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diceR: an R package for class discovery
using an ensemble driven approach
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Abstract

Background: Given a set of features, researchers are often interested in partitioning objects into homogeneous
clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of
segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster
analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from
some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters
to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to
validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the
generalization and reproducibility of findings in new cohorts of patients.

Results: We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN:
https://CRAN.R-project.org/package=diceR

Conclusions: diceR is designed to provide a set of tools to guide researchers through a general cluster analysis
process that relies on minimizing subjective decision-making. Although developed in a biological context,
the tools in diceR are data-agnostic and thus can be applied in different contexts.
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Background
Cluster analysis has been used in cancer research to dis-
cover new classifications of disease and improve the un-
derstanding of underlying biological mechanisms. This
technique belongs to a set of unsupervised statistical
learning methods used to partition objects and/or features
into homogeneous groups or clusters [1]. It provides
insight, for example, to how co-regulated genes associate
with groupings of similar patients based on features of
their disease, such as prognostic risk or propensity to re-
spond to therapy. Many clustering algorithms are avail-
able, though none stand out as universally better than the
others. Different algorithms may be better suited for spe-
cific types of data, and in high dimensions it is difficult to
evaluate whether algorithm assumptions are met. Further-
more, researchers must set the number of clusters a priori
for most algorithms. Additionally, several clustering

solutions consistent with the data are possible, making the
ascertainment of a final result without considerable reli-
ance on additional extrinsic information difficult [2]. Many
internal clustering criteria have been proposed to evaluate
the output of cluster analysis. These generally consist of
measures of compactness (how similar are objects within
the same cluster), separation (how distinct are objects
from different clusters), and robustness (how reproducible
are the clusters in other datasets) [2–4]. External evalu-
ation can also be used to assess how resulting clusters and
groupings corroborate known biological features. Re-
searchers may choose to use internal clustering criteria
only for performance evaluation [5, 6] to keep the analysis
congruent with an unsupervised approach.
Ensemble methods are a popular class of algorithms

that have been used in both the supervised [7, 8] and
unsupervised learning setting. In the unsupervised set-
ting, cluster ensembles have been proposed as a class of
algorithms that can help mitigate many of the limitations
of traditional cluster analysis by combining clustering re-
sults from multiple “experts” [2, 9]. Ensembles are
achieved by generating different clusterings, using
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different subsets of the data, different algorithms, or dif-
ferent number of clusters, and combining the results
into a single consensus solution. Ensemble methods have
been shown to result in a more robust clustering that
converges to a true solution (if a unique one exists) as
the number of experts is increased [9–11]. The agnostic
approach of ensemble learning makes the technique use-
ful in many health applications, and non-health applica-
tions such as clustering communities in social network
analysis (Maglaras et al., 2016) and classifying credit
scores (Koutanaei et al., 2015).

Implementation
In this paper, we introduce diverse cluster ensemble in R
(diceR), a software package built in the R statistical lan-
guage (version 3.2.0+) that provides a suite of functions
and tools to implement a systematic framework for clus-
ter discovery using ensemble clustering. This framework
guides the user through the steps of generating diverse
clusterings, ensemble formation, and algorithm selection
to the arrival at a final consensus solution, most consist-
ent with the data. We developed a visual and analytical
validation framework, thereby integrating the assessment
of the final result into the process. Problems with scal-
ability to large datasets were solved by rewriting some of
the functions to run parallel on a computing cluster.
diceR is available on CRAN.

Results and discussion
The steps performed in the diceR framework are sum-
marized below and in Fig. 1; a more detailed example
can be found in the Additional file 1 and at https://aline
talhouk.github.io/diceR

Diverse cluster generation
The full process is incorporated into a single function
dice that wraps the different components described
herein. The input data consists of a data frame with
rows as samples and columns as features. Cluster
generation is obtained by applying a variety of clus-
tering algorithms (e.g. k-means, spectral clustering,
etc.), distance metrics (e.g. Euclidean, Manhattan,
etc.), and cluster sizes to the input data (please
consult the supplementary methods for the list of
algorithms and clustering distances currently imple-
mented). In addition to algorithms and distances im-
plemented within diceR, a simple framework is
available for the user to input the algorithm or dis-
tance of their choosing. Every algorithm is applied to
several subsets of the data, each consisting of 80% of
the original observations. As a result of subsampling,
not every sample is included in each clustering; the
data is “completed” using k-nearest neighbor and ma-
jority voting.

The output of the cluster generation step is an array of
clustering assignments computed across cluster sizes, al-
gorithms, and subsamples of the data (See “Clustering
Array” and “Completed Clustering Array” in Fig. 1). This
technique extends the consensus clustering method pro-
posed by Monti et al. [12] to include a consensus across
algorithms.

Consensus ensemble

A cluster ensemble is generated by combining results

from the cluster generation step. diceR implements

four methods for consensus formation: Majority

Voting [13], K-modes [14], Link-Based Cluster

Ensembles (LCE) [10], and Cluster-based Similarity

Partitioning Algorithm (CSPA) [9, 15] (See Fig. 1).

Fig. 1 Ensemble clustering pipeline implemented in diceR. The analytical
process is carried out by the main function of the package: dice

Chiu and Talhouk BMC Bioinformatics  (2018) 19:11 Page 2 of 4

https://alinetalhouk.github.io/diceR
https://alinetalhouk.github.io/diceR


Thus, the final ensemble is a consensus across sam-

ples and algorithms.

There is also an option to choose a consensus cluster
size using the proportion of ambiguous clustering (PAC)

metric [4]. The cluster size corresponding to the smal-
lest PAC value is selected, since low values of PAC indi-
cate greater clustering stability. Additionally, the user
can allocate different weights to the algorithms in the
ensemble, proportional to their internal evaluation index
scores.

Visualization and evaluation
For each clustering algorithm used, we calculate in-
ternal and external validity indices [5, 6]. diceR has
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Fig. 2 A comparative evaluation using diceR applied to three datasets. Using 10 clustering algorithms, we repeated the clustering of each data set, each
time using only 80% of the data. Four ensemble approaches were considered. The ensembles were constructed using all the individual clusterings and
were repeated by omitting the least performing algorithms (the trim version in the figure). Thirteen internal validity indices were used to rank order these
algorithms based on performance from top to bottom. Indices were standardized so their performance is relative to each other. The green/red annotation
tracks at the top indicate which indices should be maximized or minimized respectively. Ensemble methods were highlighted using a bold font
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visualization plots to compare clustering results be-
tween different cluster sizes. The user can monitor the
consensus cumulative distribution functions (CDFs),
relative change in area under the curve for CDFs, heat-
maps, and track how cluster assignments change in
relation to the requested cluster size.

A hypothesis testing mechanism based on the SigClust
method is also implemented in diceR to assess whether
clustering results are statistically significant [16]. This al-
lows quantification of the confidence in the partitions.
For example, we can test whether the number of statisti-
cally distinct clusters is equal to two or three, as op-
posed to just one (i.e. unimodal distribution no clusters).
In Fig. 2 we present a visualization of the results of a
comparative analysis.

Algorithm selection
Poor-performing algorithms can affect a cluster ensem-
ble’s performance, so one way to limit that is to include
only the top N performing algorithms in the ensemble
[17]. To this end, the internal validity indices for all al-
gorithms are computed (see Additional file 1 for full list
of indices). Then, rank aggregation is used to select a
subset of algorithms that perform well across all indices
[18]. The resulting subset of algorithms is selected for
inclusion in the cluster ensemble. Our “diverse” strategy
is not to impose diversity onto the ensemble, but to con-
sider a diverse set of algorithms and ultimately allow the
data to select which best performing algorithms to re-
tain. This step of the analysis continues to be an active
area of research and is subject to revision and
improvements.

Conclusions
The software we have developed provides an easy-to-use
interface for researchers of all fields to use for their clus-
ter analysis needs. More clustering algorithms will be
added to diceR as they become available.

Additional file

Additional file 1: A detailed tutorial and example of Cluster Analysis
using diceR. (PDF 326 kb)
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