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Abstract

Background: Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the
ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is
very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to
understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive
applicable plankton classification system with high accuracy for the increasing number of various imaging devices.
Literature shows that most plankton image classification systems were limited to only one specific imaging device
and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even
non-existent and this study is partly to fill this gap.

Results: Inspired by the analysis of literature and development of technology, we focused on the requirements of
practical application and proposed an automatic system for plankton image classification combining multiple view
features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of
plankton more completely and comprehensively, we combined general features with robust features, especially by
adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the
features into different types from multiple views and feed them to multiple classifiers instead of only one by
combining different kernel matrices computed from different types of features optimally via multiple kernel learning.
Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features
for satisfying different datasets from different imaging devices. We implemented our proposed classification system
on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental
results validated that our system outperforms state-of-the-art plankton image classification systems in terms of
accuracy and robustness.

Conclusions: This study demonstrated automatic plankton image classification system combining multiple view
features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using
three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features
better so that achieve a higher classification accuracy.
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Background
Plankton, including phytoplankton and zooplankton, are
the main source of food for organisms in the ocean and
form the base of marine food chain. As the fundamental
components of marine ecosystems, plankton is very sen-
sitive to environment changes, and its abundance plays
an important role on the ocean ecological balance. There-
fore, the study of plankton abundance and distribution is
crucial, in order to understand environment changes and
protect marine ecosystems.
In the early days, researchers investigated the distri-

bution and abundance of plankton with traditional tech-
niques, such as Niskin bottles, pumps and towed nets,
to collect the samples. And then, the classification and
counting were done manually by experts. These tradi-
tional methods for the study of plankton are so laborious
and time consuming that hindered the understanding
process of plankton.
To improve the efficiency, many imaging devices,

including in situ and in the lab, have been developed
for collecting plankton images, such as Video Plankton
Recorder (VPR) [1], Underwater Video Profiler (UVP) [2],
Shadowed Image Particle Profiling Evaluation Recorder
(SIPPER) [3], Zooplankton Visualization System (ZOO-
VIS) [4], Scripps Plankton Camera (SPC) [5], Imaging
FlowCytobot (IFCB) [6], In Situ Ichthyoplankton Imaging
System (ISIIS) [7], ZooScan [8], and so on. These imag-
ing devices are able to generate an enormous amount of
plankton images within a short time. However, if these
collected images are manually classified and counted,
there will be a daunting task. Therefore, automatic classifi-
cation systems of plankton images are required to address
the huge amounts of images [9].
Currently, some systems have been developed for plank-

ton image classification [10].

Imaging in situ Tang et al. [11] designed a recognition
system combining moment invariants and Fourier
descriptor with granulometric features using learn-
ing vector quantization neural network to classify
plankton images detected by VPR; then Hu and
Davis [12] improved the classification system with
co-occurrence matrices (COM) as the feature and a
Support Vector Machine (SVM) as the classifier. Luo
et al. [13, 14] presented a system to recognize under-
water plankton images from SIPPER, by combining
invariant moments and granulometric features with
some specific features (such as size, convex ratio,
transparency ratio, etc.), and using active learn-
ing in conjunction with SVM; and Tang et al. [15]
applied shape descriptors and a normalized mul-
tilevel dominant eigenvector estimation (NMDEE)
method to select a best feature set for binary
plankton image classification; then Zhao et al. [16]

improved the binary SIPPER plankton image clas-
sification using random subspace. Sosik and Olson
[17] developed an approach that relies on extrac-
tion of image features, including size, shape, sym-
metry, and texture characteristics, plus orientation
invariant moments, diffraction pattern sampling,
and co-occurrence matrix statistics, which are then
presented to a feature selection and SVM algorithm
for classification of images generated by IFCB. Bi
et al. [18] also developed a semi-automated approach
to analyze plankton taxa from images acquired by
ZOOVIS. Faillettaz et al. [19] post-processed the
computer-generated classification for images col-
lected by ISIIS using Random Forest (RF) obtained
with the ZooProcess and PkID toolchain [8] devel-
oped for ZooScan to describe plankton distribution
patterns.

Imaging in the lab ADIAC [20], which stands for Auto-
matic Diatom Identification And Classification,
integrated the shape and texture features with
Decision Tree (DT), Neural Network (NN), k Near-
est Neighbor (kNN) and ensemble learning meth-
ods for diatom recognition [21–23]; Dimitrovski
et al. [24] presented a hierarchical multi-label clas-
sification (HMC) system for diatom image clas-
sification evaluated on the ADIAC [20] database.
DiCANN [25] developed a machine learning sys-
tem for Dinoflagellate Categorisation by Artificial
Neural Network. Gorsky et al. [8] presented a
semi-automatic approach that entails automated
classification of images followed by manual vali-
dation within ZooScan integrated system. Bell and
Hopcroft [26] assessed ZooImage software with the
bundled six classifiers (LDA, RPT, kNN, LVQ, NN,
and RF) for the classification of zooplankton. Mosleh
et al. [27] developed a freshwater algae classification
system by using Artificial Neural Network (ANN)
with extracted shape and texture features. Santhi
et al. [28] identified algal from microscopic images
by applying ANN on extracted and reduced features
such as texture, shape, and object boundary. Verikas
et al. [29] exploited light and fluorescence micro-
scopic images to extract geometry, shape and texture
feature sets which were then selected and used in
SVM as well as RF classifiers to distinguish between
Prorocentrum minimum cells and other objects.

Analysis of the aforementioned methods shows the per-
formance of plankton image classification systems based
on applied features and classifiers, among which the
general features, such as size, invariant moments, co-
occurrence matrix, Fourier descriptor, etc., and the tradi-
tional classifiers, such as SVM, RF, ANN, etc., are most
commonly used respectively [8, 11–13, 17, 20, 25, 27, 29].
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However, these features usually suffer from robustness
shortage and cannot represent the biomorphic charac-
teristics of plankton well. Also the traditional classifiers
usually have not high prediction accuracy on different
datasets especially more than 20 categories so that they
are hard to be directly applied for ecological studies
[8, 18, 19]. Recently, with the development of computer
vision technologies, some image features (descriptors)
have been developed, such as Histograms of Oriented
Gradients (HOG), Scale-Invariant Feature Transform
(SIFT), Shape Context (SC), Local Binary Pattern (LBP),
etc., and they have been proven to be robust against occlu-
sion and clutter, also have a good performance on object
detection, recognition and classification [30]. Thus, we
think that it’s the time to apply these new robust image
descriptors to represent the characteristics of plankton for
better classification performance.
In addition, the morphological characteristics of plank-

ton can be described from different views with diverse
features, such as shape, gray, texture, etc. [17, 27].
However, directly concatenating all the features into
one that is fed to a single learner doesn’t guarantee
an optimum performance [31], and it may exacerbate
the “curse of dimensionality” [32]. Therefore, we con-
sider that multiple kernel learning (MKL), where dif-
ferent features are fed to different classifiers, might be
helpful and necessary to make better use of the infor-
mation and improve the plankton image classification
performance.
Furthermore, the literature of plankton image classifi-

cation shows that most methods are developed for the
specific imaging device and only address a relatively nar-
row taxonomic scope. Nevertheless, for the abundant
species in a wide taxonomic scope from phytoplankton to
zooplankton located in all over the world [33], it’s really
impossible to design one specific classification system for
each application.

In this paper, inspired by the analysis of literature and
development of technology, we focus on the requirements
of practical application and propose an automatic sys-
tem for plankton image classification combining multiple
view features via multiple kernel learning. On one thing,
in order to describe the biomorphic characteristics of
plankton more completely and comprehensively, we com-
bine the general features with the latest robust features,
especially by adding features like Inner-Distance Shape
Context (IDSC) for morphological representation. On the
other hand, we divide all the features into different types
from multiple views and feed them to multiple classifiers
instead of only one by combining different kernel matrices
computed from different types of features optimally via
multiple kernel learning. Moreover, we also apply feature
selection method to choose the optimal feature subsets
from redundant features for satisfying different datasets
from different imaging devices. We implement our pro-
posed classification system on three different datasets
across more than 20 categories from phytoplankton to
zooplankton. The experimental results validate that our
system outperforms state-of-the-art systems for plankton
image classification in terms of accuracy and robustness.

Methods
The automatic plankton image classification we proposed
consists of five parts as follows: 1) image pre-processing,
2) feature extraction, 3) feature selection, 4) multiple ker-
nel learning, and 5) evaluation. The framework is shown
in Fig. 1.

Image pre-processing
Images captured by (especially in situ) imaging devices
mostly suffer from noise (Fig. 2a). They may contain unin-
terested regions or unavoidable marine snow. To enhance
the image quality and highlight the image features, we
implement image pre-processing firstly to extract the

Fig. 1 The framework of our proposed plankton image classification system
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Fig. 2 An example of image pre-processing. a Original captured plankton image. b Binarization. c Denoising. d Extraction

plankton cells while reduce the noise such as marine snow
in our system.
The image pre-processing operation is the only part that

may differ depending on the dataset, because the images
acquired by different devices from different samples or
locations are usually different in terms of noise and qual-
ity. But the objective and result of this operation are the
same, that is, to extract the plankton cells with biomor-
phic characteristics from the original images. In our study,
we focused on three different datasets acquired by IFCB,
ZooScan, and ISIIS respectively, and designed the follow-
ing unified steps: 1) binarization: convert the gray scale
images to binary images (Fig. 2b) based on threshold
methods, 2) denoising: remove small connected regions
(i. e., less than 5 pixels) due to the priori that they might
not be plankton cells by morphological operations to
obtain the binary mask (Fig. 2c), and 3) extraction: extract
the plankton cells (Fig. 2d) from the original image using
the denoised binary mask.

Feature extraction
To obtain comprehensive characteristics of plankton, we
extract various types of features in our classification sys-
tem, including general features, which have been used
for plankton classification previously, and robust features
that are used extensively in object detection and recogni-
tion currently. The following will introduce our extracted
features.

Geometric and grayscale features
Geometric features include size and shape measurements,
such as area, circularity, elongation, convex rate, etc., and
grayscale features include sum, mean, standard deviation,
etc., and these features can describe the basic morpholog-
ical characteristics of plankton and have been used in the
previous study [17, 27, 29]. In our system, the geometric
and grayscale features we applied consist of 43 elements
represented by a 43-dimensiontal feature vector.

Texture features
Texture is one of the important characteristics used in
plankton identification [17, 27]. In our system, we applied
four method for texture feature extraction, including
Gabor filter, variogram function, Local Binary Pattern
(LBP), and Binary Gradient Contours (BGC).

Gabor filter Frequency and orientation representations
of Gabor filters, which are similar to those of human visual
system, are appropriate for texture representation [34]. In
the spatial domain, a 2D Gabor filter is a Gaussian kernel
function. The impulse response of these filters is created
by convoluting a Gaussian function

g(x, y) = 1
2πσ 2 e

[
− x2+y2

2σ2
+2π jF(x cos θ+y sin θ)

]
(1)

where θ represents the orientation, F represents the cen-
ter frequency, and σ is the standard deviation. Gabor filter
is an essentially convolution of original image

Q(x, y) = I(x, y) ∗ g(x, y) (2)

where I(x, y) is the original image, Q(x, y) is the Gabor
filter result. The mean value and standard deviation of
Gabor filter result can be used to describe the texture
feature

mean =
∑n−1

x=0
∑m−1

y=0 Q(x, y)
m × n

(3)

std =
√∑n−1

x=0
∑m−1

y=0
[
Q(x, y) − mean

]2
m × n

(4)

where m, n represent the size of image. A set of Gabor
filters with different frequencies and orientations will be
helpful for description of characteristics completely. In
our system, we use Gabor filters with 6 kinds of fre-
quencies and 8 kinds of orientations for plankton texture
representation as shown in Fig. 3. Therefore, we obtained



Zheng et al. BMC Bioinformatics 2017, 18(Suppl 16):570 Page 5 of 259

Fig. 3 The Gabor filters with different parameters

48mean values and standard deviation values to construct
a 96-dimentional feature vector.

Variogram function The variogram, which is the basic
function in geostatistics, is widely used for extraction of
texture characteristics. The mathematical expression of
variogram is

γ (h) = 1
2N(h)

N(h)∑
i=1

[I(x) − I(x + h)]2 (5)

where h is certain lag, N(h) is the number of experimen-
tal pairs, and I(x), I(x + h) are pixel values at x, x + h. In
our system, we applied variogram γ to describe texture
features.

Local binary pattern LBP is a classical texture descrip-
tor designed for classification and recognition, especially

face recognition [35]. The basic idea of LBP is that
two-dimensional surface textures can be described by
local spatial patterns and gray scale contrast. The origi-
nal LBP algorithm labels each pixel of image with 8-bit
binary codes called LBP labels, which are obtained by
the local structure (i.e., neighborhood) around the pixel.
The histogram of these LBP labels can be used as tex-
ture descriptor. In our study, we improved the original
LBP descriptor by segmenting the image into cells and
then concatenating all the cell-based histograms as shown
in Fig. 4, which can represent the part-based biomorphic
features well.

Binary gradient contours BGC [36] relies on comput-
ing the gradient between pairs of pixels all along a
closed path around the central pixel of a grayscale image
patch. The most frequently used paths are single-loop,
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Fig. 4 The LBP features

double-loop and triple-loop. And the binary gradient con-
tours of single-loop are expressed as

g1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(I7 − I0)
s(I6 − I7)
s(I5 − I6)
s(I4 − I5)
s(I3 − I4)
s(I2 − I3)
s(I1 − I2)
s(I0 − I1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where s(x)

=
{
1 x > 0
0 x < 0 , Ik indicates neighbor pixel values.

(6)

Then all grayscale patterns can be mapped to the binary
gradient contour value of single-loop by

BGC13×3 = wT
8 g1−1 wherewT

j =[
2j−1 2j−2 · · · 21 20

]
(7)

The texture is described by the histogram that quantify
the occurrence of BGC value in images. In our system, we
used the single-loop BGC descriptor.

Granulometric feature
Granulometry [37] is an approach to measure the size
distribution of grains in binary image. It describes the
particles range and distribution using a series of opening
operators with structuring elements of increasing size

B ◦ T = U {T + x : T + x ⊂ B} (8)
�λ(B) = B ◦ λT (9)

where B denotes binary image, �λ(B) denotes the result
binary image, T is structuring elements, ◦ means opening
operation and λ is the number of opening operation times.
The granulometric size distribution of B is given by

FB(λ) = 1 − v(�λ(B))

v(B)
(10)

where v(B) indicates the pixel number of grains. There-
fore, granulometry can represent the multiscale shape
feature of object. In our system, we used granulometry to
describe the shape feature of plankton with two different
setups: one is the size of elements increasing from 2 to
50 at interval of 4, and the other is the size of elements
increasing from 5 to 60 at interval of 5.

Local features
Local features refer to patterns or distinct structures
found in an image, such as points, edges, etc., and they
can describe local image structures while handle scale
changes, rotation as well as occlusion.

Histograms of oriented gradients HOG [38] counts
occurrences of gradient orientation in localized portions
of image. The main idea is that local object appearance
and shape within an image can be described by the distri-
bution of intensity gradients or edge directions, e.g., Fig. 5.
In our system, every image is processed into square and
resized to 256 × 256, then it is decomposed into 32 × 32
cells, and our HOG feature descriptor is constructed by
the concatenation of the histograms of gradient directions
of these cells.

Scale-Invariant feature transform SIFT [39] is a well-
known robust algorithm to detect and describe local
features of image against scale and rotation changes by
extracting keypoints (Fig. 6) and computing their descrip-
tors, which has been widely used for object recognition,
robotic mapping, video tracking, and so on. In image
classification, SIFT usually integrates with bag-of-words
(BoW) model to treat image features as words: first, use
SIFT to extract keypoints of all images in dataset; sec-
ond, divide all keypoints into groups by K-means clus-
tering with codewords as the centers of learned clusters;
then, the keypoints in an image can be mapped to a
certain codeword through the clustering and an image
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Fig. 5 The HOG features

can be represented by the n-bin histogram of the code-
words. In our system, we set the number of clusters to
100, and every image is described by a 100-dimensional
feature vector.

Inner-Distance shape context IDSC [40] is extended
from Shape Context (SC) [41] designed for shape repre-
sentation that describes the relative spatial distribution
(distance and orientation) of landmark points around fea-
ture points. Given n sample points P = {p1, · · · , pn} on
a shape, the shape context at point pi is defined as a his-
togram hi of the relative coordinates of the remaining n−1
points

hi(k) = #
{
q �= pi : (q − pi) ∈ bin(k)

}
(11)

where the bins uniformly divide the log-polar space. Shape
context can be applied to shape matching by calculating

the similarity between two shapes. The cost of matching
two points pi, qj is computed by

Cij = C(pi, qj) = 1
2

K∑
k=1

[
hi(k) − hj(k)

]2
hi(k) + hj(k)

(12)

The matching π should minimize the match cost H(π)

defined as

H(π) =
∑
i
C(pi, qπ(i)) (13)

Once the best matching is found, thematching costH(π)

is the similarity measurement between shapes, that is, the
shape distance. The shape context uses the Euclidean dis-
tance to measure the spatial relation between landmark
points, which may cause less discriminability for complex
shapes with articulations. The inner-distance, defined as

Fig. 6 The keypoints of SIFT features
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the length of the shortest path within the shape bound-
ary, is a natural way to solve this problem since it captures
the shape structure better than Euclidean distance. In
our system, we applied IDSC-based shape matching to
describe shape features of plankton as follows: first, pick
three images from each category of dataset and manu-
ally extract their shapes as templates; second, use IDSC to
match shape of every image with templates and compute
the shape distances between them; then, obtain the shape
distances as the feature vector for shape representation.

Feature selection
In machine learning, feature selection is an important
process of selecting the optimal features for classifica-
tion, because the redundant features can suppress the
performance of classifier. Besides, feature selection can
reduce training time and improve the efficiency, especially
for high-dimensional features. Thus, we applied wrapper
method [42] for feature selection to choose the optimal
features from aforementioned various high-dimensional
features for performance improvement. In our system, we
divided all features into ten types (Fig. 1), and we applied
feature selection on each type of features to choose the
optimal features respectively.

Multiple kernel learning
Multiple kernel learning (MKL) is a set of machine learn-
ing methods that use a predefined set of kernels and learn
an optimal linear or non-linear combination of multiple
kernels. It can be applied to select for an optimal kernel
and parameters, and combine different types of features.
Recently, MKL has received great attention and been used
in many recognition and classification applications, such
as visual object recognition [43] and hyperspectral image
classification [44]. MKL aims to learn a function of the
form

f (x) =
l∑

i=1
αiyifη

({
Km

(
xmi , xmj

))}M
m=1

)
+ b (14)

withM multiple kernels instead of a single one

Kη(xi, xj) = fη
({

Km
(
xmi , xmj

)}M
m=1

)
(15)

where fη is the combination function of kernels, and it can
be a linear or non-linear function.
According to the functional form of combination, the

existing MKL algorithms can be grouped into three basic
categories [31]: 1) linear combination methods, such as
SimpleMKL [45], GLMKL [46], 2) nonlinear combina-
tion methods, such as GMKL [47], NLMKL [48], and
3) data-dependent combination methods, such as LMKL
[49]. Gönen and Alpaydin [31] also performed experi-
ments on real datasets for comparison of existing MKL

algorithms and gave an overall comparison between algo-
rithms in terms of misclassification error. It concluded
that using multiple kernels is better than using a sin-
gle one and nonlinear or data-dependent combination
seem more promising. Based on their experiments and
our analysis, in our system, we chose NLMKL [48], a
nonlinear combination of kernels, as MKL method to
combine multiple extracted plankton features. NLMKL
is based on a polynomial combination of base kernels
shown as

Kη

(
xi, xj

) =
∑

k1+···+kp

η
k1
1 · · · ηkpp Kk1

1 · · ·Kkp
p (16)

We used NLMKL to combine three kernel functions,
Gaussian kernel, polynomial kernel, and linear kernel, on
each type of features (Fig. 1).

Evaluation
A confusion matrix (Table 1) is a table containing infor-
mation about actual and predicted classifications, so that
it can be used to evaluate the performance of classifi-
cation systems. Each column of confusion matrix rep-
resents the samples in a predicted class while each row
represents the samples in an actual class. And the diag-
onal of the matrix represents correct identifications of
samples. Several measures can be derived from a con-
fusion matrix, for instance, true positive rate (TPR, also
called recall), false negative rate (FNR), false positive
rate (FPR), true negative rate (TNR), positive predic-
tive value (PPV, also called precision). In our system,
we use Recall and Precision (actually 1 − Precision,
means error rate) to evaluate the performance of
classification

TPR(orRecallor R) =
∑

True positive∑
Condition positive

(17)

PPV (orPrecisionor P) =
∑

True positive∑
Predicted condition positive

(18)

where True positive is the number of samples correctly
predicted, and Condition positive is total number of actual
samples. And higher R with lower 1 − P will give better
classification performance. Then we use Fmeasure (higher)

Table 1 Confusion matrix

Predicted condition

Total population Prediction
positive

Prediction
negative

True
condition

Condition
positive

True positive
(TP)

False
negative (FN)

Condition
negative

False positive
(FP)

True
negative (TN)
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that combines precision and recall with harmonicmean to
evaluate the performance (better) of classification system

Fmeasure = 2 × P × R
P + R

(19)

Results
To illustrate our proposed plankton image classification
system, we perform three experiments on three publicly
available datasets collected by different imaging devices in
different locations with more than 20 categories covering
phytoplankton and zooplankton.

Datasets
WHOI dataset
This dataset was collected with IFCB [6] from Woods
Hole Harbor water. All sampling was done between
late fall and early spring in 2004 and 2005 [17] and
can be accessed at: http://onlinelibrary.wiley.com/doi/10.
4319/lom.2007.5.204/full. It contains 6600 images with
distribution across 22 categories (Fig. 7), and most cate-
gories are phytoplankton taxa at the genus level, among
which 16 categories are diatoms: Asterionellopsis spp.,
Chaetoceros spp., Cylindrotheca spp., Cerataulina spp.
plus the morphologically similar species of Dactyliosolen
such as D. fragilissimus, other species of Dactyliosolen
morphologically similar to D. blavyanus, Dinobryon spp.,

Ditylum spp., Euglena spp. plus other euglenoids,Guinar-
dia spp., Licmophora spp., Phaeocystis spp., Pleurosigma
spp., Pseudonitzschia spp., Rhizosolenia spp. and rare
cases of Proboscia spp., Skeletonema spp., Thalassiosira
spp. and similar centric diatoms; the remaining cate-
gories are mixtures of morphologically similar particles
and cell types: ciliates, detritus, dinoflagellates greater
than 20μm, nanoflagellates, other cells less than 20μm,
and other single-celled pennate diatoms. The images were
split between training and testing sets of equal size, and
each set contains 22 categories with 150 individual images
in each. Accordingly, in our experiments, we used the
training set for learning and the testing set to assess the
performance of the classification system.

ZooScan dataset
This dataset was collected by the ZooScan system (http://
www.zooscan.com) with a series of samples from the Bay
of Villefranche-sur-mer, France between 22 August 2007
and 8 October 2008 [8]. It contains 3771 zooplankton
images of 20 categories (Fig. 8), among which 14 cate-
gories are zooplankton: Limacina, Pteropoda, Penilia,
Oithona, Poecilostomatoida, other species of Copepoda,
Decapoda, Appendicularia, Thaliaca, Chaetognatha,
Radiolaria, Calycophorae, other species of Medusae,
and eggs of zooplankton; the remaining categories are

Fig. 7 Image examples from WHOI dataset

http://onlinelibrary.wiley.com/doi/10.4319/lom.2007.5.204/full
http://onlinelibrary.wiley.com/doi/10.4319/lom.2007.5.204/full
http://www.zooscan.com
http://www.zooscan.com
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Fig. 8 Image examples from ZooScan dataset

non-zooplankton: bubble, fiber, aggregates, dark aggre-
gates, pseudoplankton, and images with bad focus. The
number of images in each category is different as shown
in Fig. 9. In our experiments on this dataset, we used
2-fold cross validation to evaluate the performance of the
classification system.

Kaggle dataset
This dataset was collected between May-June 2014 in the
Straits of Florida using ISIIS [7], and was first published on
Kaggle (https://www.kaggle.com/c/datasciencebowl) with
data provided by the Hatfield Marine Science Center at
Oregon State University. It consists of 121 categories rang-
ing from the smallest single-celled protists to copepods,
larval fish, and larger jellies. In our experiments, we chose
38 categories (Fig. 10) with more than 100 individual
images in each (Fig. 11) to construct a new dataset, among
which 35 categories are plankton and 3 categories are non-
plankton including atifacts, atifacts edge and fecal pellet.

The constructed dataset contains 28748 images, and we
used 5-fold cross validation to evaluate the performance
of the classification system.

Experiments
We designed three experiments on above three datasets
for evaluation of our classification system: first, we built
the baseline system for benchmarking state-of-the-art
plankton image classification systems; then, we used SVM
with three kernels to compare our extracted features with
the baseline; at last, we applied NLMKL on our extracted
features to compare our final system with SVM system.

Baseline
To illustrate the performance of our proposed system, we
should first build a baseline system to benchmark state-of-
the-art plankton image classification systems. The base-
line system is built as follows: 1) feature extraction: extract
the 210 features used by Sosik and Olson [17] and the

https://www.kaggle.com/c/datasciencebowl
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Fig. 9 The number of images per category in ZooScan dataset

Fig. 10 Image examples from Kaggle dataset

Fig. 11 The number of images per category in Kaggle dataset
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53 features used in ZooScan system [8] to construct a
263-dimensional feature vector, 2) feature selection: apply
the feature selection algorithm used in [17] to choose
optimal features while remove redundant features and
obtain 99, 80, and 100 dimensions of features for WHOI,
ZooScan, and Kaggle datasets respectively, and 3) classi-
fier: use SVM with Gaussian kernel to train the classifier
and select the optimalC and gamma by searching over the
grid of appropriate parameters.
The classification results of baseline system on three

datasets are listed in Table 2 and the confusion matrices
are shown in Fig. 12. It can be seen that the best classifica-
tion performance of three datasets are 88.27% Recall with
11.63% 1−Precision, 80.6% Recallwith 16.3% 1−Precision,
and 75.36% Recall with 21.49% 1 − Precision, respec-
tively. The performances on WHOI dataset and ZooScan
dataset are a little better than that of Sosik and Olson
[17] with 88% overall accuracy and ZooScan system [8] of
78% Recall with 19% 1− Precision. Obviously, the system,
which combines their methods, has better performance.
Therefore, this baseline can be used as the benchmark for
performance evaluation of our proposed system.

Comparison of features
This experiment is designed for performance evaluation
of our extracted features, and it is implemented as follows:
1) feature extraction: extract all the features presented in
“Feature extraction” section, 2) feature grouping: group all
the features into 10 types that are geometric and grayscale
features, Gabor features, variogram features, LBP fea-
tures, BGC features, granulometry1 features, granulom-
etry2 features, SIFT features, HOG features, and IDSC
features, 3) feature selection: employ feature selection
method presented in “Feature selection” section on each
type of features separately and concatenate the output fea-
tures to obtain 139, 148, and 233 dimensions of features
for WHOI, ZooScan, and Kaggle datasets respectively,
and 4) classifiers: use SVM with Gaussian, polynomial,
and linear kernels to train the classifiers.
The experimental results on three datasets are listed in

Table 3 and the confusion matrices are shown in Fig. 13. It
can be seen that the best classification performance with
highest Fmeasure on WHOI dataset is 89.57% Recall with
10.3% 1−Precision (Gaussian kernel and C = 100), which
provides 1.3 percentage points better Recall than baseline,
and the best classification performance on ZooScan and

Table 2 The classification results of the baseline system

WHOI dataset ZooScan dataset Kaggle dataset

R 88.27% 80.6% 75.36%

1 − P 11.63% 16.3% 21.49%

Fmeasure 0.883 0.821 0.769

Kaggle datasets are 85.39% Recall with 13.2% 1−Precision
and 82.41% Recall with 16.33% 1 − Precision respectively
(Gaussian kernel and C = 10), which provide 4.79 and
7.05 percentage points better Recall than baseline. Con-
sequently, the features we extracted are able to show
more complete description of plankton characteristics
and improve the performance of classification.

Comparison of systems
This experiment is designed for performance evaluation
of our proposed system, and it is implemented as follows:
1) feature extraction, 2) feature grouping, and 3) feature
selection are the same as the “Comparison of features”
experiment, and 4) classifiers: use NLMKL to combine
various types of features with one kind of kernel and three
kinds of kernel to train the classifiers respectively.
The experimental results on three datasets are listed in

Table 4 (one kind of kernel) and Table 5 (three kinds of
kernel), and the confusionmatrices are shown in Fig. 14. It
can be seen that the best classification performance with
highest Fmeasure ofMKL system with one kind of kernel on
three datasets are 89.67% Recall with 10.16% 1−Precision
(polynomial kernel and C = 10), 86.6% Recall with 9.92%
1 − Precision (Gaussian kernel and C = 100), and 82.6%
Recall with 15.62% 1 − Precision (polynomial kernel and
C = 10), which provide 0.1, 1.21, and 0.19 percentage
points better Recall than SVM system, while the best clas-
sification performance of MKL system with three kinds
of kernel on three datasets are 90% Recall with 9.91%
1− Precision, 88.34% Recall with 9.58% 1− Precision, and
83.67% Recall with 14.49% 1 − Precision, which provide
0.33, 1.74, and 1.07 percentage points better Recall than
the MKL system with one kind of kernel as well as 1.73,
7.74, and 8.31 percentage points better Recall than base-
line, respectively. The results validate that MKL is more
effective than SVM for classification, and combining more
kinds of kernel can provide better performance than only
one kind of kernel.

Discussion
An automated plankton classification system for abun-
dance estimation of different plankton categories is pre-
sented in our work. The goal of our work points to develop
a system that can be widely used for classification of
phytoplankton and zooplankton with higher accuracy for
ecological studies. With this aim, we proposed an auto-
matic system for plankton classification combining vari-
ous types of features from different views using MKL, so
that it can make better use of information from multiple
views and improve the classification performance in terms
of accuracy.
The current study of plankton image classification sys-

tem mainly focuses on one specific imaging device with
several categories of phytoplankton or zooplankton, so
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Fig. 12 Confusion matrices of the baseline system. aWHOI dataset. b ZooScan dataset. c Kaggle dataset

Table 3 The classification results of multiple view features using SVM

Datasets C
Gaussian Polynomial Linear

R 1 − P Fmeasure R 1 − P Fmeasure R 1 − P Fmeasure

WHOI 1 84% 15.43% 0.843 88.97% 10.95% 0.89 86.45% 13.41% 0.865

10 88.94% 11% 0.89 89.45% 10.47% 0.895 88.12% 11.78% 0.882

100 89.57% 10.3% 0.896 88.42% 11.46% 0.885 86.33% 13.59% 0.864

ZooScan 1 79.65% 16.06% 0.817 82.45% 15.99% 0.832 79.91% 18.14% 0.809

10 85.39% 13.2% 0.861 84.14% 15.22% 0.845 85.52% 16.01% 0.847

100 84.87% 13.62% 0.856 83.04% 16.02% 0.835 82.27% 18.23% 0.82

Kaggle 1 77.26% 18.96% 0.791 77.48% 19.6% 0.789 71.32% 25.09% 0.731

10 82.41% 16.33% 0.83 80.7% 18.08% 0.813 78.44% 20.63% 0.789

100 82.09% 18.89% 0.816 79.01% 19.73% 0.796 78.1% 22.05% 0.78

The entries in boldface indicate the best classification results with the highest Fmeasure
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Fig. 13 Confusion matrices of multiple view features using SVM. aWHOI dataset. b ZooScan dataset. c Kaggle dataset

Table 4 The classification results of multiple view features using MKL with one kind of kernel

Datasets C
Gaussian Polynomial Linear

R 1 − P Fmeasure R 1 − P Fmeasure R 1 − P Fmeasure

WHOI 1 88.48% 11.35% 0.886 89.58% 10.21% 0.897 88.55% 11.18% 0.887

10 88.75% 11.04% 0.889 89.67% 10.16% 0.898 89.12% 10.65% 0.892

100 88.58% 11.2% 0.887 89.39% 10.44% 0.895 88.42% 11.41% 0.885

ZooScan 1 83.32% 11.74% 0.857 83.94% 12.61% 0.856 81.78% 15.53% 0.831

10 86.26% 10.01% 0.881 86.74% 11.76% 0.875 83.98% 15.28% 0.843

100 86.6% 9.92% 0.883 86.79% 11.63% 0.876 84.86% 19.13% 0.828

Kaggle 1 78.46% 17.41% 0.805 80.39% 16.76% 0.818 78.09% 19.24% 0.794

10 82.95% 16.42% 0.833 82.6% 15.62% 0.835 81.32% 17.66% 0.818

100 82.97% 16.84% 0.831 82.11% 15.82% 0.831 79.68% 19.1% 0.803

The entries in boldface indicate the best classification results with the highest Fmeasure
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Table 5 The classification results of multiple view features using
MKL with three kinds of kernel

Datasets C
Gaussian+Polynomial+Linear

R 1 − P Fmeasure

WHOI 1 89.64% 10.17% 0.897

10 89.88% 10.03% 0.899

100 90% 9.91% 0.9

ZooScan 1 85.42% 11.38% 0.87

10 88.34% 9.58% 0.894

100 88.31% 9.81% 0.892

Kaggle 1 80.3% 16.12% 0.82

10 83.67% 14.49% 0.846

100 83.46% 14.88% 0.843

The entries in boldface indicate the best classification results with the highest
Fmeasure

that it’s hard to have both high accuracy and wide suit-
ability. In order to broaden the application scope and
improve the performance of plankton image classification
system, we developed the system with threefold contribu-
tions: 1) we extracted features from all conceivable views
to describe plankton morphological characteristics more
completely and comprehensively, 2) we usedMKL to com-
bine different views of features for better “understanding”
of extracted information, and 3) we combined linear and
nonlinear kernels for MKL to obtain better performance
than state-of-the-art systems.
In order to evaluate the performance of our proposed

system for plankton image classification, three differ-
ent datasets were collected and constructed while three
experiments were designed and implemented in our study.
The three datasets, named WHOI, ZooScan and Kaggle,
were collected by three different imaging devices, i.e.,
IFCB, ZooScan, and ISIIS, respectively. The images were
sampled in different locations and cover wide categories
more than 20 from phytoplankton to zooplankton. The
baseline experiment was designed and implemented on
the three datasets with state-of-the-art plankton image
classification methods to give a benchmark for evalua-
tion. The comparison experiments of features and systems
were designed to validate the effectiveness and robustness
of features and systems respectively. And the experimen-
tal results show that our multiple view features performs
better than state-of-the-art and our MKL system comb-
ing these multiple view features performs best in all the
experiments.
Tables 2 and 3 illustrate the accuracy of the first and sec-

ond experiments. In comparison, it can be seen that our
proposed multiple view features are helpful to improve
the plankton classification accuracy, since that the best
classification performance of Recall on three datasets
increase by 1.3% (WHOI), 4.79% (ZooScan), and 7.05%

(Kaggle), and meanwhile the corresponding error rates
drop by 1.33% (WHOI), 3.1% (ZooScan), and 5.16%
(Kaggle), respectively. And by comparing the confusion
matrices shown in Figs. 12 and 13, we can find that the
classification accuracy of 14 categories in WHOI dataset,
16 categories in ZooScan dataset, and 36 categories in
Kaggle dataset are improved in the second experiment.
These results show that our proposed multiple view fea-
tures can describe the plankton morphological character-
istics more completely and comprehensively, for example,
as shown in Fig. 12, 58 images of “Appendicularia” cat-
egory in ZooScan dataset are incorrectly classified as
“Gelatinous_sipho_cloche” in the baseline experiment,
but this misclassified number drops from 58 to 10 in
the second experiment using our multiple view features
shown in Fig. 13.
With the same multiple view features, the second and

third experiments use different machine learning strate-
gies for classification. By comparing Table 3 with Table 4,
we can observe that MKL provides better performance
than SVM. NLMKL with one kind of kernel in the third
experiment provides 0.1 (WHOI), 1.21 (ZooScan), and
0.19 (Kaggle) percentage points better Recall than SVM,
and meanwhile the corresponding error rates drop by
0.14% (WHOI), 3.28% (ZooScan), and 0.71% (Kaggle),
respectively. And by comparing the confusion matrices
shown in Figs. 13 and 14, there are 11 categories inWHOI
dataset, all 20 categories in ZooScan dataset, and 21 cat-
egories in Kaggle dataset having higher accuracy in the
third experiment. By comparing Table 4 with Table 5,
we can find that MKL with more kernels performs bet-
ter than only one. In other words, MKL, which optimally
combines different kernel matrices computed from mul-
tiple types of features with multiple kernel functions, can
make better use of information of each type of features
and improve the classification performance significantly.
Not surprisingly, MKL has been proven to be a useful
tool for feature combination to enhance the discrimina-
tion power of classifiers, for example, Althloothi et al. [50]
improved the performance of human activity recognition
by combining two sets of features using MKL, and Luo
et al. [51] proved the effectiveness of MKL for feature
combination.
Our overall results compare favorably with previous

results. Our proposed plankton image classification sys-
tem has a classification performance of 90% Recall on
WHOI dataset, 88.34% Recall on ZooScan dataset, and
83.67% Recall on Kaggle dataset, respectively, and mean-
while the corresponding error rates have the similar
degree of decline. It is effective for situations like these
three datasets. By comparing the confusion matrices
shown in Figs. 12 and 14, it can be seen that most cat-
egories of the three datasets have higher accuracy using
our system than baseline with state-of-the-art systems.
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Fig. 14 Confusion matrices of multiple view features using MKL with one kind of kernel. aWHOI dataset. b ZooScan dataset. c Kaggle dataset

Based on these comparisons, we can conclude that mul-
tiple view features combination using MKL enhances the
performance of classification and accommodates a wide
variety of plankton categories while gives significantly
better accuracy.
There is one important issue that we should discuss in

this paper: deep learning for plankton image classification.
Deep learning [52], also known as deep neural network,
has been drawn more and more attention these years
because of its dramatically performance on large-scale
visual recognition and classification tasks. It attempts to
model high level abstractions in data in order to learn
representations of data end-to-end. This technology has
also been used in plankton image classification recently
[53–55]. However, currently, deep learning can perform

good only when fed with enough human labeled data.
That’s why it is strongly related to the word “large-scale”.
With the development of in situ underwater microscopy
imaging technology, it’s easy to collect thousands and
thousands of plankton images in a short time (such as
one day), but it’s still very hard to label all of them by
experts because it needs very professional knowledge to
identify them. Therefore, it would be very useful to build
an end-to-end learning system with very less labeled data,
which is also an important future work of deep learn-
ing field. The system proposed in this paper doesn’t need
large-scale data and performs good on classification for
more than 20 categories (but less than 50 categories),
which is more suitable for the current actual applications
of ecological studies.
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Conclusions
In this paper, we propose an automatic plankton image
classification system combining multiple view features
using multiple kernel learning. In our system, multiple
view features, including general features and robust fea-
tures, are extracted for better describing the morpho-
logical characteristics of plankton. And different types
of features are combined via NLMKL using three ker-
nel functions (linear, polynomial and Gaussian kernel
functions) in order to use information of features better
and achieve a higher classification rate. Our experimental
results on three different datasets show the significance of
the extracted multiple view features andMKL in plankton
image classification. The main limitation of our system
is lack of ability to work well with terribly imbalanced
datasets, and we wish to leave this part in our future work.
To encourage future work, we make all the source code

and datasets available in the GitHub repository: https://
github.com/zhenglab/PlanktonMKL.
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