any
code generator allowing for scanning elements of set
TILE_VLD_EXT in lexicographic order, for example, isl
AST [16].
In paper [4], we discuss parallelization of ISS based fixed

tiled code by means of loop skewing which honors all
dependences among generated tiles.

Assumption about goodoriginal tile size and tile dimension
The most important step in generating target ISS based
tiled code is defining an original tile size and dimen-
sion to form set TILE according to the approach pre-
sented in paper [4]. They impact serial and parallel code
locality and performance. It worth noting that in gen-
eral, target tiles represented with set TILE_VLD are dif-
ferent from original rectangular ones defined with set
TILE. Target tiles can be parametric non-rectangular
ones, i.e., the number of statement instances within
such tiles depends on parametric upper loop index
bounds.
For parametric tiles, it does not guarantee that the data

size per a tile is smaller than the capacity of cache, this
leads to decreasing code locality. The number of target
parametric tiles and the percentage of the iteration space,
occupied by them, depend on an original tile size. So,

we strive to choose such original tile size which mini-
mizes the percentage of the iteration sub-space occupied
with target parametric tiles. Let us note that if for a given
loop nest statement, the set (R+(TILE_GT) ∩ TILE) is
empty, this means that for this statement, every target tile
is the same as the corresponding original one, i.e., tar-
get parametric tiles are absent, so we have a good tiling
scheme.
An additional file presents sets (R+(TILE_GT) ∩ TILE)

for s1 when B = [7, 79, 133] and B = [1, 79, 133], respec-
tively [see Additional file 1]. The set (R+(TILE_GT) ∩
TILE) for statement s2 is empty.
Scrutinizing the constraints of the set (R+(TILE_GT) ∩

TILE) for statement s1 when B = [7, 79, 133] allows us
to conclude that most target tiles are different from orig-
inal ones and they are non-rectangular. For many target
tiles, the data size per a target tile can be greater than the
cache capacity of a multi-core platform used by us for car-
rying out experiments (for details, see the next section).
So, the 3-D tiling scheme for ISS based tiled code is not
desired.
When we tile only the two inner loops, i.e., B =

[1, 79, 133], we can derive the following conclusions. A
value of parameter b3 has the most impact on the percent-
age of statement instances within non-corrected (rectan-
gular) target tiles because it influences two loop indexes:
j and k. For example, if the constraint N − ii + b2 ∗ jj <=
j <= 78 + N − ii + b2 ∗ jj or k > b2 ∗ jj is not sat-
isfied, statement instances defined with vector (i, j, k)T ,
where j, k do not satisfy the above constraints, are all
within rectangular tiles. Analyzing the constraints above,
we may conclude that increasing the value of b2 increases
the percentage of instances of statement s1 included in
non-corrected target tiles. On the other hand, increasing
this value leads to increasing data per a target tile and
reducing parallelism degree. So, there exist “the golden
mean” of b2, which maximizes target ISS based tiled code
performance.
The value of b3 influences only one loop index, k, in the

following constraints of the set (R+(TILE_GT) ∩ TILE):
k >= b3 ∗ kk and k <= b3 − 1 + b3 ∗ kk. Increasing
the value of b3 increases the percentage of instances of
statement s1 included in non-corrected target tiles. On
the other hand, increasing this value leads to increas-
ing the stride between cache lines which are referenced
at each loop nest iteration (see Listing 1), this can dra-
matically reduce data reuse. So, a value of b3 cannot be
large.
Summing up, we may expect that good original tiles

are formed with the following matrix B = [1,b2,b3]
and b2 > b3, i.e., when we tile only the two inner
loops. This assumption is confirmed by means of the
results of our experimental study presented in the next
section.

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 5 of 12

ISS based parametric tiled code construction
To improve locality of tiled code, we use a model known
as tile size selection (TSS) which can be classified into
model-driven empirical search based. It is used to charac-
terize and prune the space of good tile sizes. For each tile
size in the pruned search space, a version of the program
is generated and run on the target architecture, and the
tile size with the least execution time is selected [17].
To apply TSS, we first form parametric 3-D tiled code to

avoid generation and compilation of a separate code each
time when tile size is changed.
For this purpose, applying our source-to-source opti-

mizing compiler TRACO [18], we generate two non-
parametric tiled codes for different values of elements of
matrix B = [b1,b2,b3] according to the technique pre-
sented in our paper [4]. We choose those values to be
prime numbers to avoid generation of simplified non-
parametric tiled code. We strive to generate tiled code
whose structure is the same regardless of values of ele-
ments of matrix B = [b1,b2,b3]. Next using those codes,
we construct parametric tiled code.
An additional file presents generated tiled codes where

for loops shown in violet correspond to B1 = [23, 47, 113],
while for loops shown in red state for B2 = [37, 79, 167],
[see Additional file 2]. Applying the way, presented in our
paper [4], we prove that those codes are valid.

Analyzing those generated codes, we may conclude
that i) their structures are the same, only integer factors,
present in the same code position, are different; ii) there
exist the following linear expressions defining the init-
statement, condition, and iteration expression of for loops:
b1 + b2, b2,b2 − 1,b2 + 1,b3,b3 − 1; iii) there exists the
non-linear expression of the form b1 ∗ b2.
Taking into account the above conclusions, we form the

following general linear model which is valid for each inte-
ger factor, say y, present in the expressions of tiled loop
nest:
y = a0 ∗ b0 + a1 ∗ b2 + a1 ∗ b1 + a2 ∗ b2 + a3 ∗ b3 +

a4, where ai, i = 0, .., 4, are unknown integer coefficients,
b0 = b1 ∗ b2.
Let us note that we replaced the non-liner expression

b1 ∗ b2 with the linear one b0.
We use the iscc calculator [19] to find unknown coeffi-

cients ai, i = 0, 1, 2, 3, in the above model as follows.
For each pair of values y1, y2, which appear in the same

code position of the two generated nonparametric codes,
we form a system of equations as follows

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩

y1 = a0 ∗ b01+a1 ∗ b21 + a1 ∗ b11 + a2 ∗ b21 + a3 ∗ b31
+ a41,

y2 = a0 ∗ b02+a1 ∗ b22 + a1 ∗ b12 + a2 ∗ b22 + a3 ∗ b32
+ a42,

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 6 of 12

Table 1 Finding integer coefficients ai , i = 0 . . . 4, of the model y = a0 ∗ b0 + a1 ∗ b2 + a1 ∗ b1 + a2 ∗ b2 + a3 ∗ b3 + a4, where b0=b1*b2

y1 y2
a0 a1 a2 a3 a4 Formula

Lines,

b1,2,3=[23,47,113] b1,2,3=[37,79,167] [see Additional file 2]

70 116 0 1 1 0 0 b1+b2 6, 10, 56

93 153 0 2 1 0 0 2*b1+b2 6

1081 2923 1 0 0 0 0 b1*b2 6

22 36 0 1 0 0 -1 b1-1 10

23 37 0 1 0 0 0 b1 10, 15, 43, 46, 56, 62

21 35 0 0 1 0 -2 b1-2 10

113 167 0 0 0 1 0 b3 40, 49, 59

112 166 0 0 0 1 -1 b3-1 49, 59

46 78 0 0 1 0 -1 b2-1 56

47 79 0 0 1 0 0 b2
10, 15, 21, 30, 34,

40, 43, 49, 52, 59

where bij, j = 1, 2, are particular values of bi, i = 1, 2, 3, for
the first (j = 1) and second (j = 2) nonparametric codes,
and apply the iscc calculator to resolve that system. It is
worth noting that for each pair of y1, y2, the general model
is simplified so that the resulting system includes only at
most two unknowns, the reminding ones are absent.
For example, in the codes presented in [see Additional

file 2] in line 6, we have in the same code position integers
93 and 153. We build the following set according to the
iscc calculator syntax [19] {[a1,a2] ∶ 23 ∗ a1 + 47 ∗ a2 =
93 ∧ 37 ∗ a1 + 79 ∗ a2 = 153}.
The constraints of this set are the two linear equations

with the two unknowns (a1,a2), they obtained from the
general model. The iscc calculator returns the following
solution {[2, 1]}, i.e., a1 = 2,a2 = 1, and a0 = a3 = a4 = 0.
Hence, in the parametric code in line 6, we insert the
expression 2 ∗ b1 + b2.
Table 1 presents all solutions for integers available in the

examined nonparametric codes. Using those solutions, we
form the parametric code presented in Listing 2. In [see
Additional file 2], that code is presented with dark lines.
For so obtained parametric code, inter-tile dependences

are described with non-affine expressions, so we cannot
prove its validity applying the way presented in paper [4].
However, we seek for the best tile size using the previ-
ously mentioned TSS technique, which envisages running
tiled code for particular fixed values of bi, i = 1, 2, 3. So
before running each fixed tiled code, we are able to check
its validity applying the way presented in paper [4] because
all inter-tile dependences for such a code are affine.

Results and discussion
To carry out experiments, we have used amachine with an
Intel Xeon processor E5-2699 v3 (2.3 Ghz in base and 3.6
Ghz in turbo, 18 cores/36 threads, 576 KB L1 Cache for
code and data separately, 4.5 MB L2 Cache and 45MB L3

Cache) and 128 GB RAM. All programs were compiled by
means of the Intel C++ Compiler (icc 15.0.2) with the -O3
flag of optimization. To implement multi-threaded paral-
lel processing, the OpenMP programming interface [20]
was chosen.
We experimented with randomly generated RNA

strands 1 of length 2200 and 5000, the size of the aver-
age and longest humanmRNA, respectively.We examined

Table 2 Execution time (in seconds) of serial ISS based tiled code
for some tile sizes, N =2200

No. b1 b2 b3 Time

1 1 128 16 3.2760

2 1 128 8 3.2910

3 1 150 8 3.3264

4 1 128 12 3.3506

5 1 96 16 3.3602

6 1 128 24 3.3913

7 1 150 12 3.4042

8 1 128 6 3.4247

9 1 96 8 3.4357

10 1 200 16 3.4645

...

467 2 150 16 6.6576

...

Execution time of the original code: 12.2802

7985 400 1 1 12.2872

7986 400 48 1 12.3162

...

8000 1 1 1 24.8607

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 7 of 12

also longer strands (up to 10000) to illustrate benefits of
tiling the innermost loop nest.
We considered 20 possible tile sizes along each dimen-

sion from the set {1, 2, 4, 6, 8, 12, 16, 24, 32, 40, 48, 64, 96,
128, 150, 200, 256, 300, 400, 512}. This leads to the search
space including 203 = 8000 possible tile sizes.
To carry out experiments, we wrote a script which auto-

matically fulfills the following tasks: i) chooses one tile size
from the search space (values of bi, i = 1, 2, 3), ii) checks
the validity of the tiled code with the chosen tile size
according to the way presented in paper [4], iii) spawns the
tiled code with the chosen tile size, iv) measures execution
time, v) repeats steps i) - iv) for each tile size within the
search space and collects all execution times. It worth not-
ing that parametric code compilation runs only one time
that greatly reduces search time.
Table 2 presents execution time of serial ISS based tiled

code for some tile sizes. The execution time of the original
(untiled) loop nest is 12.28 seconds. The results show that
tiling of the two innermost loops allows for reaching min-
imal execution time of 3.276 seconds, this results in the

maximal speed-up of 3.7. Under speed-up we mean the
ratio of original program execution time to that of tiled
one. Tiling the outermost loop allows us to reduce time
execution to only 6.65 seconds. It is worth noting that only
15 tile sizes in the examined search space lead to greater
execution time than that of the original program (see the
last lines in Table 2).
Figure 1 depicts execution times of serial ISS based tiled

code for the four tile sizes of the outermost loop. As we
can see, choosing b1=1 leads to the maximal tiled code
performance. The explanation of this fact is presented in
the previous sub-section. For this code, the best tile size
within the examined search space is [1,128,16].
We carried out search of the best tile size in the same

search space for multi-core tiled code with the bigger
problem size, N=5000, and presented execution times in
Table 3. For 32 threads, we observed super-linear tiled
code speed-up of 112.9 for the tile size of [1× 96× 8]. The
reason of super-liner speed-up is the cache affect result-
ing from the different memory hierarchies of the mod-
ern parallel computer used for carrying out experiments.

Fig. 1 Execution time (in seconds) of serial ISS based tiled code, N = 2200, run on Intel Xeon E5-2699 v3. Results show that the maximal performance
of serial ISS based tiled code is achieved when the outermost loop remains untiled (b1=1)

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 8 of 12

Table 3 Execution time (in seconds) of parallel ISS based tiled
code for some tile sizes, N = 5000, 32 threads used

No. b1 b2 b3 Time

1 1 96 8 7.8751

2 1 150 12 8.0246

3 1 96 12 8.1903

4 1 128 12 8.1952

5 1 128 16 8.2199

6 1 128 6 8.2816

7 1 150 16 8.2831

8 1 50 8 8.3449

9 1 128 8 8.3841

10 1 96 6 8.4597

...

143 2 6 300 10.4351

...

Execution time of the original code: 334.3200

7993 2 1 2 335.3765

7994 1 2 2 411.5945

...

8000 1 2 1 889.6510

Increasing the number of processors leads to increasing
the size of accumulated caches from different processors.
With the larger accumulated cache size, more or even
all of the working data can fit into caches and memory
access time reduces dramatically, which this considerably
improve code locality.
Obtained results show how much important is tiling

of the innermost loop. To our best knowledge, such a
tiling is not possible by means of optimizing compilers
based on affine transformations. For example, the-state-
of-the-art PluTo compiler (version 0.11.4) fails to tile the
innermost loop of the examined program. The interest-
ing fact is that the best code performance is achieved
when the outermost loop nest remains untiled, tiling only
the two innermost loops allows us to achieve better tiled
code locality for the platform chosen for carrying out

experiments. It is worth also noting that for the best tile
size, the value of b2 has to be roughly tenfold bigger than
that of b3. The explanations of those facts are given in the
previous section.
The results in Table 4, graphically presented in Fig. 2,

demonstrate that our generated tiled code is scalable,
i.e., increasing the number of threads increases code
speed-up.
We compared the performance of ISS based tiled code

with that of the manual parallel and cache efficient imple-
mentations [21, 22] of Nussinov’s RNA folding presented
in Listing 3.
Chang et al. [21] modified Nussinov’s recurrences

equations to simplify parallelization for multi-core archi-
tectures. RNA folding starts with initializing elements
S(i, i) of the main diagonal of Nussinov’s matrix S and
elements S(i, i + 1) of the diagonal just above the main
one, then elements of the remaining diagonals in the order
S(i, i+2) . . . S(i, i+N−1) are calculated. All parallel threads
synchronize before moving to the next diagonal.

Table 4 Execution time (in seconds) of the Nussinov RNA folding codes for N = 5000 and different numbers of threads used

Threads Original Chang Li PluTo [8 × 8 × 1] ISS [2 × 6 × 300] ISS [1 × 96 × 8]

1 334.32 382.46 81.54 238.66 221.11 54.66

2 198.12 37.96 164.66 120.90 30.83

4 100.17 20.19 90.16 67.74 18.29

8 53.07 13.62 46.01 35.29 10.67

16 28.74 10.50 25.84 19.06 8.22

32 16.55 9.75 13.94 10.65 7.82

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 9 of 12

Fig. 2 Speed-up of parallel codes for Nussinov’s matrix size of 5000 run on Intel Xeon E5-2699 v3. The horizontal coordinate represents the number
of threads, the vertical one shows the speed-up of the examined codes

Li et al. [22] suggested a cache efficient version of
Chang’s code by using the lower triangle of matrix S to
store the transpose of the computed values in the upper
triangle of S [22]. They store S[row][k] + S[k + 1][col] to
variable t (line 19 instead of Chang’s line 16) and addition-
ally store the value of _max to S[row][col] at the end of
the loop body (line 25). Values of S[k + 1][col] locate in
the same column but values of S[col][k + 1] locate in the
same row, for row ≤ k < col. Li’s modifications accelerate
rapidly code execution because reading values in a row is
more cache efficient than reading values in a column [22].
Results in Table 4 show that our tiled code implement-

ing Nussinov’s algorithm with the tile size [1 × 96 × 8]
outperforms the implementations of Chang and Li (see
Listing 3) for each examined number of threads (from 1 to
32) when N=5000.
This table includes also execution times of tiled code

generated with the PluTo compiler, which tiles the two

outermost loops2. The tile size [8×8×1] was chosen from
many different tile sizes, examined by us, as one expos-
ing the highest code performance. Those times are smaller
than those achieved with Chang’s code. The cache effi-
cient code proposed by Li et al. outperforms PluTo code
and our 3-D tiled code. Only tiling of the two innermost
loops allows us to achieve higher speed-up than that of
Li’s implementation. Speed-up of the examined programs
is depicted in Fig. 2.
Furthermore, we studied code performance for dif-

ferent problem sizes defined as an RNA strand length,
which is an important characteristic of Nussinov’s fold-
ing. We examined eight mRNAs of homo sapiens
mitogen-activated protein kinase (MAPk) from the NCBI
database3. Code execution times are presented in Table 5
while corresponding speed-up is depicted in Fig. 3. We
observe that our code demonstrates higher speed-up than
that of the reminding examined codes when the length

Table 5 Execution time (in seconds) of the Nussinov RNA folding codes for 32 threads and different lengths of RNA strands. mRNAs
acquired from the NCBI database

mRNA definition Lenght Serial time Chang Li PluTo [8 × 8 × 1] ISS [2 × 6 × 300] ISS [1 × 96 × 8]

MAPK1, trans. var. 1 5916 606,32 31,05 14,95 25,94 19,52 12,92

MAPK1, trans. var 2 1514 2,30 0,25 0,21 0,16 0,14 0,32

MAP2K5, trans. var 2 2355 15,57 0,92 0,48 0,82 0,51 0,72

MAP2K7, trans. var. 1 3525 102,32 4,46 2,74 3,51 2,63 2,53

MAP2K6, trans. var. 2 13577 6127,09 437,60 168,25 347,78 257,00 152,54

MAP3K2 10870 3033,73 229,53 86,30 171,54 121,44 70,68

MAP4K3, trans. var 1 4362 221,82 10,07 6,06 8,19 6,46 5,21

MAP4K4, trans. var. 4 7183 926,43 54,43 25,65 47,40 32,67 21,45

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 10 of 12

Fig. 3 Speed-up of parallel codes run on Intel Xeon E5-2699 v3, 32 threads used. The horizontal coordinate represents Nussinov’s matrix size, the
vertical one shows the speed-up of the studied codes. mRNAs acquired from the NCBI database

of RNA strands is bigger than 2500. For short sequences
(less than 2500) and 32 threads, related codes are faster
(from 0,1 to 0,3 second per one strand) than ours. How-
ever, for short sequences, computation time is less than
one second per one strand. The power of the presented
approach is noticeable for longer strands, for example,
our code for MAP2K6 variant 2 demonstrates 16 sec-
onds time benefit per one strand against cache efficient
Li’s code.
The performance improvement of the code generated

with the presented technique against that of Li’s code
for longer sequences is reached due to i) application of
a tiling technique, which allows for increasing parallel
code coarseness and locality, ii) choice of the optimal
original tile size in the defined search space. All those
factors together lead to significant improvement in code
performance.
Summing up, we may conclude that the efficiency of

cache reuse provided with ISS based tiled code becomes
a dominant factor in achieving high code performance
despite code complexity. Although our tiled code is more
complex than the examined ones, choosing the best orig-
inal tile size allows for achieving higher performance in
comparison with the related examined codes on themulti-
core machine used for experiments.

Conclusion
In this paper, we presented an approach which allows us
to choose in a given search space the best original tile
size and tile dimension for generation of serial and parallel
ISS based tiled codes implementing Nissinov’s RNA fold-
ing. Those codes are generated using the transitive closure
of dependence graphs – the transitive dependences are
applied to the statement instances of interest to produce

valid tiles. Such a technique is within the well-known
iteration space slicing framework.
Analyzing the constraints of a set representing valid tar-

get tiles, we make an assumption about good original tile
size and tile dimension and confirm this assumption with
carrying out experiments. The key step of this approach
is constructing parallel parametric code, where variables
defining tile size are parameters. The usage of parametric
code allows us to compile target code only one time that
significantly reduces search time.
The experimental study allows us to conclude that i)

tiling the two innermost loops is the best tiling scheme
for ISS based tiled code, i.e., the outermost loop has to be
untiled; ii) the size of the second dimension of an original
tile must be roughly tenfold bigger than the size of the
third one.
Our implementation of Nussinov’s algorithm improves

code locality and outperforms the serial original code by
a factor of 3.7. We demonstrated super-linear speed-up
of 112.9 for parallel code run with 32 threads. The tuned
tiled code is more cache efficient than the closely related
implementations of Li and Chang when the length of RNA
strands is bigger than 2500 for the studied multi-core
machine.
Under Nussinov’s algorithm conditions, the problem

of folding a nucleotide sequence into a structure with
minimal free energy becomes a simpler problem of find-
ing a structure with the maximum number of base
pairs [1]. Zuker et al. [23] refined Nussinov’s algorithm
by using a thermodynamic energy minimization model,
which produces more accurate results at the expense
of greater computational complexity, but code imple-
menting Zuker’s algorithm is affine. This allows us to
apply the approach presented in this paper to that

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 11 of 12

code. In future, we intend to apply our tiling strate-
gies to generate parallel code implementing Zuker’s
algorithm.
In future, we plan to engage heuristics and artificial

intelligence methods in the tile size selection technique to
reduce the search time of the best tile size. Furthermore,
we plan to adopt the presented approach for multi- and
many-core graphic cards using popular parallel processing
interfaces.

Endnotes
1 In paper [4], we demonstrate that tiled code perfor-

mance does not change based on strings themselves, but
it depends on the size of a string.

2Wonnacot et al. widely demonstrated the weakness of
tiling the two outermost loops for Nussinov’s algorithm in
paper [12].

3 https://www.ncbi.nlm.nih.gov/

Additional files

Additional file 1: Set R+(TILE_GT) ∩ TILE. Presented in the ISL format.
(PDF 4 kb)

Additional file 2: Construction of parametric code. Construction of
parallel parametric 3-D-tiled code implementing Nussinov’s algorithm
using two nonparameteric codes. (PDF 22 kb)

Abbreviations
AST: Abstract syntax tree; ATF: Affine transformation framework; ISCC: Integer
set counting calculator; ISS: Iteration space slicing; TSS: Tile size selection

Acknowledgements
Not applicable.

Funding
No specific funding was received for this study.

Availability of data andmaterials
Our compiler is available at the website http://traco.sourceforge.net.
Experimental results and source codes are available at the TRACO repository
https://sourceforge.net/p/traco/.

Authors’ contributions
MP proposed the main concept of the presented technique, implemented it
in the TRACO optimizing compiler, and carried out the experimental study. WB
checked the correctness of the presented technique, participated in its
implementation and the analysis of the results of the experimental study. Both
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 1 August 2017 Accepted: 2 January 2018

References
1. Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ. Algorithms for Loop

Matchings. SIAM J Appl Math. 1978;35(1):68–82.
2. Mullapudi RT, Bondhugula U. Tiling for dynamic scheduling. In:

Rajopadhye S, Verdoolaege S, editors. Proceedings of the 4th
International Workshop on Polyhedral Compilation Techniques
(IMPACT’14). Vienna: 2014. http://impact.gforge.inria.fr/impact2014/
papers/impact2014-mullapudi.pdf.

3. Iooss G, Rajopadhye S, Alias C, Zou Y. Mono-parametric Tiling is a
Polyhedral Transformation. [Research Report] RR-8802, INRIA Grenoble -
Rhône-Alpes; CNRS; 2015. p. 40. https://hal.inria.fr/hal-01219452/
document.

4. Palkowski M, Bielecki W. Parallel tiled nussinov rna folding loop nest
generated using both dependence graph transitive closure and loop
skewing. BMC Bioinformatics. 2017;18(1):290. https://doi.org/10.1186/
s12859-017-1707-8.

5. Pugh W, Rosser E. Iteration space slicing for locality. In: Gao GR, Pollock
LL, Cavazos J, Xiaoming L, editors. LCPC. Lecture Notes in Computer
Science, vol. 1863. La Jolla: Springer; 1999. p. 164–84.

6. Bondhugula U, Hartono A, Ramanujam J, Sadayappan P. A practical
automatic polyhedral parallelizer and locality optimizer. SIGPLAN Not.
2008;43(6):101–13. https://doi.org/10.1145/1379022.1375595.

7. Griebl M. Automatic Parallelization of Loop Programs for Distributed
Memory Architectures: University of Passau; 2004. Habilitation thesis.

8. Xue J. Loop Tiling for Parallelism. In: The Springer International Series in
Engineering and Computer Science, vol. 575. US: Springer; 2000. https://
books.google.pl/books?id=DPJNwR2SBF0C.

9. Hartono A, et al. PrimeTile: A Parametric Multi-Level Tiler for Imperfect
Loop Nests. In: ACM International Conference on Supercomputing (ICS).
New York: 2009.

10. Hartono A, Baskaran MM, Ramanujam J, Sadayappan P. Dyntile:
Parametric tiled loop generation for parallel execution on multicore
processors. In: 2010 IEEE International Symposium on Parallel Distributed
Processing (IPDPS); 2010. p. 1–12. https://doi.org/10.1109/IPDPS.2010.
5470459.

11. Baskaran MM, Hartono A, Tavarageri S, Henretty T, Ramanujam J,
Sadayappan P. Parameterized tiling revisited. In: Proceedings of the 8th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’10. New York: ACM; 2010. p. 200–9.

12. Wonnacott D, Jin T, Lake A. Automatic tiling of “mostly-tileable” loop
nests. In: IMPACT 2015: 5th International Workshop on Polyhedral
Compilation Techniques. Amsterdam: 2015. http://impact.gforge.inria.fr/
impact2015/papers/impact2015-wonnacott.pdf.

13. Pugh W, Wonnacott D. In: Banerjee U, Gelernter D, Nicolau A,
Padua D, editors. An exact method for analysis of value-based array data
dependences. Berlin, Heidelberg: Springer; 1994. p. 546–66.

14. Bielecki W, Palkowski M. Tiling arbitrarily nested loops by means of the
transitive closure of dependence graphs. Int J Appl Math Comput Sci
(AMCS). 2016;26(4):919–39.

15. Bielecki W, Kraska K, Klimek T. Using basis dependence distance vectors in
the modified floyd–warshall algorithm. J Comb Optim. 2015;30(2):253–75.

16. Grosser T, Verdoolaege S, Cohen A. Polyhedral ast generation is more
than scanning polyhedra. ACM Trans Program Lang Syst. 2015;37(4):
12–11250.

17. Yuki T, Renganarayanan L, Rajopadhye S, Anderson C, Eichenberger AE,
O’Brien K. Automatic creation of tile size selection models. In: Proceedings
of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’10. New York: ACM; 2010. p. 190–9.
https://doi.org/10.1145/1772954.1772982.

18. Palkowski M, Bielecki W. TRACO: source-to-source parallelizing compiler.
Comput Inform. 2016;35(6):1277–306.

19. Verdoolaege S. Counting affine calculator and applications. In: First
International Workshop on Polyhedral Compilation Techniques
(IMPACT’11). Charmonix; 2011. http://perso.ens-lyon.fr/christophe.alias/
impact2011/impact-05.pdf.

20. OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 4.5. 2015. http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf. Accessed 10 Jan 2018.

https://www.ncbi.nlm.nih.gov/
http://dx.doi.org/10.1186/s12859-018-2008-6
http://dx.doi.org/10.1186/s12859-018-2008-6
http://traco.sourceforge.net
https://sourceforge.net/p/traco/
http://impact.gforge.inria.fr/impact2014/papers/impact2014-mullapudi.pdf
http://impact.gforge.inria.fr/impact2014/papers/impact2014-mullapudi.pdf
https://hal.inria.fr/hal-01219452/document
https://hal.inria.fr/hal-01219452/document
https://doi.org/10.1186/s12859-017-1707-8
https://doi.org/10.1186/s12859-017-1707-8
https://doi.org/10.1145/1379022.1375595
https://books.google.pl/books?id=DPJNwR2SBF0C
https://books.google.pl/books?id=DPJNwR2SBF0C
https://doi.org/10.1109/IPDPS.2010.5470459
https://doi.org/10.1109/IPDPS.2010.5470459
http://impact.gforge.inria.fr/impact2015/papers/impact2015-wonnacott.pdf
http://impact.gforge.inria.fr/impact2015/papers/impact2015-wonnacott.pdf
https://doi.org/10.1145/1772954.1772982
http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-05.pdf
http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-05.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Palkowski and Bielecki BMC Bioinformatics (2018) 19:12 Page 12 of 12

21. Chang DJ, Kimmer C, Ouyang M. Accelerating the Nussinov RNA folding
algorithm with CUDA/GPU. In: The 10th IEEE International Symposium on
Signal Processing and Information Technology; 2010. p. 120–5. https://
doi.org/10.1109/ISSPIT.2010.5711746.

22. Li J, Ranka S, Sahni S. Multicore and GPU algorithms for Nussinov RNA
folding. BMC Bioinformatics. 2014;15(8):1. https://doi.org/10.1186/1471-
2105-15-S8-S1.

23. Zuker M, Stiegler P. Optimal computer folding of large rna sequences
using thermodynamics and auxiliary information. Nucleic Acids Res.
1981;9(1):133–48.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://doi.org/10.1109/ISSPIT.2010.5711746
https://doi.org/10.1109/ISSPIT.2010.5711746
https://doi.org/10.1186/1471-2105-15-S8-S1
https://doi.org/10.1186/1471-2105-15-S8-S1

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Brief introduction
	Generation of tiles for the Nussinov loop nest
	Assumption about good original tile size and tile dimension
	ISS based parametric tiled code construction

	Results and discussion
	Conclusion
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

