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Abstract

Background: One of the most crucial steps in high-throughput sequence-based microbiome studies is the taxonomic
assignment of sequences belonging to operational taxonomic units (OTUs). Without taxonomic classification, functional
and biological information of microbial communities cannot be inferred or interpreted. The internal transcribed spacer
(ITS) region of the ribosomal DNA is the conventional marker region for fungal community studies. While bioinformatics
pipelines that cluster reads into OTUs have received much attention in the literature, less attention has been given to
the taxonomic classification of these sequences, upon which biological inference is dependent.

Results: Here we compare how three common fungal OTU taxonomic assignment tools (RDP Classifier, UTAX, and
SINTAX) handle ITS fungal sequence data. The classification power, defined as the proportion of assigned OTUs at a
given taxonomic rank, varied among the classifiers. Classifiers were generally consistent (assignment of the same
taxonomy to a given OTU) across datasets and ranks; a small number of OTUs were assigned unique classifications
across programs. We developed CONSTAX (CONSensus TAXonomy), a Python tool that compares taxonomic
classifications of the three programs and merges them into an improved consensus taxonomy. This tool also produces
summary classification outputs that are useful for downstream analyses.

Conclusions: Our results demonstrate that independent taxonomy assignment tools classify unique members of the
fungal community, and greater classification power is realized by generating consensus taxonomy of available classifiers
with CONSTAX.
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Background
Next-generation sequencing technologies and high-
performance computers define the culture-independent
era of microbial ecology. High-throughput sequencing of
DNA barcode marker regions, namely the bacterial 16S
rRNA gene or fungal internal transcribed spacer (ITS)
ribosomal regions, have allowed researchers to characterize
complex microbial communities at a depth not previously
possible with culture-based methods. Hypervariable regions
of the 16S rRNA gene have been extensively studied and
adopted by researchers to describe prokaryotic microbial
communities, and a mix of ribosomal markers have

been used to describe fungal communities [1] over the
past 25 years [2]. The ITS region, comprising the ITS1,
5.8S, and ITS2 segments, was recently selected as the
formal DNA barcode for fungi [3–5], although there is
a lack of consensus regarding which ITS (ITS1 or ITS2)
to utilize as a barcode [6–8]. It remains unclear which
of the ITS primer sets has the best resolution for fungal
diversity, and papers targeting either ITS segment have
been published at near equal frequencies [8–10].
Pipelines for processing fungal ITS amplicon datasets

such as CLOTU [11], CloVR-ITS [12], PIPITS [1], and
others [13] are available in the literature, but most of the
tool-development effort has been towards generating
nearly automated pipelines for filtering, trimming, and
clustering of amplicon reads into operational taxonomic
units (OTUs). Less emphasis has been placed on assigning
taxonomy to representative OTU sequences in a dataset.
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Linnaean taxonomy provides a controlled vocabulary that
communicates ecological, biological or geographic infor-
mation. Linking OTUs to functionally meaningful names,
which typically depends upon species-level resolution, is
key to addressing biological and ecological hypotheses.
Processing sequencing reads, in addition to taxonomy
assignment of sequences, can be completed using vari-
ous bioinformatics pipeline tools. The most popular are
Mothur [14], QIIME [15], and USEARCH [16]. There
are a variety of algorithms to use for the taxonomy as-
signment step, which include: BLAST [17], Ribosomal
Database Project (RDP) Naïve Bayesian Classifier [18],
UTAX [19], and SINTAX [20]. The RDP Classifier
(RDPC) uses Bayesian statistics to find 8-mers that have
higher probability of belonging to a given genus. Based
on these conditions, RDPC estimates the probability that
an unknown query DNA sequence belongs to the genus
[18]. The UTAX algorithm looks for k-mer words in com-
mon between a query sequence and a known reference se-
quence, and calculates a score of word counts. The score
is used to estimate confidence values for each of the taxo-
nomic levels, which are then trained on the reference
database to give an estimate of error rates [19]. The
SINTAX algorithm predicts taxonomy by using k-mer
similarity to identify the top hit in a reference database,
and provides bootstrap confidence for all ranks in the
prediction [20]. Local alignment, most commonly im-
plemented in BLAST [17], is still occasionally used for
taxonomy assignment of high-throughput sequence
datasets. However use of BLAST to identify OTUs in
amplicon-based microbiome datasets has low accuracy
as demonstrated previously [20–22], and discussed by
Wang et al. [18].
The UNITE reference database is a curated database

of all International Nucleotide Sequence Database Col-
laboration (INSDC) fungal sequences, and is the most
commonly used reference database for fungal amplicon
analyses [23–25]. Recently the Ribosomal Database
Project released the Warcup Fungal Database [26], a
curated version of UNITE and INSDC. Apart from pre-
viously published database comparisons which showed
the accuracy of UNITE [23] and Warcup fungal data-
bases [26], all comparative studies of taxonomy classifiers
of which we are aware, have analyzed only prokaryotic

organisms [22, 27, 28]. Since only a small fraction of mi-
crobial species estimated to be on the planet have been
described, taxonomic classification is not a trivial task and
no algorithm is 100% precise. Several types of classifica-
tion errors are possible, as highlighted in Table 1. The
RDPC, UTAX, and SINTAX classifiers report a confi-
dence value for the classification given to an OTU so that
the user can set a cutoff value below which no name is
given. Even though a number of databases and tools have
been developed to enable high-throughput analyses of en-
vironmental sequences, researchers still need to solve the
problems caused by misidentified or insufficiently identi-
fied sequences [5]. Further, some poorly sampled fungal
lineages reduce the ability of a classifier to confidently as-
sign OTUs to the correct fungal lineage regardless of the
classification algorithm used.
This study tested whether established taxonomic classi-

fiers for fungal ITS DNA sequences generate similar pro-
files of the fungal community. Specifically, we compared
the power (proportion of assigned OTUs at a given level)
and consistency (agreement of OTU assignment across
classifiers) of the RDPC, UTAX, and SINTAX classifica-
tion algorithms. Power and consistency were compared
across i) ITS1 or ITS2 regions, ii) OTU-clustering ap-
proaches, and iii) merged or single stranded reads. Fur-
ther, we created a Python tool that functions
independently of OTU-picking method to merge tax-
onomy assignments from multiple classifier programs into
an improved consensus taxonomy, and generates several
output files that can be used for subsequent community
analysis.

Methods
Data accessibility
Sample origins, barcode regions, and accession numbers
for all datasets used in the current study can be found in
Table 2. Implementation of the tool presented in this paper
requires users to download and install the following
software: RDPC [https://github.com/rdpstaff/classifier],
USEARCH version 8 for UTAX, and USEARCH version
9 or later for SINTAX [http://drive5.com/usearch/down-
load.html], R v2.15.1 or later [https://www.r-project.org],
Python version 2.7 [https://www.python.org]. Detailed in-
stallation and analysis instructions, including all custom

Table 1 Types of classifications

Present in the database? Taxon name given? Correct name given? Result Error Type

Yes Yes Yes Good assignment True positive

Yes Yes No Misclassification False positive

Yes No No Underclassification False negative

No Yes No Overclassification False negative

No No No Good assignment True negative
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scripts used in the analysis and a test dataset are available
in Additional file 1, or for download from GitHub: [https://
github.com/natalie-vandepol/compare_taxonomy]. All of
the custom Python scripts described in the methods
section can be downloaded from the CONSTAX.tar.gz
file (Additional file 2). All the steps described in the
methods section are automated through the constax.sh
script, but are included as independent scripts in CON-
STAX.tar.gz so they can be easily modified to suit the
user’s needs. An overview of the data analysis workflow
is available in Fig. 1.

Generation of operational taxonomic units
For the ITS1-soil and ITS2-soil datasets (Table 2), for-
ward and reverse reads were merged with PEAR version
0.9.8 [29]. Merged reads were randomly sampled to one
million reads to reduce computational time. Reads were
quality-filtered, trimmed, dereplicated, clustered at 97%
similarity (the standard sequence similarity value), and
OTU-calling was performed using USEARCH version
8.1.1831 [16]. Analysis of plant datasets (ITS1-plant and
ITS2-plant) began with the processed 97% similarity OTUs
provided by the authors [10].
For the ITS1/2-BC and ITS1/2-UN datasets, reads

were quality-filtered as above, but differed in OTU-
generation method. First, a clustering algorithm that
generated OTUs using the UPARSE [19] algorithm was
used to call OTUs for ITS1-BC and ITS2-BC. Second,
the UNOISE2 algorithm [30] that performed denoising
and generated exact sequence variants (ESVs) [31] was
used for ITS1-UN and ITS2-UN. Each set of OTUs and
ESVs were randomly sampled to 500 for the compara-
tive taxonomic analysis described in the next section.
Sample and abundance data were not used in this
study. The code for the OTU-picking pipeline de-
scribed above is available in Additional file 3.

Database formatting and classifier training
The UNITE fungal database [23], release 31–01-2016,
containing 23,264 sequences was used in the current

study. A custom script (FormatRefDB.py) was developed
in Python 2.7 to format the database, starting from the
general fasta release, for each classifier to ensure training
was completed with identical databases. For RDPC train-
ing, custom Python scripts (subscript_lineage2taxonomy-
Train.py, subscript_fasta_addFullLineage.py) were used
to give each Species Hypothesis a unique name and re-
move special text characters. Prior to UTAX training
and SINTAX classification, custom Python scripts were
used to make minor changes to header lines of the fasta
file. After formatting, these versions of the UNITE data-
base were used to train classifiers. All the formatting
and training scripts above are automated through the
constax.sh script, users need only specify the location of
the reference database.

Taxonomy assignment
Taxonomy was assigned to the OTUs with RDPC version
11.5 [18, 32], UTAX from USEARCH version 8.1.1831
[19, 33], and SINTAX from USEARCH version 9.2 [16].
This step generated three tables (one from each classifier)
with a taxonomic assignment at each of the seven ranks of
the hierarchy (Kingdom, Phylum, Class, Order, Family,
Genus, Species). We used the default settings, a 0.8 cut-off,
to serve as a baseline for comparison. Researchers may
choose to use less stringent cut-offs, depending on the
goals of their studies. The cut-off can be specified in the
config file contained in CONSTAX.tar.gz (Additional file 2).

Post-taxonomy data processing
A custom Python script (CombineTaxonomy.py) was de-
veloped to standardize the taxonomy table formats, filter
the output files at the recommended quality score, and
create the consensus taxonomy. Additionally, the script
produces a combined and improved (higher power) tax-
onomy table by concatenating the information contained
in the taxonomy tables from RDPC, UTAX, and SINTAX.
Rules developed to merge the taxonomy assignments im-
plemented in the Python script are detailed in Table 3.
Briefly, a majority rule (two out of three OTUs classified)

Table 2 Sample origins, barcode regions, and accession numbers for datasets

Dataset Gene Region Read Type Sample Origin Data Availability Reference

ITS1-Soil ITS1 2 × 250 bp North American soil NCBI SRA SRP035367 Smith & Peay [36]

ITS2-Soil ITS2 2 × 250 bp North American soil NCBI SRA SRR1508275 Oliver et al. [37]

ITS1-Plant ITS1 2 × 250 bp European plants MG-RAST 13322 Agler et al. [10]

ITS2-Plant ITS2 2 × 250 bp European plants MG-RAST 13322 Agler et al. [10]

ITS1-BCa ITS1 1 × 300 bp North American soil NCBI SRA SRP079401 Benucci et al., unpublished

ITS2-BCa ITS2 1 × 300 bp North American soil NCBI SRA SRP079401 Benucci et al., unpublished

ITS1-UNb ITS1 1 × 300 bp North American soil NCBI SRA SRP079401 Benucci et al., unpublished

ITS2-UNb ITS2 1 × 300 bp North American soil NCBI SRA SRP079401 Benucci et al., unpublished
adata processed with UPARSE algorithm, OTUs generated with clustering
bdata processed with UNOISE algorithm, ESVs generated with splitting
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was used when classifiers did not assign the same name to
a representative sequence. When there was not a clear
majority rule, the name with the highest quality score was
chosen. The CombineTaxonomy.py script is also auto-
mated through the constax.sh script. All analyses down-
stream of the consensus OTU assignments were
completed in R version 3.3.2 [34] and graphs were gen-
erated with the R package ‘ggplot2’ [35]. R code used to
generate the graphs is also available in the CONSTAX.-
tar.gz, and automated through constax.sh script.

Results
Power of classifiers
Classification power differed across RDPC, UTAX, and
SINTAX (Fig. 2). Also, the total number of assigned OTUs
varied across datasets, ITS region, and OTU-generation
approach. In general, the highest number of assignments
at each level of the taxonomic hierarchy was observed
in the ITS1-soil dataset shown in Fig. 2a [36].

Fig. 1 Overview of CONSTAX workflow. Bubbles highlighted by gray box are automated through constax.sh

Table 3 Rules adopted to generate the combined taxonomy
table

RDP UTAX SINTAX CONSENSUS

3 taxonomy assignments

Taxon A Taxon A Taxon A Taxon A

Taxon A Taxon A Taxon B Taxon A

Taxon A Taxon B Taxon C Use score

2 taxonomy assignments +1 unidentified

Taxon A Taxon A Unidentified Taxon A

Taxon A Taxon B Unidentified Use score

1 taxonomy assignment +2 unidentified

Taxon A Unidentified Unidentified Taxon A

Gdanetz et al. BMC Bioinformatics  (2017) 18:538 Page 4 of 9



Classifications for the ITS2-soil dataset [37] follow the
same general pattern as ITS1-soil, but overall had lower
power (Fig. 2b). Although, UTAX had higher classifica-
tion power for some ITS1 datasets at Kingdom level
(Fig. 2c, Additional file 4: Figure S1A), generally, SINTAX
had the highest classification power (Fig. 2a-b, d).
ITS1-plant (Fig. 2c) and ITS2-plant (Fig. 2d) [10] data-
sets generated a greater number of unidentified OTUs
by all three of the classifiers when compared with the
soil datasets (Fig. 2, Additional file 4: Figure S1). A lar-
ger number of identified OTUs were detected for the
ITS1-BC and ITS2-BC datasets when OTUs were gen-
erated by denoising (Additional file 4: Figure S1A-B) in-
stead of clustering (Additional file 4: Figure S1C-D), at
all levels except Species. Moreover, a similar pattern
was observed with the ITS1-BC and ITS2-BC datasets,
more assigned OTUs were observed for ITS2-BC in
comparison to ITS1-BC, but not at every rank level
(Additional file 4: Figure S1).
Depending on the dataset, the number of unidentified

OTUs gradually, or sharply, increased at other ranks
higher than Kingdom level. Percent improvement of the
consensus taxonomy assignments were calculated from
maximum and minimum numbers of classifications ob-
tained at any given rank (Table 4). With CONSTAX,
there was ~1% mean improvement at Kingdom level
when the consensus taxonomy was compared with an
individual classifier program. At other rank levels, there
was 7–35% mean improvement. For ITS2 datasets, there
was a 1–61% percent improvement at Family level (Table
4). For ITS1 datasets there was a 1 to 59% improvement

at Family level (Table 4). At Species level there was a
35% mean improvement across all datasets (Table 4).
The higher end of these ranges is due to poor classifica-
tion of OTUs, especially ITS2 OTUs, using UTAX. If
the percent improvement is recalculated without UTAX
the maximum percent improvement drops from 98% to
52% (Table 4).

Consistency of classifiers
Generally, all the classifiers were consistent in OTU as-
signments. Based on the consensus taxonomy tables, no
bias was observed toward a fungal lineage from any of
the classifiers. Nearly all OTUs were identified at King-
dom level (Table 5, Additional file 5: Table S1). There
were few examples across the datasets where a single
OTU was placed into a unique lineage by one or more
of the classifiers. Only 1.24% ∓ 0.006 (st. dev.) of OTUs
were differentially assigned across the datasets. This dif-
ferential assignment phenomenon was most frequently
observed at Kingdom level where OTUs were placed
with low confidence into either Kingdom Fungi or Pro-
tista (Table 5). These OTUs were rarely assigned at a
higher level after Kingdom, and never higher than Class;
they may be novel sequences, PCR, or sequencing errors.
Across all datasets used in the present study (4000
OTUs/ESVs), there were two examples of OTUs assigned
to unique fungal lineages. These were found only in ITS1-
BC and ITS2-BC datasets (Table 5). The ITS1-BC OTU
diverged at Class; the OTU was assigned to Eurotiomy-
cetes and Sordariomycetes by RDPC and UTAX, respect-
ively, and unidentified by SINTAX. This OTU did not
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Fig. 2 Power of classifiers. Distribution of classified and unclassified OTUs for each classifier and across taxonomic level. a ITS1-soil dataset from Smith
& Peay [36]. b ITS2-soil dataset from Oliver et al. [37]. c ITS1-plant and d ITS2-plant datasets from Angler et al. [10]
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have an assignment lower than family. The assignment
of the ITS2-BC OTU diverged at Phylum; RDPC and
SINTAX placed the ITS2-BC OTU into the Basidiomy-
cota, and UTAX placed this OTU in the Ascomycota.
The assignment diverged again at Class, where it was
placed into the Pucciniomycetes by RDPC, and the
Agaricomycetes by SINTAX.

Python tool outputs
CONSTAX is implemented in Python and provided as a
Bourne Shell executable, constax.sh. After installation of the
required dependencies, the user must modify paths and pa-
rameters in constax.sh and the config file, both of which can
be found in CONSTAX.tar.gz (Additional file 2). The Py-
thon scripts called by constax.sh are provided independ-
ently and can be easily modified for use with other
classifiers or reference databases. After implementation of
constax.sh, filtered versions of all taxonomy tables for the
given cutoff are generated, alongside the four main output
files: i) consensus_taxonomy.txt, the final higher power tax-
onomy table; ii) combined_taxonomy.txt, which is a large
table of all three taxonomy tables side-by-side in addition
to the consensus taxonomy; iii) otu_taxonomy_CountClas-
sified.txt, which details assigned and unidentified OTUs at
each rank level; and iv) Classification_Summary.txt, which
lists the total counts of all unique taxa at a given rank level.

Discussion
Factors that influence the composition and structure of mi-
crobial communities are mainly confined to three different

groups: sample origin (e.g., soil or water), laboratory
methods (e.g., primer selection, PCR conditions, library
preparation), and post-sequencing bioinformatic analysis.
Since there are sample or methodological challenges at sev-
eral steps of microbial community studies that can ultim-
ately influence taxonomic classification; we standardize and
improve the taxonomic classification step of fungal micro-
biome studies with CONSTAX. CONSTAX improves tax-
onomy assignment of fungal OTUs regardless of the
strategies researchers choose to reduce the sample or meth-
odological challenges. Linking OTUs to functionally inform-
ative names, which largely requires genus- or species-level
resolution, is key to addressing biological and ecological hy-
potheses in fungal community studies. Considerable time
should be invested into choosing optimal tools for taxo-
nomic analysis. In this study, eight fungal amplicon datasets
were assigned taxonomy using the same reference database
[23] and three taxonomy assignment programs were com-
pared: RDPC [18, 32], UTAX [19, 33], and SINTAX [20].
The taxonomic classification step is arguably one of the most
delicate steps of the pipeline for amplicon-based microbial
ecology studies, because taxon names are largely the basis by
which scientists attach biological interpretation to the data.
Our results showed minor differences across taxonomic
classification approaches using thresholds chosen a priori.
The UTAX classifier generated greater numbers of uniden-

tified OTUs compared with RDPC and SINTAX, a pattern
that is pronounced in the ITS2 dataset. We also found more
non-fungal OTUs were recovered from the ITS2 sequences;
indicating primers for this region may be less fungi-specific

Table 4 Range of percent improvement using CONSTAX

Taxnomic
Ranka

Percent
Increaseb

ITS1-Soil ITS2-Soil ITS1-Plant ITS2-Plant ITS1-BCc ITS2-BCc ITS1-UNc,d ITS2-UNc,d Mean Increase

Kingdom max. 0.00 0.00 (1.60) 0.00 (0.20) 0.00 0.00 (1.00) 0.00 (0.20) 0.00 (2.20) 0.00 0.81 (1.14)

min. 0.40 3.00 1.40 0.20 3.60 1.40 2.60 0.40

Phylum max. 0.47 1.29 4.46 (5.25) 2.84 6.05 1.70 5.57 (7.62) 2.76 6.83 (6.50)

min. 5.21 (4.03) 13.18 (5.43) 17.06 18.01 11.46 12.24 11.73 8.90

Class max. 1.58 1.83 0.93 4.89 3.04 0.84 3.98 3.70 8.56 (5.36)

min. 9.23 (2.11) 24.77 (7.65) 21.98 (18.27) 26.63 (22.28) 18.26 (8.70) 9.28 (5.49) 13.94 (5.98) 9.26 (5.19)

Order max. 1.69 2.47 0.33 2.58 2.48 1.40 5.75 3.23 10.94 (5.73)

min. 11.83 (4.79) 27.21 (6.71) 37.42 (20.86) 42.58 (24.52) 19.31 (7.92) 7.44 (5.58) 19.91 (8.85) 11.29 (4.03)

Family max. 1.36 3.54 2.47 3.16 1.86 1.10 6.88 6.13 15.72 (6.43)

min. 13.9 (1.69) 30.81 (6.57) 58.02 (22.63) 61.05 (26.32) 20.50 (9.94) 11.60 (6.08) 32.80 (8.99) 27.83 (7.08)

Genus max. 2.56 6.25 2.51 5.33 2.40 1.89 9.15 9.03 27.06 (9.04)

min. 28.21 (3.85) 53.13 (8.59) 88.94 (37.69) 85.33 (36.00) 31.20 (7.20) 35.22 (10.69) 63.38 (10.56) 62.58 (9.03)

Species max. 5.65 8.51 2.70 1.92 3.19 1.83 9.28 13.68 34.65 (13.20)

min. 52.42 (16.13) 65.96 (14.89) 98.65 (47.97) 96.15 (51.92) 41.49 (9.57) 51.38 (21.10) 81.44 (11.34) 89.47 (17.89)
aPercent improvement calculated with RDP, SINTAX, and UTAX outputs (numbers in paranthesis calculated without including UTAX, only differing values
displayed). Ranges represent minimum and maximum improvement when compared to all three classifiers at a given level
bEquation to calculate percent increase, where N = assigned OTUs. max or min N

consensus N � 100
cReads are forward (ITS1) or reverse (ITS2), not merged read pairs
dDataset was processed with denoising instead of clustering
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Table 5 Distribution of identically classified, uniquely classified, and unidentified OTUs across all taxonomic ranks for data presented
in Fig. 2

ITS1-Soil Kingdom Phylum Class Order Family Genus Species

3 classified, identical 498 393 339 306 253 167 57

3 classified, 1 unique 0 0 0 0 0 0 0

3 classidied, 3 unique 0 0 0 0 0 0 0

2 classified, identical 2 17 31 33 34 53 42

2 classified, unique 0 0 0 0 0 0 0

1 classified 0 12 9 16 8 14 25

RDP 0 0 1 1 5 9 7

SINTAX 0 11 5 12 3 5 18

UTAX 0 1 3 3 0 0 0

Unidentified 0 78 121 145 205 266 376

ITS2-Soil

3 classified, identical 481 332 242 203 135 60 16

3 classified, 1 unique 3 0 0 0 0 0 0

3 classified, 3 unique 0 0 0 0 0 0 0

2 classified, identical 2 33 58 57 45 49 20

2 classified, unique 7 0 0 0 0 0 0

1 classified 7 22 27 23 18 19 11

RDP 0 3 4 4 6 8 4

SINTAX 7 17 1 17 11 11 7

UTAX 0 2 22 2 1 0 0

Unidentified 0 113 173 217 302 372 453

ITS1-Plant

3 classified, identical 490 304 234 181 98 22 2

3 classified, 1 unique 2 0 0 0 0 0 0

3 classified, 3 unique 0 0 0 0 0 0 0

2 classified, identical 4 52 45 65 88 97 71

2 classified, unique 4 0 0 0 0 0 0

1 classified 0 25 44 56 57 80 75

RDP 0 2 1 0 5 5 4

SINTAX 0 9 41 0 51 75 71

UTAX 0 14 2 1 1 0 0

Unidentified 0 119 177 198 257 301 352

ITS2-Plant

3 classified, identical 499 166 120 83 36 11 2

3 classified, 1 unique 0 0 0 0 0 0 0

3 classified, 3 unique 0 0 0 0 0 0 0

2 classified, identical 1 20 29 36 32 33 22

2 classified, unique 0 0 0 0 0 0 0

1 classified 0 25 35 36 27 31 28

RDP 0 1 2 2 3 4 1

SINTAX 0 3 31 32 0 28 27

UTAX 0 21 2 2 24 0 0

Unidentified 0 289 316 345 405 425 448
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than those used for amplifying the ITS1 region. The ITS1 re-
gion has been shown to be more conserved in sequence and
length for most fungal lineages compared with ITS2 [38–
40]. Whether the ITS1 or ITS2 region provides the best
taxonomic resolution has been investigated previously with
Sanger sequence data [3, 37] and pyrosequence data [9, 41].
Apart from the small bias of ITS1 against early diverging
fungi, these regions yield similar profiles of fungal communi-
ties and either region is considered suitable for community
studies. Regardless of primer choice, we showed that use of
multiple taxonomy assignment algorithms resulted in con-
sistent classifications when an appropriate OTU-clustering
threshold level is used.
Our tool, CONSTAX, implements the following best

practice tips for taxonomy assignment of ITS datasets: i)
Use more than one classifier program, as not one is clearly
superior to others; ii) Obtain a consensus taxonomy after
running multiple classifiers; iii) Use the most recent re-
lease of software. The classifier programs tested here differ
slightly in power, so performing taxonomic classifications
with multiple programs, and combining the results will re-
sult in a stronger assignment with higher resolution.
When designing experiments, it behooves researchers

to carefully consider their target organisms when choos-
ing the ITS barcode region and selecting primers. When
investigating broad patterns of fungi, use of ITS alone
should be sufficient, but if there is interest in a specific
group of fungi, additional markers for those lineages
(such as 18S rRNA gene for arbuscular mycorrhizal
fungi) may be needed [42]. Further, there are limitations
in making functional inferences from fungal ITS amplicon
data. If the research questions are aimed at specific species
or functions, metagenomics may be a more appropriate
approach than amplicon-based community analyses.

Conclusion
We provide a tool, CONSTAX, for generating consensus
taxonomy of targeted amplicon sequence data, and dem-
onstrate that it improves taxonomy assignments of en-
vironmental OTUs. Taxonomic assignment will improve
as database completeness improves, especially the
RDPC, since that algorithm functions best when there
are multiple representatives for a group (genus or spe-
cies). The mycological community should continue to
generate high quality ITS reference sequences for their
research organisms and from Herbarium specimens,
which will further enhance the performance of tax-
onomy assignment algorithms.
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Additional file 5: Table S1. Distribution of identically classified,
uniquely classified, and unidentified OTUs across all taxonomic ranks for
data presented in Additional file 4: Figure S1 (Benucci et al., unpublished).
(XLSX 47 kb)

Abbreviations
ESV: exact sequence variant; ITS: internal transcribed spacer region of the
ribosomal DNA; OTU: operational taxonomic unit; PCR: polymerase chain
reaction; RDP: Ribosomal Database Project; RDPC: Ribosomal Database
Project classifier; rRNA: ribosomal RNA

Acknowledgments
We thank Matthew Agler for providing processed OTUs for our analysis, and
Benli Chai for assistance with RDPC training.

Funding
KG was supported by MSU Plant Science Fellowship, and the Michigan
Wheat Program. GNMB was supported by AgBioResearch (Project
GREEEN GR-16-043). NVP was supported by NSF BEACON (Project #988).
GB acknowledges support from the US National Science Foundation
(NSF) DEB 1737898.

Availability of data and materials
Sample origins, barcode regions, and accession numbers for all datasets
used in the current study can be found in Table 2. All custom scripts used
in the analysis are available in Additional files 1 and 2 or for download from
GitHub: [https://github.com/natalie-vandepol/compare_taxonomy].

Authors’ contributions
KG and GMNB conceived the idea, conducted the analysis, wrote the manuscript.
KG and GMNB contributed equally to this research and can be considered
co-first authors. NVP developed the python scripts. GB provided scientific
support and assistance with writing. All authors read and approved the
final version of the manuscript.

Ethics approval and consent to participate
This work did not involve human or animal subjects or protected species.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Plant Biology, Michigan State University, East Lansing,
Michigan 48824, USA. 2Department of Plant, Soil, & Microbial Sciences,
Michigan State University, East Lansing, Michigan 48824, USA. 3Department
of Microbiology & Molecular Genetics, Michigan State University, East
Lansing, Michigan 48824, USA.

Received: 27 August 2017 Accepted: 22 November 2017

References
1. Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS, Griffiths RI,

Schonrogge K. PIPITS: an automated pipeline for analyses of fungal internal
transcribed spacer sequences from the Illumina sequencing platform.
Methods Ecol Evol. 2015;6(8):973–80.

2. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of
fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH,

Gdanetz et al. BMC Bioinformatics  (2017) 18:538 Page 8 of 9

dx.doi.org/10.1186/s12859-017-1952-x
dx.doi.org/10.1186/s12859-017-1952-x
dx.doi.org/10.1186/s12859-017-1952-x
dx.doi.org/10.1186/s12859-017-1952-x
dx.doi.org/10.1186/s12859-017-1952-x
https://github.com/natalie-vandepol/compare_taxonomy


Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and
applications. New York: Elsevier; 1990. p. 315–22.

3. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS
as an environmental DNA barcode for fungi: an in silico approach reveals
potential PCR biases. BMC Microbiol. 2010;10(1):189.

4. Schoch CL, Seifert KA, Huhndorf S. Nuclear ribosomal internal transcribed
spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl
Acad Sci. 2012;109(16):6241–6.

5. Hibbett D, Abarenkov K, Koljalg U, Öpik M, Chai B, Cole JR, et al. Sequence-
based classification and identification of fungi. Mycologia. 2016;108(6):1049–68.

6. Dentinger BT, Didukh MY, Moncalvo JM. Comparing COI and ITS as DNA
barcode markers for mushrooms and allies (Agaricomycotina). PLoS One.
2011;6(9):e25081–8.

7. Bazzicalupo AL, Bálint M, Schmitt I. Comparison of ITS1 and ITS2 rDNA in 454
sequencing of hyperdiverse fungal communities. Fungal Ecol. 2013;6(1):102–9.

8. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H. ITS1 versus
ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour. 2013;13(2):218–24.

9. Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P. ITS-1 versus
ITS-2 pyrosequencing: a comparison of fungal populations in truffle
grounds. Mycologia. 2011;103(6):1184–93.

10. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial hub
taxa link host and abiotic factors to plant microbiome variation. PLoS Biol.
2016;14(1):e1002352–31.

11. Kumar S, Carlsen T, Mevik B-H, Enger P, Blaalid R, Shalchian-Tabrizi K, et al.
CLOTU: an online pipeline for processing and clustering of 454 amplicon
reads into OTUs followed by taxonomic annotation. BMC Bioinformatics.
2011;12(2):182.

12. White JR, Maddox C, White O, Angiuoli SV, Fricke WF. CloVR-ITS: automated
internal transcribed spacer amplicon sequence analysis pipeline for the
characterization of fungal microbiota. Microbiome. 2013;1(1):6.

13. Bálint M, Schmidt P-A, Sharma R, Thines M, Schmitt I. An Illumina
metabarcoding pipeline for fungi. Ecol Evol. 2014;4(13):2642–53.

14. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al.
Introducing mothur: open-source, platform-independent, community-
supported software for describing and comparing microbial communities.
Appl Environ Microbiol. 2009;75(23):7537–41.

15. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
et al. QIIME allows analysis of high-throughput community sequencing data.
Nat Methods. 2010;7(5):335–6.

16. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460–1.

17. Altschul SF, Gish W, Miller W, Myers EW. Basic local alignment search tool. J
Mol Biol. 1990;215(3):403–10.

18. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl
Environ Microbiol. 2007;73(16):5261–7.

19. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon
reads. Nat Methods. 2013;10(1):996–8.

20. Edgar R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS
sequences. bioRxiv. 2016;074161 doi:10.1101/074161.

21. Cole JR, Chai B, Farris RJ, Wang Q, Kulam AS, McGarrell DM, et al. The
ribosomal database project (RDP-II): sequences and tools for high-throughput
rRNA analysis. Nucleic Acids Res. 2005;33:D294–6.

22. Liu Z, DeSantis TZ, Andersen GL, Knight R. Accurate taxonomy assignments
from 16S rRNA sequences produced by highly parallel pyrosequencers.
Nucleic Acids Res. 2008;36:e120.

23. Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et
al. The UNITE database for molecular identification of fungi – recent
updates and future perspectives. New Phytol. 2010;186(2):281–5.

24. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al.
Towards a unified paradigm for sequence-based identification of fungi. Mol
Ecol. 2013;22(21):5271–7.

25. Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U,
et al. UNITE: a database providing web-based methods for the molecular
identification of ectomycorrhizal fungi. New Phytol. 2005;166:1063–8.

26. Deshpande V, Wang Q, Greenfield P, Charleston M, Porras-Alfaro A, Kuske CR,
et al. Fungal identification using a Bayesian classifier and the Warcup training
set of internal transcribed spacer sequences. Mycologia. 2016;108(1):1–5.

27. Sun Y, Cai Y, Huse SM, Knight R, Farmerie WG, Wang X, et al. A large-scale
benchmark study of existing algorithms for taxonomy-independent microbial
community analysis. Brief Bioinform. 2012;13(1):107–21.

28. Plummer E, Twin J. A comparison of three bioinformatics pipelines for the
analysis of preterm gut microbiota using 16S rRNA gene sequencing data. J
Proteomics Bioinformatics. 2015;8(12):1–9.

29. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina
paired-end reAd mergeR. Bioinformatics. 2014;30(5):614–20.

30. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should
replace operational taxonomic units in marker gene data analysis. bioRxiv.
2017;113597 doi:10.1101/113597.

31. Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS
amplicon sequencing. bioRxiv. 2016;081257 doi:10.1101/081257.

32. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal
database project: data and tools for high throughput rRNA analysis. Nucleic
Acids Res. 2013;42:D633–42.

33. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves
sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):
2194–200.

34. R Core Team. R: a language and environment for statistical computing. Vienna:
R Foundation for Statistical Computing; 2016. URL: https://www.R-project.org.

35. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2009. http://ggplot2.org.

36. Smith DP, Peay KG. Sequence depth, not PCR replication, improves
ecological inference from next generation DNA sequencing. PLoS One.
2014;9(2):e90234–12.

37. Oliver AK, Mac A, Jr C, Jumpponen A. Soil fungal communities respond
compositionally to recurring frequent prescribed burning in a managed
southeastern US forest ecosystem. For Ecol Manag. 2015;345:1–9.

38. Nilsson RH, Kristiansson E, Ryberg M. Intraspecific ITS variability in the
kingdom fungi as expressed in the international sequence databases and its
implications for molecular species identification. Evol Bioinformatics Online.
2008;4:193–201.

39. Ryberg M, Nilsson RH, Kristiansson E, Töpel M, Jacobsson S, Larsson E.
Mining metadata from unidentified ITS sequences in GenBank: a case study
in Inocybe (Basidiomycota). BMC Evol Biol. 2008;8(1):50–14.

40. Mullineux T, Hausner G. Evolution of rDNA ITS1 and ITS2 sequences and
RNA secondary structures within members of the fungal genera
Grosmannia and Leptographium. Fungal Genet Biol. 2009;46(11):855–67.

41. Monard C, Gantner S, Stenlid J. Utilizing ITS1 and ITS2 to study
environmental fungal diversity using pyrosequencing. FEMS Microbiol Ecol.
2013;84(1):165–75.

42. Öpik M, Davison J, Moora M, Zobel M. DNA-based detection and
identification of Glomeromycota: the virtual taxonomy of environmental
sequences. Botany. 2014;92(2):135–47.

Gdanetz et al. BMC Bioinformatics  (2017) 18:538 Page 9 of 9

http://dx.doi.org/10.1101/074161
http://dx.doi.org/10.1101/113597
http://dx.doi.org/10.1101/081257
https://www.r-project.org
http://ggplot2.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Data accessibility
	Generation of operational taxonomic units
	Database formatting and classifier training
	Taxonomy assignment
	Post-taxonomy data processing

	Results
	Power of classifiers
	Consistency of classifiers
	Python tool outputs

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

