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Abstract

Background: The next generation sequencing (NGS) techniques have been around for over a decade. Many of their
fundamental applications rely on the ability to compute good genome assemblies. As the technology evolves, the
assembly algorithms and tools have to continuously adjust and improve. The currently dominant technology of
Illumina produces reads that are too short to bridge many repeats, setting limits on what can be successfully
assembled. The emerging SMRT (Single Molecule, Real-Time) sequencing technique from Pacific Biosciences
produces uniform coverage and long reads of length up to sixty thousand base pairs, enabling significantly better
genome assemblies. However, SMRT reads are much more expensive and have a much higher error rate than
Illumina’s – around 10-15% – mostly due to indels. New algorithms are very much needed to take advantage of the
long reads while mitigating the effect of high error rate and lowering the required coverage.

Methods: An essential step in assembling SMRT data is the detection of alignments, or overlaps, between reads. High
error rate and very long reads make this a much more challenging problem than for Illumina data. We present a new
pairwise read aligner, or overlapper, HISEA (Hierarchical SEed Aligner) for SMRT sequencing data. HISEA uses a novel
two-step k-mer search, employing consistent clustering, k-mer filtering, and read alignment extension.

Results: We compare HISEA against several state-of-the-art programs – BLASR, DALIGNER, GraphMap, MHAP, and
Minimap – on real datasets from five organisms. We compare their sensitivity, precision, specificity, F1-score, as well as
time and memory usage. We also introduce a new, more precise, evaluation method. Finally, we compare the two
leading programs, MHAP and HISEA, for their genome assembly performance in the Canu pipeline.

Discussion: Our algorithm has the best alignment detection sensitivity among all programs for SMRT data,
significantly higher than the current best. The currently best assembler for SMRT data is the Canu program which uses
the MHAP aligner in its pipeline. We have incorporated our new HISEA aligner in the Canu pipeline and benchmarked
it against the best pipeline for multiple datasets at two relevant coverage levels: 30x and 50x. Our assemblies are
better than those using MHAP for both coverage levels. Moreover, Canu+HISEA assemblies for 30x coverage are
comparable with Canu+MHAP assemblies for 50x coverage, while being faster and cheaper.

Conclusions: The HISEA algorithm produces alignments with highest sensitivity compared with the current
state-of-the-art algorithms. Integrated in the Canu pipeline, currently the best for assembling PacBio data, it produces
better assemblies than Canu+MHAP.
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Background
De novo genome assembly is the problem of reconstruct-
ing the entire genome of an organism from sequenc-
ing reads without using a reference genome. The high
throughput NGS technologies produce short reads, of
few hundred base pairs, which are much smaller than
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most of the repeated regions in microbial and eukary-
otic genomes. The repeated regions that are longer than
read length pose serious challenges to the genome assem-
bly algorithm. This imbalance of read versus repeat length
increases the complexity and processing requirements of
the assembly algorithm. This is the reason many assem-
blies using NGS data are fragmented and incomplete [1],
and often not useful for downstream analysis.
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The advent of SMRT sequencing technology from
Pacific Biosciences has encouraged researchers to look
into the genome assembly problem from a fresh per-
spective. The long reads spanning across many repeated
regions enable the production of significantly better
assemblies. The SMRT technology is also less biased [2]
than previous NGS technologies. However, two important
drawbacks of SMRT sequencing are high error rate, of 10-
15%, and high cost. For comparison, the dominant tech-
nology of Illumina has up to 100 times lower error rate
and is over 100 times cheaper in terms of cost per Gbp [3].
On the positive side, it has been found that the errors are
random and it is possible to correct them algorithmically
[4] by increasing the coverage of sequencing data. Thus,
SMRT sequencingmakes it possible to producemore con-
tinuous and higher quality genome assemblies than what
has been achieved with previous technologies.
In most of the published SMRT genome assembly

pipelines [5–7], a critical step is finding all-vs-all raw read
alignments. The outcome of this step can have a large
impact on the processing of subsequent steps and the
overall outcome of the assembly pipeline. It is therefore
essential to use a highly sensitive aligner.We present a new
long read aligner, HISEA, which is much more sensitive
than all existing ones. We compared the sensitivity of our
aligner with BLASR [8], DALIGNER [9], GraphMap [10],
MHAP [11], and MiniMap [5]. Note that we use the terms
“alignment” and “overlap” interchangeably.
The comparatively high cost of SMRT sequencing has

prevented its widespread use. It is very expensive to
sequence large genomes with high coverage using SMRT
technology, therefore it is still beyond the reach of many
research labs. Recently, Koren et al. [6] showed that their
Canu assembler can generate assemblies using only 20x
coverage that are comparable with 150x coverage hybrid
assemblies generated with SPAdes [12]. It has also shown
that it can achieve maximum assembly continuity around
50x coverage. As indicated by Koren et al. [6], Canu
pipeline is currently the best. It uses the MHAP aligner
[11] and therefore we incorporated HISEA in this assem-
bly pipeline, in place of MHAP. We have compared the
two pipelines, Canu+MHAP and Canu+HISEA for five
organisms, E.coli, S.cerevisiae, C.elegans, A.thaliana, and
D.melanogaster at two coverage levels: 30x and 50x. The
pipeline using HISEA is shown to produce better assem-
blies for both coverage levels. Moreover, the Canu+HISEA
assemblies for 30x coverage are comparable with those of
Canu+MHAP for 50x coverage.
Our HISEA software is implemented in C++ and

OpenMP and its source code is freely available. It can
be used as a stand alone aligner or as an all-vs-all read
aligner in other assembly pipelines. We have tested it in
the Canu [6] assembly pipeline and the modified pipeline
source code is also freely available for download.

Methods
The HISEA algorithm
Let � = {A,C,G,T} be the DNA alphabet; �∗ is the set
of all DNA sequences, that is, all finite strings over �. Our
setup assumes two sets of reads: the set of reference reads,
R = {r1, r2, ..., rn} ⊂ �∗, and the set of query reads, Q =
{q1, q2, ..., qm} ⊂ �∗. A k-mer is a string of length k over�.

Storing reads and hashing the reference set
Each read ri is encoded using 2 bits per nucleotide and
stored as an array of unsigned 64-bit integers, that is, as
blocks of 32 nucleotides. The reverse complement of r is
stored in the same array and it starts at the next unsigned
64-bit integer. A precomputed 16-bit reverse complement
array of all possible values is used to quickly compute the
reverse complement of reads.
All k-mers that occur in reads of R are quickly com-

puted using bitwise operations and bit masking and
stored in a hash table using double hashing tech-
nique. In the hash table, each entry stores the value
of the k-mer and a pointer to another hash table
which stores the set of read ids rj, and positions within
rj, where this k-mer occurs. Any k-mer which occurs
more than MAX_KMER_COUNT times is ignored. The
MAX_KMER_COUNT is a user configurable parameter
with a default value of 10000. Similarly, k-mers appearing
in low count can be ignored. These k-mers do not impact
the alignment and ignoring them speeds up the alignment
process. The default value for low count k-mers is 2 and it
can be controlled by a user configurable parameter.

Searching the query set
The k-mers occurring in the query read set Q are not
stored; they are quickly computed as needed using bit
operations. Then they are efficiently searched for in the
hash table built for the set R. Every time a matching k-mer
is found in the hash table, the corresponding reference
read id and its position is recorded. Note that the reads in
the query set are only searched in forward direction.

Clustering and filtering
For a given query q ∈ Q and a reference read r ∈ R,
the reference read direction and all matching k-mer posi-
tions are stored in the previous step. For a pair of reads
(q, r), further processing is considered either in forward or
reverse direction of r. The decision is taken based on the
read direction of r which has higher number of matching
k-mers.
The next step is to perform clustering of all thematching

k-mers. Clustering is an essential step in identifying the
best alignment out of multiple possible alignments. Our
algorithm reports only the best alignment between a pair
of reads. Figure 1 shows an example of all k-mer matches
between read q and read r before and after clustering. The
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Fig. 1 All k-mer matches between reads q and r before (a) and after (b) clustering

example shown here is one simple case; in reality many
complex cases are possible where clustering is essential.
The initial matches can have contradictory information,
such as the ones in Fig. 1a, and the clustering phase
involves collecting together consistent matches. A consis-
tent set of k-mer matches is defined as a set of all k-mer
matches arranged in ascending order of their positions
and are equidistant from neighboring k-mer matches
within defined threshold. The threshold is governed by a
global parameter maxShift. The parameter maxShift is a
user configurable parameter that accommodates the indel
errors during k-mer matching, clustering and extension
algorithms. The default value of this parameter has been
experimentally determined to be 0.2 (or 20%). Figure 1b
shows the set of k-mers as divided into three consistent
groups. It can be seen from the diagram that the right-
most cluster of k-mers is expected to produce the best
alignment.
Algorithm 2.1 gives the details of the clustering

algorithm. The input to the algorithm is an array V which
contains all k-mer matches for a pair of reads (q, r). The
input k-mer matches in V are sorted beforehand, first by
query read positions and then by reference read positions.
If the clustering algorithm fails to produce any meaning-
ful clusters, we reverse the sort order i.e. first sort by
reference read positions and then by query read posi-
tions and retry the algorithm. The algorithm uses two
global parameters, kmerSize and maxShift. The parame-
ter kmerSize is the size of the k-mers used for the initial
hashing. The parameter maxShift is defined previously.
The output of the clustering algorithm is a set of matches,
ClusterArray, segregated in groups such that each group
has a consistent set of k-mers. Note that the first two
values in ClusterArray store the left and right k-mer posi-
tions in V for that cluster. The third and fourth values
are the number of matching bps and k-mer hit counts
respectively.
From the output of Algorithm 2.1, the cluster with

the maximum number of matching base pairs is selected
for further processing. The expected number of k-mer
matches is estimated with the help of k-mer bounds in
read q and read r; see Fig. 2. The leftmost and rightmost
query k-mers start and end at positions qL and qR,
respectively. Similarly, the corresponding positions in the

reference read are rL and rR. The alignment length is
L = rR + querySize − qR. The number of k-mer hits
in the overlapping region is approximated as a binomial
distribution with probability p = (1 − e)2k and L trials.
Overlaps that have fewer k-mer matches than three stan-
dard deviations below themean, that is, less thanμ−3σ =
Lp − 3

√
Lp(1 − p), are eliminated as having too low sim-

ilarity. This procedure is employed several times during
different steps of the algorithm and will be referred to as
the μ − 3σ criterion.

Algorithm 2.1: CLUSTERKMERS(V )

global kmerSize,maxShift
local k ← 0, j ← 0,ClusterArray ← (0, 0, kmerSize, 1)
local found ← false , refDiff ← 0, queryDiff ← 0
for k ← 1 to V .size

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

found ← false
for j ← 0 to ClusterArray.size

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

refDiff ← (V [k] .r − V
[
ClusterArray[ j] [1]

]
.r)

if (refDiff < 0)
then continue

queryDiff ← (V [k] .q − V
[
ClusterArray[ j] [0]

]
.q)

if (queryDiff < 0)
then continue

if (refDiff and queryDiff within maxShift limits)

then
{
found ← true
Update values in ClusterArray[ j]

if (found = false )

then

⎧
⎨

⎩

comment: Add new cluster in ClusterArray

ClusterArray[ j + 1]← (k, k, kmerSize, 1)
return (ClusterArray)

Computing alignments
The alignment between the two given reads starts as the
shortest interval that contains all k-mer matches, shown
in dark grey in Fig. 2. This region is extended using a
smaller seed, that is, using k′-mer matches, for some
k′ < k. The default values are k = 16 and k′ = 12.
These values have been determined experimentally to
produce reasonably good results for most datasets. Note
that MHAP uses 16-mers as well.
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Fig. 2 Computing the alignment. The dark grey region contains all k-mer matches and is extended by the light grey ones using k′-mer matches

The first step is to compute the maximum bounds of
the alignment considering themaximum amount of allow-
able indels in the overlapping region. This is given by
the user configurable parameter maxShift we mentioned
above. As an example, for the situation depicted in Fig. 2,
we set the maximum bounds for read q and read r as
(queryStart, querySize) and (0, refEnd) respectively (see
Fig. 2) where:

queryStart = qL − (1 + maxShift)rL
refEnd = rR + (1 + maxShift)(querySize − qR)

Then, all k′-mer matches within these bounds are com-
puted as done previously for k-mers. These matches are
used to extend the alignment we have computed so far; in
Fig. 2, the dark grey region is extended by the light grey
ones on both sides. Each k′-mer match is added if together
with the ones already added they satisfy the μ − 3σ crite-
rion described above. The structure of the extension step
is given in Algorithm 2.2. The input bounds are either
(qL, rL) or (qR, rR). The extension is performed as long as
k′-mer matches exist that satisfy the μ − 3σ criterion.

Algorithm 2.2: EXTENDALIGNMENT(queryBound, refBound,V )

local refDiff ← 0, queryDiff ← 0, hits ← 0, currIndex ← −1
for i ← 1 to V .size

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (currIndex = −1)

then
{
refDiff ← |refBound − V [i] .r|
queryDiff ← |queryBound − V [i] .q|

else
{
refDiff ← |V [currIndex] .r − V [i] .r|
queryDiff ← |V [currIndex] .q − V [i] .q|

if (refDiff and queryDiff within maxShift limits)

then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

estimate ← μ − 3σ
if (hits ≥ estimate)

then
{
hits ← hits + 1
currIndex ← i

else if (currIndex �= −1)break
if (currIndex �= −1)
then return (V [currIndex] .r,V [currIndex] .q)

else
{
comment: Could not extend bounds
return (0)

Finally, all the k′-mers within the initial region – dark
grey colour in Fig. 2 – are computed. Note also that the
process is now guided by the original k-mers and therefore
the clustering step is not required. The μ − 3σ crite-
rion is applied once more to the total number of k′-mer
matches for the entire overlap (light and dark grey); if the
condition is satisfied, then the reads are considered to be
overlapping and the alignment is reported.
Note that HISEA computes only the alignment bound-

aries, not the actual alignments. The same is true for
other programs, such as MHAP [11], Minimap [5], and
GraphMap [10]. Once identified, the alignments can be
computed by dynamic programming; we avoid this step as
it is very time consuming and not necessary for assembly,
which is the goal of HISEA.

Alignment evaluation procedures
The EstimateROC utility estimates the sensitivity, speci-
ficity, and precision for the alignments reported. The
original EstimateROC utility of Berlin et al. [11] relies
heavily on BLASR mappings for the verification of
reported alignments. This is not the most accurate
procedure since BLASR can make errors. Ideally, each
alignment needs to be verified against the optimally com-
puted alignment using the Smith-Waterman dynamic
programming algorithm [13]. We modified the func-
tions estimating sensitivity, specificity, and precision
accordingly.
The modified function ComputeDP first computes an

optimal alignment, Aopt, between two reads using Smith-
Waterman dynamic programming algorithm; it ensures
that this is a good alignment. Then, assuming the program
reported an alignment, Arep, for these two reads, it
compares the length, direction, and bounds of the align-
ment reported by the program with those of the opti-
mal alignment. This is essential since the program could
report a very different alignment between the same reads
and that should not be considered correct. The use of
an optimal alignment algorithm increases the accuracy of
evaluation.
The three functions used for evaluation, Estimate-

Sensitivity, EstimateSpecificity, and EstimatePrecision are
modified to correspond with our new ComputeDP
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function. The details are given in pseudo code below; see
Algorithms 3.3-3.6.
Note that our evaluation is more accurate than the one

of Berlin et al. [11] and all programs exhibit an decline in
performance. The Results section contains a comparison
of several evaluation procedures.

Algorithm 3.3: COMPUTEDP(r1, r2,Arep)

Aopt ← optimal alignment between r1 and r2
if (Aopt.length < minOverlapLength) or
(Aopt.score < minOverlapScore)
then return (bad_Aopt)

if (Arep = void)

then return (no_Arep)
if (Aopt.direction �= Arep.direction) or
(|Aopt.length − Arep.length| < 0.3Aopt.length) or
(|Aopt.left − Arep.left| > 0.3Aopt.length) or
(|Aopt.right − Arep.right| > 0.3Aopt.length)
then return (bad_Arep)

return (good_Arep)

Algorithm 3.4: ESTIMATESENSITIVITY( )

for i ← 1 to numTrials

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pick random overlap from BLASR reference mapping.
Assume the reads are r1 and r2.
if (ComputeDP(r1, r2,Arep) �= bad_Aopt)

then

⎧
⎪⎨

⎪⎩

if (ComputeDP(r1, r2,Arep) = good_Arep)

then TP ← TP + 1
else FN ← FN + 1

return ( TP
TP+FN )

Algorithm 3.5: ESTIMATESPECIFICITY( )

for i ← 1 to numTrials

do

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Generate two random read IDs: r1 and r2.
if (overlap Arep(r1, r2) exists in program output)

then
{
if (ComputeDP(r1, r2,Arep) �= good_Arep)
then FP ← FP + 1

else
{
if (ComputeDP(r1, r2,Arep) = bad_Aopt)
then TN ← TN + 1

return ( TN
TN+FP )

Algorithm 3.6: ESTIMATEPRECISION( )

for i ← 1 to numTrials

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pick random alignment Arep(r1, r2) from program output.
if (ComputeDP(r1, r2,Arep) = good_Arep)

then TP ← TP + 1
else FP ← FP + 1

return ( TP
TP+FP )

Results
Datasets
All the datasets have been downloaded from Pacific
Biosciences DevNet Datasets (https://github.com/
PacificBiosciences/DevNet/wiki/Datasets). The datasets
used for this evaluation are given in Table 1. Details are
provided in the Additional file 1.
The tests were performed on a DELL PowerEdge R620

computer with 12 cores Intel Xeon at 2.0 GHz and 256 GB
of RAM, running Linux Red Hat, CentOS 6.3.

Competing programs
We evaluated the performance of HISEA against the cur-
rently best programs for PacBio read alignment: BLASR
[8], DALIGNER [9], GraphMap [10], MHAP [11], and
Minimap [5].We then assessed the performance of HISEA
for assembling PacBio data by including HISEA in the
Canu assembly pipeline [6] and comparing it with the
Canu assembly using MHAP as the aligner.
The programs were run according to their own devel-

opers’ suggestions or better, as follows. Minimap and
DALIGNER were run as suggested by the developers.
BLASR was run according to what the MHAP paper
claimed to be the best choice of parameters. This is clearly
better than the default parameters of BLASR. GraphMap
was run with default parameters as the only choice in
overlapping mode. MHAP was run with default param-
eters, except the number of hashes, which was set to
1256, instead of the default 512, for increased sensitiv-
ity. Minimap was run with window size 5 (default is 10),
as recommended by the designers. HISEA was run with
default parameters.

Table 1 SMRT datasets used in for evaluation

Genome Reference Coverage Chemistry Genome size
number (Mbp)

E.coli NC_000913 85x P5C3 4.64

S.cerevisiae NC_001133.9 117x P4C2 12.16

C.elegans WS222 80x P6C4 100.2

A.thaliana TAIR10 110x P4C2 134.6

D.melanogaster Ref v5 90x P5C3 129.7

https://github.com/PacificBiosciences/DevNet/wiki/Datasets
https://github.com/PacificBiosciences/DevNet/wiki/Datasets
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The Additional file 1 contains all the details concern-
ing the versions used, download websites, and command
lines.

Alignment comparison
The first tests we performed, as done also by Berlin
et al. [11], use subdatasets of 1Gbp randomly sampled
from the initial datasets; for the two smallest genomes,
E.coli and S.cerevisiae, full datasets are used since they
are close to 1Gbp with the given coverage. The sensi-
tivity, specificity, and precision values for all five pro-
grams are given in Table 2. They were computed using
the EstimateSensitivity, EstimateSpecificity, and Estimate-
Precision procedures that we described in the Methods
section.
Similarly to MHAP [11] evaluation parameters for

EstimateROC, we use minimum alignment length 2000
bps and 50,000 trials. The other mandatory inputs to
EstimateROC are the reference genome, the reads and the
mapping of the reads to the reference. The mapping of

the reads to the reference is computed using the BLASR
program.
HISEA has clearly the highest sensitivity, over 16%

higher, on the average, than the second best program,
MHAP. The specificity is high for all programs. Minimap
has the highest specificity but low sensitivity. BLASR has
the highest precision but, again, low sensitivity. HISEA
is second for precision, not far from BLASR. To bet-
ter compare the performance with respect to sensitiv-
ity and precision, we have computed the F1-scores, also
shown in Table 2. The F1-score for HISEA is much
higher than all the other programs, with DALIGNER and
MHAP following 18% and 19% behind. Next are BLASR
and Minimap and last comes GraphMap with a very
low score.
The time and memory comparison for the same 1Gbp

datasets is presented in Table 3. Minimap and GraphMap
are clearly the fastest and BLASR the slowest. HISEA is
in the middle, behind MHAP and DALINER. Space-wise,
Minimap is again the best, followed closely by BLASR,

Table 2 Comparison for the 1Gbp datasets (coverage levels in parentheses)

Sensitivity, specificity, precision, and F1-score are given as percentages; A dash mean that the program crashed with segmentation fault. The best values are shown in bold.
The bottom of the table shows the average values, each computed from the five corresponding values in the table
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Table 3 Time and memory comparison for the 1Gbp datasets

Genome Time (h) BLASR DALIGNER GraphMap MHAP Minimap HISEA
Memory (GB)

E.coli Time 113.0 3.0 0.3 3.0 0.1 4.0

Memory 7.1 124.6 42.3 210.0 8.8 25.5

S.cerevisiae Time 283.2 – 0.6 10.6 0.3 23.5

Memory 13.3 – 71.0 210.0 15.1 56.5

C.elegans Time 333.6 4.1 0.6 4.3 0.2 23.6

Memory 14.5 248.2 59.0 210.0 9.8 46.4

A.thaliana Time 43.2 8.1 0.6 5.9 0.2 12.2

Memory 10.3 248.2 60.0 210.0 9.9 45.3

D.melanogaster Time 355.2 12.5 0.4 4.8 0.1 95.1

Memory 16.7 204.2 59.0 210.0 9.7 48.1

CPU time is in hours and the memory in GB. The best results are in bold

Table 4 Comparison of several types of sensitivity computations on the 1Gbp datasets

For each dataset, four types of sensitivity computations are used: “presence” only checks for the read pair, “length” also checks the correct length, “bounds” checks for correct
alignment bounds (the one used in this paper), and the last one is from Berlin et al. [11]
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and at some distance by HISEA and GraphMap. MHAP
and DALIGNER used the most memory. MHAP is imple-
mented in JAVA which generally requires more memory.
The java command-line parameter -Xmx is used to set
the maximum heap size for MHAP stand alone invoca-
tion. The default maximum java heap size depends on
the platform and the amount of memory in the sys-
tem. For our systems, the default was not sufficient
to perform the tests. We set -Xmx parameter to 200G
which was sufficient for all tests but it does not cap-
ture true overlapper memory for MHAP. The reported
memory usage forMHAP consists of the overlappermem-
ory and the memory required for Java Virtual Machine
environment.

Sensitivity variations
As we have described above, we use a more precise eval-
uation compared to the one of Berlin et al. [11]. As a
result the programs exhibit a decrease in sensitivity. It is
therefore interesting to compare our procedure with the
one of Berlin et al. [11]. In Table 4, four ways of evaluating

the sensitivity are compared. In our evaluation we check
for precise bounds of the alignment; this is given in the
rows labelled as “bounds” in the table. We can relax this
condition by checking only the length of the alignment;
labelled as “length” in the table, this is the closest to the
procedure of Berlin et al.. Finally, the weakest check we
can have is simply for the “presence” of an alignment
between the reads. While there are differences among all
these sensitivity modes, HISEA remains clearly the first,
followed by DALIGNER andMHAP, and then at some dis-
tance by the other three programs. It is interesting to note
the very high sensitivity of DALIGNER in the “presence”
only scenario.

MHAP sketch size andMinimapminimizers
Both MHAP and Minimap can have their parameters
adjust to improve sensitivity. We investigate here this
effect.
MHAP uses a technique called MinHash [14] in order

to compute the overlaps. MinHash reduces a string to
a set of fingerprints, called sketch. It is clear that using

Table 5 Testing larger sketch sizes for MHAP. Starting with the value we have used for testing, 1256, the sketch size is increased with
increments of 512 up to 3816

Genome Parameter MHAP skecth size

1256 1768 2280 2792 3304 3816

E.coli Sensitivity 83.74 85.75 86.52 86.87 87.05 87.16

Specificity 99.90 99.86 99.84 99.82 99.81 99.80

Precision 97.15 96.99 96.82 96.89 96.88 97.70

F1-score 89.95 91.02 91.38 91.61 91.70 92.13

S.cerevisiae Sensitivity 62.08 63.67 64.32 64.52 64.62 64.69

Specificity 99.77 99.72 99.66 99.63 99.58 99.56

Precision 89.29 88.79 88.69 88.62 88.55 88.30

F1-score 73.24 74.16 74.56 74.67 74.72 74.67

C.elegans Sensitivity 80.43 81.81 82.37 82.62 82.69 82.73

Specificity 99.97 99.93 99.90 99.88 99.85 99.82

Precision 45.46 35.71 29.32 25.80 23.75 22.13

F1-score 58.09 49.72 43.25 39.32 36.90 34.92

A.thaliana Sensitivity 76.19 77.05 77.38 77.49 77.55 77.57

Specificity 99.91 99.87 99.86 99.85 99.84 99.83

Precision 88.78 88.50 88.68 88.35 88.55 88.33

F1-score 82.00 82.38 82.65 82.56 82.69 82.60

D.melanogaster Sensitivity 71.86 73.36 73.89 74.12 74.24 74.30

Specificity 99.94 99.92 99.91 99.88 99.87 99.86

Precision 72.47 72.00 72.07 72.46 71.45 71.62

F1-score 72.16 72.67 72.97 73.28 72.82 72.94

Note that the results for the first column (sketch size 1256) appear also in Table 2. They are repeated here for comparison convenience
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a larger sketch increases the sensitivity at the cost of
speed decrease. Given the excellent speed of MHAP, it
is worth investigating the effect of this parameter. Note
that we already tested sketch size 1256 instead of the
default 512, for improved sensitivity. Table 5 shows the
results for sketch size increased with increments of 512
from 1256 to 3816. The sensitivity increases slightly but
never comes close to that of HISEA. Also, precision
decreases and so the F1-score increases very little (or
decreases dramatically, as it happens for C.elegans). Also,
the running time increases up to 10 times when chang-
ing sketch size from 1256 to 3816. Overall, increasing
the sketch size is clearly not improving the performance
of MHAP.
Similarly, the sensitivity of Minimap can be increased by

usingmoreminimizers. Aminimizer is the smallest k-mer
in a window of w consecutive k-mers. The default value
is w = 10 but the recommended value by the designers
for all-vs-all PacBio read self-mapping is w = 5 and this is
what we used in our tests. We have investigated the effect
of increasing the number of minimizers by decreasing w.
The results are presented in Table 6. The improvement is
more significant for Minimap but it starts from lower val-
ues. The improved performance is still far from the top
programs.

Sensitivity vs overlap size
It is easier to find long overlaps with correct bounds com-
pared to short overlaps. We have plotted in Fig. 3 the
aligners’ sensitivity as a function of overlap length. The
sensitivity increases with the overlap length for all align-
ers except DALIGNER. The sensitivity of HISEA remains
very high for both short and long overlaps and it improves
with longer overlap lengths. MHAP shows a similar trend
but its sensitivity for short overlaps is low. BLASR, Min-
imap, and GraphMap seem to have been optimized for
more recent chemistry; note the very low performance on
the oldest chemistry P4C2 datasets.

HISEA vs MHAP
Since sensitivity is the most important parameter, as long
as the difference in precision is not too large, we compare
for the remaining tests only the top two programs, HISEA
and MHAP. It turns out that the way MHAP is run within
the Canu assembly pipeline is different from running it
in stand alone mode. Therefore, we are comparing again
the sensitivity, specificity and precision of the alignment
produced by the two programs, this time while run in the
pipeline mode.
We consider the same datasets as above but with

higher coverage: 30x and 50x. As mentioned by Koren
et al. [6], Canu+MHAP pipeline reaches the best assem-
blies around 50x coverage. Our goal is to produce sim-
ilar quality assemblies with only 30x coverage. The 30x

Table 6 Testing higher number of minimizers for Minimap.
Starting with the value we have used for testing, w = 5, we
increase the number of minimizers by decreasing w all the way
to the smallest value w = 1. Note that the results for the first
column (w = 5) appear also in Table 2. They are repeated here
for comparison convenience

Genome Parameter Minimap window size

5 4 3 2 1

E.coli Sensitivity 91.80 93.08 94.13 95.24 96.29

Specificity 99.93 99.92 99.93 99.92 99.91

Precision 97.13 97.22 97.42 97.51 97.58

F1-score 94.39 95.10 95.75 96.36 96.93

S.cerevisiae Sensitivity 9.35 9.64 9.94 10.36 11.00

Specificity 99.98 99.98 99.97 99.97 99.97

Precision 94.30 94.18 93.28 91.90 88.58

F1-score 17.01 17.49 17.97 18.62 19.57

C.elegans Sensitivity 85.38 86.63 87.63 88.77 89.80

Specificity 99.98 99.98 99.98 99.98 99.97

Precision 89.80 89.77 89.05 88.11 85.76

F1-score 87.53 88.17 88.33 88.44 87.73

A.thaliana Sensitivity 23.55 26.90 31.21 37.08 45.56

Specificity 99.97 99.98 99.96 99.96 99.96

Precision 84.00 84.77 85.48 86.43 87.94

F1-score 36.79 40.84 45.73 51.90 60.02

D.melanogaster Sensitivity 40.72 42.82 45.51 49.11 54.00

Specificity 99.99 99.98 99.98 99.98 99.97

Precision 83.93 83.12 82.87 81.85 81.25

F1-score 54.84 56.52 58.75 61.39 64.88

and 50x coverage datasets were sampled using the utility
fastqSample available from the Canu pipeline [6].
The alignments computed by MHAP and HISEA while

run in the Canu pipeline were extracted and analyzed as
above. The results are shown in Table 7. HISEA has bet-
ter sensitivity, precision, and F1 score in all tests with
very large differences for the 50x coverage datasets. The
specificity of both programs is very high for all tests, with
HISEA edging ahead for 30x coverage andMHAP for 50x.

Assembly comparison
We have integrated the HISEA program in the Canu
assembly pipeline, which is currently the best. Our align-
ment output is similar to the M4 format used by BLASR
and MHAP programs1. HISEA can also be integrated in
other assembly pipelines, e.g., Miniasm [5] and Falcon [7],
by converting HISEA output to the format required by
these pipelines.
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Fig. 3 Sensitivity as a function of mean overlap length

Table 7 Sensitivity, specificity, precision, and F1-score for HISEA and MHAP program output within the Canu pipeline

Two coverage levels are considered for each dataset: 30x and 50x. The best values are shown in bold. The bottom of the table shows the average values, each computed
from the five corresponding values in the table. All values are percentages
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We have assembled the 30x and 50x coverage datasets
that we tested above for quality of alignments. The assem-
blies produced by the two pipelines, Canu+MHAP and
Canu+HISEA, have been evaluated using a modified ver-
sion of our LASER program [15], which is a fast imple-
mentation of QUAST [16] using E-MEM [17]. The recent
versions of QUAST use E-MEM [17] for speed improve-
ment but LASER [15] has several other modifications that
make it still faster.
LASER/QUAST compute many parameters for each

assembly and the most important ones are presented in

Table 8: the number of contigs, NG50, the maximum
contig size, the fraction of the genome covered by the
assembly, the identity with the reference, and the num-
ber of breakpoints (inversions, relocations, and transloca-
tions). The Canu+HISEA pipeline has better values in 80%
of the tests for the number of contigs, NG50, max con-
tig size, and genome fraction. Generally, the NG50 value
for the Canu+HISEA assemblies is much larger than that
of the Canu+MHAP ones. Canu+MHAP has fewer break-
points more often than Canu+HISEA but the difference
is usually small. Both pipelines have high identity with

Table 8 Pipeline assembly comparison; Canu assembler is used with MHAP and HISEA as read aligners

Genome Parameter Canu + MHAP Canu + HISEA

30x 50x 30x 50x

E.coli Contig # 7 3 8 1

NG50 2,771,323 3,969,196 1,223,211 4,642,165

Max contig 2,771,323 3,969,196 1,525,215 4,642,165

% Ref 99.85 99.97 99.82 100.00

Avg idy 99.97 99.99 99.97 99.99

Breakpoints 3 3 3 3

S.cerevisiae Contig # 43 31 35 29

NG50 540,299 687,498 682,168 774,485

Max contig 964,505 1,534,125 1,537,586 1,534,133

% Ref 98.90 99.35 99.12 99.58

Avg idy 99.81 99.88 99.82 99.88

Breakpoints 17 14 17 14

C.elegans Contig # 393 170 127 133

NG50 636,401 1,987,017 2,140,282 2,032,954

Max contig 2,648,207 4,224,025 4,227,561 5,669,072

% Ref 96.00 99.84 99.81 99.80

Avg idy 99.76 99.91 99.85 99.91

Breakpoints 431 423 390 435

A.thaliana Contig # 159 99 140 122

NG50 3,331,858 6,715,370 5,069,662 8,124,422

Max contig 12,892,206 14,177,369 12,890,806 15,940,320

% Ref 92.22 92.55 92.37 92.51

Avg idy 99.17 99.22 99.17 99.22

Breakpoints 2,550 2,693 2,680 2,704

D.melanogaster Contig # 597 390 553 372

NG50 1,933,939 4,983,913 6,417,268 13,672,005

Max contig 8,238,062 17,900,724 17,366,974 25,767,672

% Ref 95.08 98.55 96.47 98.65

Avg idy 99.80 99.89 99.80 99.87

Breakpoints 1,039 1,383 1,254 1,461

Two coverage levels, 30x and 50x, are used for each genome. The best results are shown in bold
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Table 9 Assembly time and space comparison; the time is wall clock time in hours, the space is in GB

Genome Canu + MHAP MHAP Canu + HISEA HISEA

30x 50x 30x 50x 30x 50x 30x 50x

Time Space Time Space Time Time Time Space Time Space Time Time

E.coli 0.4 210 0.6 210 0.1 0.1 0.4 25 0.7 40 0.1 0.1

S.cerevisiae 1.1 210 2.0 210 0.3 0.4 1.2 63 2.9 76 0.2 0.6

C.elegans 24.5 210 59.6 210 2.4 2.5 37.7 83 75.5 82 11.5 17.1

A.thaliana 23.8 210 56.6 210 4.1 9.6 42.3 90 98.0 90 15.3 35.0

D.melanogaster 27.0 210 62.4 210 3.4 5.2 51.8 94 112.8 94 19.7 33.6

The same setup as in Table 8 is used. The best values are in bold

the reference. Overall, the assemblies computed by the
Canu+HISEA pipeline are better. Moreover, the assem-
blies computed by Canu+HISEA for 30x coverage are
comparable with those produced by Canu+MHAP for 50x
coverage. MUMmer plots of all Canu+HISEA assemblies
are included in the Additional file 1.
The MHAP program is very fast and it makes the

Canu+MHAP pipeline faster, as seen from the time
values shown in Table 9. However, as noticed above,
similar assemblies are produced by Canu+HISEA for
30x coverage, and those are always faster than those by
Canu+MHAP for 50x coverage. The memory consump-
tion is always much lower for the Canu+HISEA pipeline.
Note that in Table 9 the times are reported as wall clock
times, since CPU times for the fraction used by the over-
lapping programs are not available. Also, only the peak
memory used by the entire assembly pipeline is available.
The java command-line parameter -Xmx is used to

set the maximum heap size during MHAP invocation
from the pipeline. The value of parameter -Xmx is set
by corMhapMemory pipeline parameter which is user
configurable. For this evaluation, the value of param-
eter corMhapMemory is set to 200 Gb for all datasets.
The peak memory in each case is reported as 210 Gb.
Similar configuration for Canu+HISEA pipeline uses
much smaller memory footprint (less than 100 Gb) for all
datasets.
The Canu+MHAP pipeline requires more memory in

all cases, as seen from the space values shown in Table 9.
The peak memory of this pipeline can be reduced by
setting a smaller value for corMhapMemory. However, it
impacts the overall assembly runtime. Similar behavior is
expected in modified Canu+HISEA pipeline. To ensure
unbiased evaluation, all parameter values are identical for
both pipelines.

Discussion
The newly introduced HISEA program has been thor-
oughly tested against several state-of-the-art programs
and shown to perform better. HISEA has higher sensi-
tivity, precision, and F1-score. Two competing programs,

MHAP and Minimap, have parameters that can be tuned
for a trade-off between speed and sensitivity. We pushed
both to the limit of their sensitivity and that is still clearly
lower than the sensitivity of HISEA. Since we introduced
a new, more precise, evaluation of sensitivity, we com-
pared also the programs with respect to the old method of
computing sensitivity, as well as two other natural ways.
HISEA has the highest sensitivity with respect to all four
sensitivity modes. The closest competitor is MHAP and
we compared the two programs further, from the point
of view of genome assembly. HISEA is significantly more
sensitive and produces better genome assemblies in the
Canu pipeline.

Conclusion
Pacific Biosciences SMRT technology is a relatively new
sequencing method that produces long but noisy reads.
The aligners developed for previous sequencing methods
do not perform well on this type of data. Our new HISEA
algorithm for computing read alignments has introduced
several new ideas, such as clustering of k-mer matches,
estimating and filtering of matches based on error rate,
and techniques for extending the alignments with shorter
k-mer matches.
The HISEA algorithm currently produces alignments

with highest sensitivity and comparable specificity with
other algorithms. Integrated in the Canu pipeline [6],
currently the best for assembling PacBio data, it pro-
duces better assemblies than Canu+MHAP.Moreover, the
assemblies of Canu+HISEA at lower coverage, 30x, are
comparable with those of Canu+MHAP at 50x coverage,
while being faster and cheaper. We plan to modify HISEA
in the future to work also with Oxford Nanopore sequenc-
ing technology [18]. The source code of the HISEA aligner
and Canu+HISEA assembly pipeline are freely available
from: https://github.com/lucian-ilie/HISEA and https://
github.com/lucian-ilie/Canu_HISEA, respectively.

Endnote
1 https://github.com/PacificBiosciences/blasr/wiki/

Blasr-Output-Format

https://github.com/lucian-ilie/HISEA
https://github.com/lucian-ilie/Canu_HISEA
https://github.com/lucian-ilie/Canu_HISEA
https://github.com/PacificBiosciences/blasr/wiki/Blasr-Output-Format
https://github.com/PacificBiosciences/blasr/wiki/Blasr-Output-Format
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Additional file

Additional file 1: The additional material contains information
concerning downloading the datasets, the versions used for each
competing program, download websites, and command lines. (PDF 412 kb)
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