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Abstract

Background: Gene expression profiling has led to the definition of breast cancer molecular subtypes: Basal-like,
HER2-enriched, LuminalA, LuminalB and Normal-like. Different subtypes exhibit diverse responses to treatment. In
the past years, several traditional clustering algorithms have been applied to analyze gene expression profiling.
However, accurate identification of breast cancer subtypes, especially within highly variable LuminalA subtype,
remains a challenge. Furthermore, the relationship between DNA methylation and expression level in different

breast cancer subtypes is not clear.

Results: In this study, a modified ISA biclustering algorithm, termed AP-ISA, was proposed to identify breast cancer
subtypes. Comparing with ISA, AP-ISA provides the optimized strategy to select seeds and thresholds in the
circumstance that prior knowledge is absent. Experimental results on 574 breast cancer samples were evaluated
using clinical ER/PR information, PAM50 subtypes and the results of five peer to peer methods. One remarkable
point in the experiment is that, AP-ISA divided the expression profiles of the luminal samples into four distinct
classes. Enrichment analysis and methylation analysis showed obvious distinction among the four subgroups.
Tumor variability within the Luminal subtype is observed in the experiments, which could contribute to the

development of novel directed therapies.

Conclusions: Aiming at breast cancer subtype classification, a novel biclustering algorithm AP-ISA is proposed in
this paper. AP-ISA classifies breast cancer into seven subtypes and we argue that there are four subtypes in luminal
samples. Comparison with other methods validates the effectiveness of AP-ISA. New genes that would be useful for
targeted treatment of breast cancer were also obtained in this study.
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Background

Breast cancer is a complex and heterogeneous disease
and one of the leading causes of cancer-related death
among women. The prognosis of breast cancer patients
has been improved over time. However, further improve-
ments in targeted treatment for breast cancer patients
are expecting to solve the problem that why current
therapy has effect only on a portion of the patients. A
major milestone on the way to this goal is the definition
of breast cancer molecular subtypes based on gene ex-
pression profiles: Basal-like [1], LuminalA, LuminalB,
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HER2-enriched and Normal-like [2-5], which are used
in PAM50 [6]. SCMGENE and IntClust are also breast
cancer classification system [7, 8]. SCMGENE includes
only four subtypes which could not reflect the whole dif-
ference in expression profiles, while IntClust classifies
the breast cancer into ten subclasses which needs further
validation. Most studies performed gene expression ana-
lysis using a published ‘intrinsic gene list’ [6], which con-
sisted of genes with significant variation in expression
between different tumors, rather than between paired
samples from the same tumor [4]. Recently, breast can-
cer are divided into subgroups according to expression
patterns, especially LuminalA breast tumors [9].

Several approaches were used to analyze patterns in
gene expression data [2, 10], such as hierarchical cluster
which grouped samples based on the similarity of the
expression across all genes. These traditional clustering
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approaches perform well only in finding global patterns.
Many regulatory patterns, however, involve only a subset
of genes and/or samples. For this reason, biclustering al-
gorithms [11, 12] have been developed for biological
data analysis to find local patterns in the data [13-15]. A
bicluster is defined as a subgroup of genes that are co-
expressed across only a subset of samples. Iterative sig-
nature algorithm (ISA) is a biclustering algorithm [16].
However, ISA biclustering results might be variable be-
cause seeds are selected randomly. Moreover, the sam-
ples’ number in every bicluster is similar since constant
threshold is used, which can not reflect the ratio of each
subtype in clinical diagnosis.

Epigenetic modification, such as DNA methylation,
plays an important role in development, chromosomal
stability and maintaining gene expression states [17]. In
normal samples, the methylation status of CpG (Cyto-
sine & Phosphoric acid & Guanine) sites were shown to
unmethylated in CpG islands and methylated in gene
body. It is proved that DNA methylation changes play a
vital role in cancer initiation and progression [18, 19].
Especially, silencing of cancer suppressor genes was as-
sociated with promoter hypermethylation. Several recent
studies show that breast cancer subtypes associate with
methylation patterns [20]. Less is known about the rela-
tionship between DNA methylation and expression level
in different breast cancer subtypes.

In this paper, a hybrid method, titled AP-ISA (Iterative
Signature Algorithm based on Affinity Propagation), was
proposed to classify breast cancer into subtypes, which in-
tegrated AP (Affinity Propagation) clustering [21, 22] and
ISA (Iterative Signature Algorithm) [16]. AP-ISA embed-
ded the result of AP clustering in ISA seed selection as
prior knowledge. The aim of this study is to improve the
classification performance of breast cancer subtypes and
explore the association between DNA methylation level
and gene expression in the subtypes. Experimental results
validate the proposed method, which could contribute to
targeted drug development and precision diagnosis.

Methods

Materials

The breast cancer dataset used in this study was derived
from TCGA (The Cancer Genome Atlas) project [23],
which consisted of 525 breast tumors and 22 normal
breast samples. There are 17,815 genes in the dataset
and we extracted 1906 genes using ‘intrinsic gene list’
[6]. DNA-methylation data was obtained from TCGA on
the same samples. ER and PR information are also
adopted to help the analysis. The datasets were stored at
publicly available website (https://tcga-data.nci.nih.gov/
docs/publications/brca_2012/) and intrinsic gene list can
be obtained from publicly available website (http://asco
pubs.org/doi/suppl/10.1200/jco.2008.18.1370).
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The design of the study

Biclustering is a method that finds sub-matrices inside a
matrix on the basis of “local similarity” criterion. For
gene expression data, sub-matrices are done simultan-
eously for genes and samples. Biclustering allows to ob-
tain overlapping biclusters, in which a gene can be
involved in different regulation patterns. Generally, ISA
method is an iterative procedure using a random seed
vector to start and its threshold are same for every seed.
Among the existing biclustering algorithms [24], ISA
performs effectively and efficiently. However, in ISA, ini-
tial seeds could influence biclustering results and the
prior probability of subtype is not taken into account
due to the lack of prior knowledge. When ISA is used to
classify breast cancer, considering the existing problem,
we put forward a modified ISA approach based on AP
clustering, that is, AP-ISA. There are two important
characteristics in AP-ISA. The first one is that, instead
of random selection, seeds are produced based on the
result of AP clustering, where the ratio of breast cancer
subtypes in clinical diagnose could be adopted. Providing
different thresholds for different seeds is the other char-
acteristic of AP-ISA. We set smaller thresholds for the
seed categories with bigger size, to guarantee that the
biclusters with bigger size can be obtained, and vice
versa. Therefore, the biclustering results could reflect
the clinical diagnosing information.

Iterative signature algorithm

Compared to other biclustering algorithms, ISA is effect-
ive to deal with gene expression data. It is a process to
extract the TM (Transcription Module) [15, 16]. Each
TM contains both a set of genes and a set of experimen-
tal conditions. The conditions of the TM induce a co-
regulated expression of the genes belonging to this TM.
It means, the expression profiles of the genes in the TM
are the most similar to each other when compared over
the conditions of the TM. Conversely, the patterns of
gene expression obtained under the conditions of the
TM are the most similar to each other when compared
only over the genes of the TM. The degree of similarity
is determined by a pair of threshold parameters. The
ISA starts from a set of randomly selected genes or con-
ditions, then iteratively refines the genes and conditions
until they match the definition of a TM.

Considering a gene expression matrix E of size m x n,
where m and n are the number of samples and genes,
the ISA algorithm performs in the following way. Firstly,
it creates a group of seeds, that is, a group of random
sparse 0/1 vector of size m. For each seed, the following
iteration is performed. We take a seed vector ¢° as ex-
ample. The non-zero elements of ¢° are used to select a
subset of the samples (rows of E). It also can use ‘smart
seeding, where the seeds are biased to start with certain
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sets of genes or samples based on prior knowledge.
Row-normalized matrix E- and column-normalized
matrix Eg are calculated. Ec is multiplied by ¢°, and the
result is processed by threshold ¢, to get the vector gy
with size n. The non-zero elements of g, are used to se-
lect a subset of the genes (columns of E). In a similar
way, Eg is multiplied by go, and processed by threshold
tc in order to obtain the vector ¢' with size m. This
procedure iteratively proceeds until either g~ and g,
¢~V and ¢“are approximate enough according to con-
vergence criteria, where i is the maximum of iteration
times. The non-zero elements in g”?and ¢ are selected
as genes and samples in the bicluster based on c°. If n
seeds are initialized in the beginning, there will be n
biclusters, from which some biclusters are selected
according to the diversity as the final clustering results.

From the above procedure, it can be seen that there
are two important parameters in ISA, which will affect
the results. They are the two thresholds: ts for columns
that associates with genes and ¢ for rows that is related
to samples. For example, if the row threshold ¢¢ is high,
the biclusters will contain more similar samples. Lower
threshold values, in turn, will provide bigger biclusters
with less similar samples. In this work, we use R package
isa2 to implement ISA algorithm [25].

AP-ISA: Modified ISA based on AP clustering algorithm
Considering ISA algorithm is quite sensitive to the initial
seeds, we innovatively use the result of AP algorithm as
the prior knowledge for seed selection. Thus, AP-ISA, a
modified ISA algorithm based on AP clustering, comes
into being. AP is a clustering algorithm that takes simi-
larity measures between pairs of data points as input.
Real-valued messages are exchanged between data points
until a high-quality set of exemplars and corresponding
clusters gradually emerge [21]. Here the samples in AP
clusters are used to select and classify useful seeds and
further, to control the selection of thresholds, which
guarantees that the biclusters’ size is reasonable com-
pared with real distribution of breast cancer subtypes.
The AP-ISA algorithm performs as follows.

Step 1. AP clustering. For gene expression matrix E, AP
takes a collection of real-valued similarities between
samples as input. A parameter K is set. K is the desired
number of clusters. AP clustering results are K sample
subsets, which are denoted as S; (i = 1, 2...K).

Step 2. Seed selection and clustering. ISA algorithm is
adopted to created 10,000 random sparse 0/1 vector of
size m as seeds, where m is the number of samples.
The seeds are gathered into K clusters to guarantee
that, the seeds whose corresponding samples of non-
zero elements are in the same AP cluster S;, are
assigned to the same group C;. There are some seeds
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that violate the guarantee, which means that the corre-
sponding samples of non-zero elements in the seeds are
not in the same AP resulting cluster. Therefore, they
cannot be allocated into any of the K resulting clusters.
These seeds are deleted. We denote all remaining seeds
as matrix C=C, U C, U U Cx, where C; (i=1, 2,
..., K) is the i-th seed group. Generally, the number of
seeds in C is less than 10,000. For bigger scale cluster
in AP results, bigger scale seed cluster will be obtained
accordingly.

Step 3. Biclustering. The seed matrix C and gene
expression matrix E are used as input of the ISA
process. The two thresholds s and t¢ are set for each
seed group respectively. For a seed ¢° (¢° € C), it
multiplied by row-normalized matrix E, and the result
is processed by threshold ¢ to get the vector g°. In a
similar way, column-normalized matrix Eg is multiplied
by ¢°, and processed by threshold zc. After this iterative
procedure, a bicluster corresponding to c° is obtained.
For each seed in C, one biclsuter will be produced.
Finally, the biclusters with bigger diversity are chosen.

It is worth noting that the sample size of each bicluster
S; (i=1, 2...K) represents the possibility of breast cancer
subtypes happening in clinical diagnosis. The greater the
number of samples in S; the more seeds in C; than in
other seed groups (i=1, 2...K). For bigger size of seed
group, it is better to set smaller row threshold so that the
biclusters will have more samples. Smaller size of seed
group, in turn, should be matched with bigger row thresh-
old for providing biclusters with less and more similar
samples. The AP-ISA algorithm is described as follows.

In brief, the main merits of AP-ISA are as follows. AP
algorithm is adopted to capture the subtypes distribution
information in clinical diagnosis. AP clustering results
are used to classify and select the randomly-generated
seeds for ISA, which ensures that the seeds could reflect
the subtypes’ incidence. Then different thresholds are set
for different seed categories, in order that the bicluster-
ing results keep consistent with the real subtypes’ occur-
rence rate as far as possible.

Results

Several studies have shown that breast tumors can be di-
vided into at least five molecular subtypes based on gene
expression profiles. Indeed, different subtypes have dif-
ferent expression patterns. Luminal/ER+ breast cancer is
the most heterogeneous in terms of gene expression and
patient outcomes, ~66% of clinically tumors fall into
Luminal subtype in the dataset used in this paper. The
basal-like tumors are typically negative for ER, PR and
HER2, so these tumors are often referred to triple-
negative breast cancers (TNBCs). Only ~18% of clinic-
ally tumors fall into basal-like subtype. HER2 subtype
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Algorithm :AP-ISA

1.

Initialize S,,---, S, by performing AP clustering on the rows (samples) of the gene

expression matrix E.
Based on the 10000 random sparse 0/1 vector with the size of samples’ number in £ ,

generate C,--+,C, as seeds according to S,---, S .

For a seed CO(CO eC,C=( UCZ U"'UC,() , iteratively update ¢ and g as the

following equations until convergence:

g(n+l) — _f;G (Egc(n))

c()Hl) — f;(v (EGg()Hl))

Where f{(.) is the threshold function, which used to evaluate and select the samples and
genes. In the evaluation stage, if a sample (or gene) x only locates in a cluster A, it is scored
as 1. If the sample (or gene) x belongs to the cluster A, and meanwhile locates in other n-1

1

clusters, it is scored as ; . In the select stage, () selects the samples (or genes) according to

t; and f.. t; is threshold for column that associates with gene and 7. is threshold for

row that is related to sample. For seeds in the same category, f; and f. are the same.

The rows (samples) and columns (genes) with non-zero elements in ¢ and g are gathered
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into a bicluster.

5. Collecting all the biclusters generated in Step 4,

C | biclusters are obtained. According to

the diversity, some biclusters are selected as the final results.

deals with DNA amplification of HER2 and over-
expression of multiple HER2-amplicon-associated genes,
and ~11% of tumors are HER2-enriched. The other 5%
breast tumors are Normal-like subtype. In this study, we
used the PAM50-defined subtype predictor as the classi-
fication metric.

AP-ISA algorithm was performed on the dataset for
clustering analysis using previously published ‘intrinsic
gene list’ [6]. We carried out AP clustering to analyze all
samples with the parameter K =5, since there are five
acknowledged subtypes in breast cancer. Although the
set size of possible input seeds is huge, there exists a ra-
ther limited number of fixed points for given thresholds
(tg, tc) [16]. Therefore we set the initial seeds number to
10,000, which is big enough. Then, 10,000 random
sparse 0/1 vectors were created with size equal to the
samples number. These sparse 0/1 vectors, acting as
seeds, were filtered and clustered to five seed types ac-
cording to the result of AP clustering. For the sake of
calculating convenience, 100 seeds were selected ran-
domly based on the ratio of five seed types and applied
to ISA algorithm, including 30, 15, 35, 15 and 5 in every

seed set. For AP-ISA, the content of a particular module
depends on the thresholds (¢g, £c). It is noted that there
is a hierarchical structure of modules that persists over a
finite range of the thresholds. This hierarchical structure
resembles the tree structures and have the characteristic
that branches may share common genes or conditions.
So we try tg and tc in the range of [1, 2] and finally, for
the five subtypes, t; was set to 1, 1.4, 0.9, 1.4 and 2 re-
spectively, while ¢c was set to 1.6 consistently.

AP-ISA biclustering results highlight many conclu-
sions from the original work of Serlie et al. [2—4]. Some
results are verified by other works [9, 23]. We also
achieve some new results that need further investigation.
Detailed results are listed as follow.

Gene expression and clinical analysis

Nine biclusters were obtained by AP-ISA algorithm.
Table 1 shows the samples number in nine biclusters
based on the label of PAM50-defined subtypes. Figures
S1 to S9 in Additional file 1 summarize the composition
of each bicluster.
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Table 1 AP-ISA biclusters composition comparing to

PAM-50 labels
Basal-like HER2+ LuminalA LuminalB Normal-like Totalnum

Bicluster1 0 0 6 0 24 30
Bicluster2 5 4 9 1 3 22
Bicluster3 0 42 5 8 0 55
Bicluster4 90 1 0 0 0 91
Bicluster5 0 0 33 25 1 59
Bicluster6 0 0 31 17 0 49
Bicluster/ 0 3 22 33 1 59
Bicluster8 37 16 22 14 3 92
Bicluster9 0 0 97 19 0 117

The biclustering results exhibit correspondence with
PAMS50 labels in some degree. Most Normal-like, HER2-
enriched and Basal-like samples fall into three different
biclusters, that is, Bicluster 1, 3 and 4. Whereas, most
Luminal samples split into four biclusters: one luminal A
biclusters (Bicluster 9), and the other three biclusters are
composed of mixed samples from LuminalA and Lumi-
nalB (Biclusters 5, 6 and 7). For Bicluster 2 and 8, We
cannot obtain valuable information in enrichment ana-
lysis and methylation analysis, which might be due to
the fact that they are composed of samples from all the
subtypes. Therefore, Bicluster 2 and 8 did not be men-
tioned in subsequent analysis. Furthermore, we consider
ER and PR as classification factor [26, 27].

Basal-like subtype (Bicluster 4) is often referred to
triple-negative breast cancer (TNBCs) [28]. ~90% breast
tumors are typically negative for ER and PR in AP-ISA
biclusters, which are listed in Table 2. Basal-like tumors
contain high expression genes that associate with cell
proliferation. Detailed gene information is shown in
Figure S4 of Additional file 1. AP-ISA biclustering
method also identified some over-expressed genes, like
ROPN1, CRABP1 [29], MIA and FOXC1 [30, 31]. Given
that most Basal-like breast cancers have bad prognosis,
finding new drug targets for this group is critical. Our

Table 2 Sample number of ER and PR status in biclusters from

AP-ISA

Class type ER+ ER- PR+ PR-
Bicluster 1 27 3 23 6
Bicluster 2 15 6 14 7
Bicluster 3 33 19 23 31
Bicluster 4 11 75 6 79
Bicluster 5 57 1 47 10
Bicluster 6 49 0 45 4
Bicluster 7 57 0 50 7
Bicluster 8 50 40 43 46
Bicluster 9 12 2 108 6
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study suggests that these genes or mediation pathway
these genes regulated might provide therapeutic targets.

HER2 DNA amplification is a characteristic signature
for HER2 breast tumors [32]. Unlike other biclusters,
HER2 subtype (Bicluster 3) shows less characteristic in
ER status as shown in Table 2. This study also highlights
DNA amplification of other potential therapeutic targets
in HER2-enriched subtype, including genes FGFR4 [33],
TCAP and GRP7 [34].

Luminal breast cancer is the most heterogeneous in
terms of gene expression, though they are typically posi-
tive for ER and PR as shown in Table 2. In this study, lu-
minal samples were split into four biclusters. We
designate them as Luminal-5 (Bicluster5), Luminal-6
(Bicluster6), luminal-7 (Bicluster7) and Luminal-9
(Bicluster9). High mRNA and protein expression in
breast luminal cells is one feature of luminal subtype, in-
cluding genes ESR1, XBP1, GATA3 [35, 36] and MYB.
To explore its substructures, we referred PAM50 class
labels in Table 1.

The most obvious property of the resulting partitions
was different gene composition and expression pattern
in each luminal bicluster. Indeed, the four luminal
biclusters have different genes and samples. Luminal-9
subgroup, in which totally 93 genes are over-expressed,
is composed of samples almost all from LuminalA, and
there is only several genes overlapping with the other lu-
minal subgroups. Some LuminalA samples are contained
within Luminal-5, Luminal-6 and Luminal-7, which
composed of both Luminal A and Luminal B samples.
This suggests that Luminal-5, Luminal-6 and Luminal-7
samples are much similar to luminal B samples in ex-
pression profile, while compared with samples in
Luminal-9.

Genes expression heatmap reveals that Luminal-5
samples are typically over-expressed in PVALB, CGA
[37, 38] and TRH. A number of over-expressed genes,
like GRIA2 and CYP2A7, are related to Luminal-6. In
contrast, Luminal-7 subgroup, which is enriched with
LuminalB samples, does not have obvious manifestation
comparing to other biclusters. There is no overlapping
gene across four biclusters. According to these results,
we suggest that Luminal samples can be further parti-
tioned into finer subgroups, which tallies with the recent
research [9]. This new subtype partition may have im-
portant clinical meaning for breast cancer.

To further validate the effectiveness of AP-ISA, we in-
vestigated the genes related to breast cancer subtypes in
GeneCards database (http://www.genecards.org/). In this
database, there are three genes associated to Normal-
like, 190 to Basal-like, 512 to HER2+, and 444 to Lu-
minal subtype respectively. We intersected the genes for
each subtype between AP-ISA results and GeneCards
database in Fig. 1. Left side of Fig. 1 represents the
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Fig. 1 Gene comparsion between biclsutering and GeneCards
database. Left side represents the number of genes in GeneCards,
right side represents the result of biclsutering in our study, while the
middle column stand for intersection number. Four Luminal
subgroups in our study all intersect with Luminal in GeneCards

number of genes in GeneCards, right side represents the
AP-ISA result, while the middle column stands for inter-
section gene number. Four Luminal subgroups in our
study intersect with Luminal type in GeneCards.

Table 3 lists the intersection genes in each breast
cancer subtype between AP-ISA clusters and
GeneCards. In previous analysis, Lumianl-7 did not
show obvious pattern in gene expression. However,
Luminal-7 has 4 overlapping genes with genes associ-
ated with Luminal subtype in GeneCards database.
Furthermore, almost all intersection genes in Table 3
are mentioned in previous analysis, like GRB7, ERBB2
in HER2+, FABP7 in Basal-like, ESR1, XBP1 in Lu-
minal. In summary, many genes in AP-ISA results
consist with currently acknowledged genes, which
proves the accuracy and reliability of AP-ISA for
classification of breast cancer.

Table 3 Intersection genes between AP-ISA biclusters and
GeneCards database

Subtype Intersection Genes
gene number
HER2+ 8 GRB7;ERBB2;CASP3,SDC1,STARD3;ABCC3;
GSK3B;CEACAM5
Basal-like 8 GABRP;MSH2,CDKN2AENT;YBX1T,VGLLT;
FABP7; FOXC1

BCL2,GATA3,RERGESR1; BAGT;,CCND1
BCL2;ESRT;DACHT;BAGT;XBP1
SLCOA3RT;KRT19;,CANX;YWHAZ

PGR;EPHX2;BCL2;,CYB5AMUCT:RAB3T;MYB;
ESR1,SREBF1;XBPT;LRIG1

Luminal-5 6
Luminal-6 5
Luminal-7 4

Luminal-9 11
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Enrichment analysis

In order to identify the genes that can distinguish breast
cancer subtypes, we performed Gene Ontology and
KEGG Pathways enrichment analysis, according to the
subtype partition achieved by AP-ISA. Analysis results
are shown in Table 4.

It is observed that, the two genes KRT17 and KRTS5,
which gathered in bicluster 1, are over-expressed in
breast basal epithelial cells of Normal-like samples.
Regulating genes about cell proliferation and cell differ-
entiation appeared in Normal-like subtype. This fact is
based on two annotations (Gene Ontology: “regulation
of cell proliferation” p = 4.38E-10, Gene Ontology: “cell
differentiation” p=1.07E-08). We also find KEGG
Pathways “PPAR signaling pathway” (p =4.58E-04) in
this subtype [39].

HER2-enriched samples, which are mostly gathered
in  Bicluster 3, exhibit high expression of
ERBB2. FGFR4 and GRP7. They play a crucial role in
epidermal growth factor receptor signaling pathway
(Gene Ontology:“epidermal growth factor receptor sig-
naling pathway” p = 6.944E-03) [40]. A number of over-
expressed genes in Basal-like samples are related to KEGG
Pathways “p53 signaling pathway” (p = 3.15E-05, shown in
Fig. 2) [41] and “Pathways in cancer” (p = 4.489E-03).

For Luminal subtype, on the basis of Gene Ontology,
Luminal-5, 6, 9 are typically enriched in “CD8+, alpha-
beta T cell lineage commitment” (p < 0.5E-02), and “Wnt
signaling pathway” [42] (p = 7.896E-03) also enriched in
Luminal-5. Referring to Lumianl-5, the over-expressed
genes in Luminal-6 were related to Retinol metabolism
(p=4.07E-03). Gene Ontology “beta-Alanine metabol-
ism” (p =5.476E-03) appeared in Luminal-9. Table 4
contains a list of significant pathways, and the full list
can refer to Additional file 2. In summary, samples in
each AP-ISA bicluster exhibit significant difference
based on the annotation databases.

Analysis of DNA methylation in AP-ISA biclusters

Breast cancer have been proved to be heterogeneous in
gene expression. To further identify and characterize
clinically significant markers within breast cancer sub-
types, we explored breast cancer patient variability on
the epigenetic level as well, using HumanMethylation27
(HM27) and Human Methylation450 (HM450) array
dataset that are available from TCGA.

In this study, methylation sites were divided into six
categories using FEM package in R, including TSS200,
TSS1500, 5’UTR, 3'UTR, gene body and 1st Exon [43].
TSS200, TSS1500, 5’UTR and 1st Exon are located in
gene promoter region. Considering different gene ex-
pression profile in AP-ISA biclusters, we analyze methy-
lation level for different area in each bicluster.
Methylation level was measured using average /3 value of
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Table 4 Significant genes in AP-ISA biclusters and the most distinct gene enrichment pathways by Gene Ontology and KEGG

Class type Term (Enrichiment type) P-value significant genes
Normal-like regulation of cell proliferation (Gene Ontology) 438E-10 CDKN1CTXNIP;,DPT;EDNRB; KL;
lati f ticellul ) | FIGF,ANXAT,NRG1;HOXA5; ID4;
regulation of multicellular organismal process 1.03E-09 ID4IGF 11GFBP6:AQPT:KIT-AQP1:
(Gene Ontology) LIFRPPARG,PRNP:NDRG2; CAV1
cell differentiation (Gene Ontology) 1.07E-08 PTN;PTPRM;RBP4,CX3CL1; CAV2;
) . SFRP1;TGFBR2;TGFBR3; KLF4;
PPAR signaling pathway (KEGG Pathways) 4.58E-04 KRTS:PPAP2B:KRT17:CD36; RBP4:;
HER2+ single-organism process 1.29E-04 ERBB2;FGFR4;GRB7,GSK3B; FA2H;
epidermal growth factor receptor signaling pathway 6.944E-03 PSMD3BIKCDCOCLTCGKIE;
| : ODF2,RAP1GAP;ST00A8,SDC1,CDCE;
(Gene Ontology) STX1ATMSB10;SNF8;FHODT;
ERBB signaling pathway (Gene Ontology) 7.514E-03 EAF2,VPS37BWIPF2;TCAP,STARD3;
Basal-like cell cycle process 1.09E-05 CDK6;,CDKN2A:MSH2;FZD9; FABP7;
lymphocyte differentiation (Gene Ontology) 1.019E-03 E\B6KD6Eé%}QIJIZAACCCE:\IE;ACFDACﬁgAMlA
B cell activation (Gene Ontology) 8.673E-03 FOXCT,STMNT,MSH2,TTKENT;
o CDK2AP1,RAD54L,CDC123;DSC2;
p53 Slgnallng pathway (KEGG PathWayS) 3.15E-04 GTPBP4:PHGDH;CDCA8:B3GNTS5;
Pathways in cancer (KEGG Pathways) 4489E-03 CENPN;TTYHT;SUV39H2,ROPNT;
CRABPT;KLK6; VGLLT,;SERPINBS;
Luminal-5 mammary gland epithelium development 1.15E-05 CCND1;ESRT;GATA3;TBX3; BTF3;
Wnt signaling pathway (Gene Ontology) 7.896E-03 \IQI/VI\IFZ?I;’(\:/;ZL(B:ECLSBF?JLLCE?XZGQKP1A
CD8-positive, alpha-beta T cell lineage commitmen 4.294E-03 C50rf30,SLC16A6;BEXT,GLDGHAGH;
(Gene Ontology) ZNF24;LRBA;C60rf211;YPEL3;,COX6C;
LAMA3;MKL2,RAD17;BCAS1; CGN,;
SERPINA5;HSPB8,COX17;ING2;
Luminal-6 Glutamate receptor signaling pathway 2.316E-03 BCL2;WNT3;ESR1;SERP1:PIGT; TLE3;STC1;
(Gene Ontology) ARNT2:PKIB;,ZFX; HAGH;
- ) ) IGBP1;HPN;DNAJC12,TBCA;BCAST;
(CGDeifg(g:L\éi;a\?ha—beta T cell lineage commitment 3.87E-03 CCNHACBD4GRIA2:CYP2A7:BAI2: GRIAT:
9 XBP1SIAH2,CPEB4; MAP2K4;
response to insulin-like growth factor stimulus 7.726E-03 SLC27A2;PNPLA4SLCTA2; MAST4;
(Gene On‘[ology) CYB5R1;CARTPT,RABEP1,RAD17;
) ) COX6C,QDPR,SECT1C;
Retinol metabolism (KEGG Pathways) 407E-03
Luminal-9 CD8-positive, alpha-beta T cell lineage commitment 4.717E-03 XBP1:BCL2;C30rf18,CIRBP,GADT;
(Gene Ontology) PKIB;APH1B;NAT1,RAB30; ABAT;
N f imul BCL2,MYO5C,CA12,SIAH2,MKL2;
response to insulin-like growth factor stimulus 9.412E-03 TTC12REPS2NPY1RKIAA1370:
(Gene Ontology) NAT2RALGPS2,CYBRDTMUCT;
beta-Alanine metabolism (KEGG Pathways) 5476E-03 RAB31,RLN2;NTN4;MAP2K4;
MAST4;GALNT10;MYB;ESRT;
SREBF1,GFALS;TLE3;XBP1;
ACBD4,STC2;,ABAT;

CpG sites in the same area for the same sample. Figure 3
shows DNA methylation levels in different area of each
bicluster. We focus on TSS$200, TSS1500, 5’UTR and
gene body, since TSS200, TSS1500 and 5’UTR are near
to transcriptional start site (TSS). The situation of gene
transcription from TSS directly affects gene expression.
For 3'UTR and 1st Exon, AP-ISA results show that,
their methylation values fluctuate drastically in some
biclusters, such as biclusterl (Fig. 3a). In other biclus-
ters, no methylation site in 3'UTR and 1* Exon, like
bicluster4 (Fig. 3d).

In general, gene body area showed higher methylation
level than that in TSS200 and 5’'UTR, which are near to
TSS, except for Lumianl-7 (Bicluster 7). Normal-like

subtype (Fig. 3a) exhibits hypomethylation in TSS200,
while hypermethylaion dominates in gene body, 5UTR
and TSS1500, especially in TSS1500. This is similar to
methylation level in normal samples.

Referring to Normal-like samples, HER2-enriched
subtype samples (Fig. 3c) exhibit a distinct hypomethy-
lation in TSS200, TSS1500 and 5’'UTR, which may be
associated with DNA amplification of HER2 and over-
expression of multiple HER2-amplicon-associated
genes. Likewise, all Basal-like samples (Fig. 3d) show
hypomethylation in promoter region (TSS200, TSS1500
and 5’UTR).

Most luminal samples were assigned to four different
AP-ISA biclusters, that is, Luminal-5, 6, 7, 9. All these
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samples exhibited hypomethylation in TSS1500, TSS200
and 5’UTR, when compared to Normal-like samples.
Luminal-5 (Fig. 3e) and Luminal-6 (Fig. 3f) samples pre-
sented hypermethylation in gene body, especially
Luminal-6 showed even higher methylation level, while
compared to other luminal samples. Luminal-7 (Fig. 3g)
and Luminal-9 (Fig. 3j), on the other hand, manifested
opposite characteristic. They have lower methylation
level in gene body, especially Lumianl-7 samples. In
particular, Luminal-6 exhibited up-regulation in
TSS200 methylation area, which may be associated with
gene silence.

TSS200, TSS1500 and 5’'UTR are all in promoter re-
gion, but methylation level among them showed differ-
ence. In TSS200 and 5’'UTR, methylation level is similar,
but TSS1500 presents distinction. This observation
mainly highlights in HER2+ (Fig. 3c) and Basal-like sub-
type (Fig. 3d). In Luminal-5, Luminal-7 and Luminal-9
subgroups, the methylation patterns are consistent. In
conclusion, HER2-enriched and Basal-like subtype ex-
hibited hypomethylaion in promoter region, which re-
lated to up-regulation in related genes. For Luminal
subtypes, low methylation level existed in LuminalB-
enriched Luminal-7 and LuminalA-enriched Luminal-9,
between which difference are significant in the gene
body. Luminal-5 showed similar methylation levels in

TSS200, 5UTR and gene body comparing to HER2-
enriched and Basal-like, suggesting that the methylation
pattern of Luminal-5 is closer to HER2-enriched and
Basal-like. Thus, each breast cancer subtype has its dis-
tinct methylation pattern. Noting that, although TSS200,
TSS1500 and 5’UTR are all located in promoter region,
their methylation level are different obviously.

There is no apparent methylation pattern in bicluster
2 (Fig. 3b) and 8 (Fig. 3h), since methylation values fluc-
tuate drastically. Experimental results show that different
breast cancer subtype has different methylation pattern,
and gene expression is related to methylation in sub-
types. We suggest that DNA methylation should be
taken into account in breast cancer remedy, together
with subtype information.

Algorithm comparison and validation
AP-ISA is based on ISA [14]. Besides ISA, there are
several state-of-the-art biclustering methods, such as
Large Average Submatrices (LAS) [44], The Cheng
and Church biclustering algorithm (CC) [11], Sparse
Biclustering (Sparse BC) [45] and Sparse Singular
Value Decomposition (SSVD) [46]. We compare AP-
ISA with these methods.

LAS, CC and SSVD allow users to choose the number
of generated biclusters. We set 10 biclusters for the
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Fig. 3 Methylation analysis in six methylation areas exhibits differential methylation level among biclusters. The blue lines, red lines, black and gray
lines respectively display TSS200, TSS1500, 5'UTR and 1st Exon area which represent promoter region. The green lines represent genebody and the
pink lines 3'UTR. Horizontal axis indicates samples in AP-ISA biclusters. Values of vertical axis were calculated by averaging the methylaiton values in
the same sample

three method, to compare with the result of AP-ISA,
from which we obtained nine biclusters. We set § =0.1
For CC, Score cut off as 1000 for LAS to find the biclus-
ters higher than the score cut off. SSVD initially ran with
the parameter gamu = gamv =2 according to the refer-
ence [46], but it produced biclusters that contained most
of the available genes and samples. To solve this prob-
lem, we increased gamu and gamv from 2 to 30. The set-
tings of sparese BC were K=R =10, and A is calculated
by BIC, in order to guarantee that the result is compar-
able to the other methods. In ISA, the row and column
thresholds were set to 1.6. We analyze these methods
from three aspects and the comparison results are
shown as follows.

Bicluster size

Figure 4 shows the row and column dimensions of the
biclusters produced by all the methods. LAS and CC
generate a relatively wide range of biclsuter sizes, with

those of LAS from 21 to 361 in gene and from 62 to195
in sample. Biclusters obtained by SSVD have large num-
ber of samples and genes, with more than 260 samples
and 500 genes in every case. Noting that, the number of
biclusters produced by Sparse Biclustering is K x R, ran-
ging from 32 x 37 to 139 x 297, while the size range of
ISA’s biclusters are small. By contrast, AP-ISA’s biclsu-
ters are with moderate size and the number of samples
are neither too small nor too big.

Effective number of biclusters

Most biclustering algorithms allow to overlapped mem-
bers among biclusters. The favorable side is that over-
lapped gene and sample sets can capture underlying
biological mechanism, where a gene may play role in
multiple biological pathways or other activities. However,
too much overlap may reduce the effective output. For
example, two biclusters with high overlapping rate do
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not provide much more information than either biclus-
ter [44]. We use function F(-) to measure the effective
number of biclusters in U, ---,Ux by the following
equation [44]:

K 1 1
F(Ul , ...’U[() = Z(WZ&CEL[KN(X))

k=1

K
In the above equation, N(x) =) 1{xelx} is the
k=1

number of biclusters containing matrix entry x, 1/N(x)
means the contribution that the element x made to biclsu-
ter Uy. For example, for a entry x in Uy, the contribution
to Ug is 1, if x exists only in group Ug. Otherwise, the
contribution to Uy is 1/p, if p biclusters contain entry x.
F(-) has the property that if, for any 1 < r < K| the biclusters
U, -+, Ug can be divided into r non-overlapping groups
of identical biclusters, then F(U3, -+, Ux) = 1.

Table 5 shows the effective number of biclusters gener-
ated by the biclustering methods. The low overlap of CC
originates from the fact that it replaces missing data in the
matrices with random numbers. The low overlap of Sparse
Biclustering is due to the fact that it is actually an extend-
ing sparse one-way clustering and it assumed that each
observation and feature belong to an unknown and non-
overlapping classes respectively. The high overlap of SSVD
is explained in part by their large size. Biclusters obtained
by AP-ISA have moderate levels of overlap, less than other
methods, except CC and Sparse Biclustering.

Subtype capture

The aim of our study is to find breast cancer subtypes
and its related genes. We have obtained breast cancer
subtypes by AP-ISA, and compared it with PAMS50.
Here we compare the ability of capturing subtype sam-
ples based on PAM50. For each method, we identified
the biclusters that matched each subtype in PAMS50.
Table 6 lists the results.

We pick out the biclusters which can obviously reflect
subtypes, that is, samples in the bicluster has high over-
lapping rate with a subtype in PAMS50. SSVD cannot
work, since its biclusters have large size and consist all
subtype samples in PAM50. For LAS, the biclusters can
match with PAM50 subtype. However, some biclusters
are mixture of different subtypes. For example, bicluster
2 in LAS contains Normal-like and Luminal samples,
which are significantly different. Bicluster 5 and 7 in CC
identified Basal-like samples, but the samples’ number is
too small to reflect the Basal-like subtype truly. Lumi-
nalB in ISA and CC, ERBB2+ in CC and Sparse Biclus-
tering have not been captured. The information in
Table 6 exhibits that AP-ISA is an effective method to
capture breast cancer subtypes and it can not only cap-
ture each subtype, but also distinguish subtypes much
accurately than PAM50.

Discussion

Gene expression profiling has been proved to be useful
for breast cancer classification and treatment. In previ-
ous studies, unsupervised clustering, like hierarchical
clustering, was performed on breast cancer samples.
These methods can only find the global patterns in gene
expression profiles. In order to discover subtype-related
patterns, we proposed and applied a modified ISA

Table 5 Comparison of total number of biclusters, effective
number of biclusters and the ratio of the effective number to
the total number of biclusters

Method  Total number of biclsuters  Eff. number of biclusters  Ratio
AP-ISA 9 6.743 0.749
ISA 12 8489 0.707
LAS 10 4.799 0479
CcC 10 10 1

Sparse BC 70 70 1

SSVD 10 1.57 0.157
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Table 6 Biclusters in each method that match with PAM50

PAMS50 AP-ISA ISA LAS CcC SparseBC SSVD
Basal-like 4 5 1,10 57 3 -
ERBB2+ 3 6 8 - - -
LuminalA 56,9 1,4 2,3,7 1 4,6 -
LuminalB 57 - 3 - 1,4 -
Normal-like 1 2 2,6 1 7 -

biclustering algorithm, AP-ISA, on breast cancer gene
expression profiles to reveal new genetic patterns.
Biclustering method allows to cluster subset of patients
and genes simultaneously. In AP-ISA, AP clustering was
carried out before ISA biclustering to select seeds as
prior knowledge, and different thresholds were set for
different seeds. This process results in different bicluster
size comparing to ISA with randomly selected seeds and
the same threshold, which is better to explain breast
cancer subtypes in clinical diagnosis.

HER2-enriched samples (bicluster 3) and the Basal-
like samples (bicluster 4) conform to PAM50 labels to
a great extent. HER2-enrichied subtype exhibits up-
regulation in ERBB2, GRP7 and some other genes,
such as FGFR4 and TCAP. Enrichment analysis shows
that HER2-enrichied subtype is associated with epider-
mal growth factor receptor signaling pathway
(GO:0007173 p =6.944E-03). Activation of tyrosine
kinase receptors from the human epidermal growth
factor receptor family, related with gene EGFR, HER2,
HER3, HER4, plays a key role in the initiation and
progression of breast cancer [38]. Anti-HER2 is a vali-
dated therapeutic treatment, as shown by the clinical
efficacy of trastuzumab and lapatinib.

Genes in Basal-like subgroup, which is ER-negative,
PR-negative and HER2-negative, are enriched in p53 sig-
naling pathway (KEGG: 4115, p = 3.15E-04). Some genes
in Basal-like are outstanding in this pathway, like
CCNE1, CDK6, CDKN2A, SERPINB5. P53 encodes a
tumor suppressor protein containing transcriptional ac-
tivation, DNA binding, and oligomerization domains. In
some study, Basal-like tumors showed a high frequency
of p53 mutations [19], which may loss of p53 function
combined with p53 signaling pathway activity. This may
explain the question that why Basal-like samples have
much worse clinical outcomes than other subtypes.

In this study, experimental analysis shows that
current separation between luminal A and luminal B is
not clear. AP-ISA split the luminal samples into four
subgroups: Luminal-5, 6, 7 and 9. Luminal-7, which is
enriched with luminalB samples, exhibits a distinct
methylation pattern compared to the other three bicl-
suters, such as gene body shows obvious hypomethyla-
tion. In Luminal-5, 6 and 9, genes are significantly
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enriched in functions related to the immune system, in-
cluding enrichment of CD8+, alpha-beta T cell lineage
commitment (p < 0.5E-02). However, this is not appar-
ent in Luminal-7, suggesting that T cell activation pro-
cesses may play a important role in luminal A patients
and give rise to a better outcome than luminal B
patients. Among luminalA-enriched biclusters, the
methylation pattern of Luminal-5 is closer to HER2+
and Basal-like. Luminal-9, which is mainly composed of
LuminalA samples, exhibits hypo-methylation in all
areas. Within Lumianl-6 subtype, methylation levels in
TSS200 area are higher than the other biclusters. In
brief, methylation pattern in each bicluster was differ-
ent, which may be associated with different expression
patterns.

Finally, we evaluated AP-ISA and five state-of-the-art
biclustering methods using a variety of quantitative and
biological validation measures. The biclusters generated
by AP-ISA present moderate sample size and low over-
lapping rate. These features implies that AP-ISA can
capture disease subtypes across appropriate range of dif-
ferent scales and distinct them accurately. Furthermore,
AP-ISA outperforms other methods in capturing breast
cancer subtypes.

Conclusions

This study used a novel biclustering algorithm AP-
ISA to classify breast cancer into seven subtypes. For
Normal-like, HER2-enriched and Basal-like samples,
AP-ISA agrees with PAMS50 calls;, while for luminal
samples, AP-ISA  obtains better performance.
LuminalB-enriched Luminal-7 bicluster exhibits lower
immune processing and methylation levels, this may
be associated with bad prognosis. Luminal-5 is closer
to HER2+ and Basal-like subtype. Besides published
genes in breast cancer subtypes, we obtain some new
genes that would be useful for targeted treatments of
breast cancer. AP-ISA is compared with some state-
of-the-art methods from bicluster size, effective num-
ber of biclusters and subtype capture capability. It is
shown that, our study improves the existing methods,
and achieves more accurate subgroups, which can
contribute to the development of novel directed ther-
apies. Further research is needed in order to consoli-
date the novel partitions identified in this paper,
using survival analysis or other prognostic and diag-
nostic means in clinical operation.

Additional files

Additional file 1: The compressed file includes nine heatmap figures for
the nine biclusters obtained by AP-ISA. (ZIP 1803 kb)

Additional file 2: The GO and KEGG enrichment analysis results for the
nine AP-ISA biclusters are listed respectively. (ZIP 88 kb)
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