Dias et al. BMIC Bioinformatics (2017) 18:493
DOI 10.1186/5s12859-017-1913-4

BMC Bioinformatics

@ CrossMark

GPU-based detection of protein cavities
using Gaussian surfaces

Sérgio E. D. Dias'?, Ana Mafalda Martins', Quoc T. Nguyen'? and Abel J. P. Gomes'?"

Abstract

Background: Protein cavities play a key role in biomolecular recognition and function, particularly in protein-ligand
interactions, as usual in drug discovery and design. Grid-based cavity detection methods aim at finding cavities as
aggregates of grid nodes outside the molecule, under the condition that such cavities are bracketed by nodes on the
molecule surface along a set of directions (not necessarily aligned with coordinate axes). Therefore, these methods are
sensitive to scanning directions, a problem that we call cavity ground-and-walls ambiguity, i.e,, they depend on the
position and orientation of the protein in the discretized domain. Also, it is hard to distinguish grid nodes belonging
to protein cavities amongst all those outside the protein, a problem that we call cavity ceiling ambiguity.

Results: We solve those two ambiguity problems using two implicit isosurfaces of the protein, the protein surface
itself (called inner isosurface) that excludes all its interior nodes from any cavity, and the outer isosurface that excludes
most of its exterior nodes from any cavity. Summing up, the cavities are formed from nodes located between these
two isosurfaces. It is worth noting that these two surfaces do not need to be evaluated (i.e, sampled), triangulated,
and rendered on the screen to find the cavities in between; their defining analytic functions are enough to determine
which grid nodes are in the empty space between them.

Conclusion: This article introduces a novel geometric algorithm to detect cavities on the protein surface that takes

advantage of the real analytic functions describing two Gaussian surfaces of a given protein.

Keywords: GaussianFinder, Cavity detection, Pocket detection, Gaussian kernel function

Background

Macromolecules (e.g., proteins, nucleic acids, etc.) are
the building blocks of living beings. In particular, pro-
teins are relevant for the cell chemistry inasmuch they
perform a variety of different functions, such as cata-
lysts, transporters, sensors, and regulators of cellular pro-
cesses. Such functions depend on the interactions that
establish with other entities in the cell, namely long enti-
ties like nucleic acids (e.g., DNA) and with small enti-
ties like nucleotides, peptides, catalytic substrates, and
man-made chemicals. Thus, such interactions have some
flavors, namely: protein-ligand, protein-protein, protein-
DNA, and so forth. It is clear that these interactions
involve both shape complementarity and physicochemical

*Correspondence: agomes@di.ubi.pt

'Universidade da Beira Interior, Av. Marques D'Avila e Bolama, 6200-001
Covilha, Portugal

2Instituto de Telecomunicacdes, Av. Marques D'Avila e Bolama, 6200-001
Covilhg, Portugal

() BiolVied Central

complementarity between a protein and any other fitting
entity.

Nevertheless, this article does not focus on physico-
chemical complementarity. Instead, the focus is on detect-
ing cavities on the protein surface where ligands (i.e., small
molecules) may bind. The detection of protein cavities is
instrumental as a first step to establish the shape com-
plementarity between a protein and a ligand. As noted
by Kawabata and Go [1], identifying cavities is one of the
simplest ways to predict ligand binding sites on the pro-
tein surface. In this sense, protein cavities can be seen as
putative binding sites of a given protein for ligands.

The algorithms to identify binding sites on a molecular
surface are divided into four categories: geometry-based,
energy-based, evolution-based, and hybrid approaches
[2]. In this paper, we are focused on geometry-based
algorithms. These geometric algorithms are divided into
three sub-categories [1], namely grid-based, sphere-based,
and tessellation-based algorithms. Nevertheless, recently

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1913-4&domain=pdf
http://orcid.org/0000-0002-5804-5717
mailto: agomes@di.ubi.pt
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Dias et al. BMC Bioinformatics (2017) 18:493

a more fine-grained classification for these algorithms has
been reported by Krone et al. [3] and Simdes et al. [4],
which also considers hybrid categories as, for example,
grid-and-sphere and grid-and-surface methods. Further-
more, Simdes et al. [4] consider three more primary
categories, including the one concerning surface-based
methods.

Taking into consideration that this paper describes a
hybrid grid-and-surface method, let us briefly review
those methods involving grids and surfaces. Grid-based
methods are characterized by mapping a protein onto an
axis-aligned 3D grid, using then a particular geometric
criterion to detect cavities on the protein surface. Well-
known geometric criteria are those based on distance
(5, 6], visibility [7, 8], and depth [9, 10]. Most grid-based
algorithms use a visibility criterion that indicates the
blocked directions (and non-blocked directions) between
opposed points on the protein surface. That is, the protein
surface plays the role of the occluder for cavities. Unfortu-
nately, visibility-based grid methods are not orientation-
invariant. In other words, changing protein’s orientation
may lead to an undetected cavity because its previously
blocked scanning directions turn into unblocked ones.
This cavity bounds’ ambiguity results from the difficulty of
distinguishing grid nodes belonging to cavities from those
that do not.

Surface-based methods build upon the analytic descrip-
tion of the molecular surface (e.g., solvent-excluded sur-
face [11] and Gaussian surface [12, 13]) and its shape
descriptors [14], namely solid angles [15] and curvatures
[16], so that the surface is segmented into regions, some of
which correspond to surface cavities. However, segmenta-
tions produced by shape descriptors have not proven to be
effective in the detection of molecular cavities because the
resulting segments may not match such cavities or tenta-
tive binding sites [12]. Zachmann et al. [17] and Natarajan
et al. [16] tried to solve this problem by merging small
segments into larger ones and determining larger seg-
ments using global shape descriptors, respectively. How-
ever, there is no evidence that such segments correspond
to molecular cavities because no benchmarking analy-
sis based on a ground-truth database of binding sites to
evaluate the precision of those algorithms was carried out.

In turn, grid-and-surface based methods use a grid (or
a lattice) together with at least a surface. Parulek et al.
[18] proposed a method that combines a non-uniform lat-
tice of randomly-generated points —which can be under-
stood a generalization of grid-based techniques— and an
implicitly-defined analytic surface defined by kernel func-
tions to approximate the solvent-excluded surface (SES)
[19]. The randomly-generated points inside the surface
and those points outside such isosurface that are beyond a
given distance relative to isosurface are discarded straight
away; the remaining points are then subject to a mutual

Page 2 of 10

visibility test to retain those that are deemed to be cavity
samples. Similarly, Krone et al. [8] use a Gaussian sur-
face that better adjusts to SES, in conformity with the
parameters set in [20] and [19]. But, instead of using sam-
ple points of the domain outside the surface, they used
the vertices of the surface mesh triangles to test mutual
visibility through an ambient occlusion-based visibility
criterion due to Borland [21]. In both methods, the idea
was to extract and track protein cavities in the context of
molecular rendering and visualization, not on evaluating
the accuracy of any cavity detection method relative to a
certified ground truth.

As mentioned above, this paper addresses a grid-and-
surface method, here called GaussianFinder. This method
combines two Gaussian surfaces of a given protein, called
inner and outer surfaces, as a way of finding cavities as
clusters of voxels located between those two surfaces.
As shown further ahead, this solves the ambiguity prob-
lems of grid-based methods mentioned above, i.e., the
problems faced in the delineation of the limits of pro-
tein cavities, without using any visibility criterion of the
grid-and-surface methods above to find cavities on the
molecular surface. GaussianFinder aims at finding pro-
tein cavities accurately relative to ground-truth binding
sites certified by known databases, as the one known as
PDBsum (www.ebi.ac.uk/pdbsum/) [22].

Before proceeding any further, let us also mention the
methods 3V and KVFinder due to Voss and Gerstein [23]
and Oliveira et al. [10], respectively, resemble our method
in solving the cavity ceiling and ground-and-walls ambi-
guities. But, while we find cavity voxels between two
analytical surfaces, neither 3V nor KVFinder uses ana-
lytic surfaces to find such cavity voxels. Instead, they use
probe and solvent spheres in conjunction with a grid, so
they are grid-and-sphere methods [4]. 3V produces two
voxelized volumes, the first of which is a discrete approx-
imation to the solvent-excluded surface (SES), while the
second approximates an inflated SES. The first voxelized
volume is obtained after two steps. The first step col-
lects all voxels inside atom-centered spheres whose radii
are given by the van der Waals radii plus the water
sphere radius of 1.5 A, resulting in a voxelized volume
that approximates the solvent-accessible surface (SAS).
The second step discards voxels inside each solvent sphere
centered at each frontier voxel of the SAS voxelized vol-
ume, resulting in a voxelized volume that approximates
SES. This two-step procedure is repeated for the second
voxelized volume, with the difference that one replaces
the water sphere radius by a default probe sphere radius
of 6.0A, so that the resulting voxelized volume approx-
imates an inflated SES. Therefore, the cavity voxels are
those that result from the difference between the sec-
ond voxelized volume and the first voxelized volume that
approximates SES.

www.ebi.ac.uk/pdbsum/

Dias et al. BMC Bioinformatics (2017) 18:493

In regards to KVFinder, one obtains the cavity voxels
by the difference of two but different voxelized vol-
umes. KVFinder uses a solvent sphere of radius 1.4 A and
a default probe sphere radius of 4.0A. However, this
method only operates on grid points outside of the
molecule atoms. In the first step, KVfinder collects all out-
side grid points such that the solvent sphere centered at
each outside grid point fits in the empty outside space
without overlapping the molecule. The second step is
identical to the first one, with the difference that one uses
the default probe sphere instead of the solvent sphere.
The cavity voxels are those that belong to the first vox-
elized volume, but not to the second one. Therefore,
cavity voxels correspond to the empty outside space where
the solvent sphere gets in, but the default probe sphere
does not.

Implementation

The Gaussian surface

GaussianFinder builds upon the concept of Gaussian sur-
face, which is defined as the level set

F(x)=c¢ (1)

where F(x) = Y I, f; is the summation of a number 7 of
Gaussian kernel functions f;, one function per atom i, and
¢ € Ris the isovalue. Each kernel function f;(x) : R> — R
is given by the following expression:

fo=c (=) @)

where x; and r; stand for the center location and van der
Waals radius of the i-th atom, respectively, while 8 repre-
sents the Gaussian kernel decay value. Therefore, the Gaussian
surface depends on two parameters, c and 8 [24, 25].

The leading idea

GaussianFinder identifies cavity grid nodes between two
Gaussian surfaces, Fj,;(x) = ¢ and F,,;(x) = c¢ of each
protein (see Fig. 1), which are defined by the following two
functions:

Page 30f 10

Fao =3¢ (5°) 3)
i=1

and
n IIx—x;]2
_'3<71_1)
Fou()=Y e \ & @)
i=1
where R; = r; + w;, with w; = 1.4 A standing for the

radius of the water molecule. The idea is to find cavities
between the inner and outer surfaces where one or more
water molecules fit. Assuming the axis-aligned bounding
box D enclosing the protein has been previously decom-
posed into equally-sized cubic voxels of length A = 1.0 A,
the minimum size of a cavity is a boxed region of 3 x
3 x 3 voxels, i.e., a minimum volume of 3.0 AS. Further-
more, the parameterization (c, 8) was set to (1.0,2.3) for
both inner and outer surfaces because it is the one that
more closely approximates the solvent-excuded surface
(SES) [20, 24, 26-28].

The GaussianFinder method: overview

The diagram of the GaussianFinder method is shown in
Fig. 2. Before running the GaussianFinder on GPU, one
performs three preprocessing steps as follows:

e Read atomic centers of a protein from the PDB file
(http://www.rcsb.org) in an array on CPU side.

¢ Determine the bounding box D € R? that encloses
the input protein on CPU side. This involves the
computation of both minimum and maximum of the
coordinates x, y, and z of the centers of all protein
atoms, that is, the triples p = (Xin> Yimin> Zmin) and
q = Kmax Ymax Zmax)- These coordinates are then
updated such thatp = p — 2Rand q = q + 2R,
where R is the maximum atomic radius among the
atoms belonging to the molecule, as needed to
guarantee that the molecule lies in the box D.

e Copy the array of atomic centers into GPU memory,
and allocate GPU memory for the following 3D

Fig. 1 The protein 1A7X with 2155 atoms: (a) the inner surface; (b) the outer surface; (c) the inner surface with 4 out of 10 cavity locations
determined by GaussianFinder (in red) and their homologous cavity locations set by the PDBsum ground truth (in blue)

http://www.rcsb.org

Dias et al. BMC Bioinformatics (2017) 18:493

s N
Read protein's atomic centers from its PDB file in a 1D array 1st GPU
pre-step
(. J
v] 2nd cPU
Determine limits of bounding box enclosing the input protein pre-step
(. J
(" § K N\
Copy 1D array of atomic centers into GPU, and allocate GPU
memory for 3D arrays concerning voxels, inner and outer 3rd CPU
scalar fields, voxel flags for inner and outer scalar fields, pre-step
intermediate voxels, and cavity voxels.)
.
Voxelization of the bounding box 1st CUDA
kernel
Compute inner scalar value Fp, at each grid node 2nd CUDA
kernel
Compute outer scalar value Foyt at each grid node 3rd CUDA
kernel
Determine voxel flags for inner scalar Fp, 4th CUDA
kernel
Determine voxel flags for outer scalar Fo; 5th CUDA
kernel
Determine intermediate voxels between inner and outer 6th CUDA
surfaces kernel
[Determine cavity voxels between inner and outer surfaces] 71:19?;?'6‘
Clustering of cavity voxels into cavities via DBSCAN, with the cPU "
computation of TP, FP, TN, FN relative to the PDBsum ground- tpos
truth dataset step
Fig. 2 Flowchart of the GaussianFinder method

arrays, as needed for: voxels of bounding box, Fiy,
F,,:, intermediate voxels between the inner and outer
surfaces, and cavity voxels. These 3D arrays of voxels
are size-congruent and depend on the voxel length

A =1.0.

After completing the pre-processing stage, Gaussian-
Finder identifies the cavities of an input protein through
the following seven steps on GPU:

Voxelize the bounding box D, i.e., a grid of nodes.
Calculate Fj, (x) at every grid node.

Calculate Fy,¢(x) at every grid node.

Calculate voxel flags for Fj, (x).

Calculate voxel flags for Foy¢(X).

Identify intermediate voxels (or grid nodes) between
the inner and outer surfaces.

7. Identify cavity voxels among the intermediate voxels.

AN

Note that the PDB file reading operation runs on CPU
side. Then, the array of atomic centers (i.e., triples of coor-
dinates x, y, and z) allocated in memory is transferred to
GPU memory using the CUDA (Compute Unified Device

Page 4 of 10

Architecture [29]) function cudamemcpy. After that, the
CUDA kernels encoding the GaussianFinder steps, a ker-
nel per step, are ready to run on GPU one after another, as
described below. However, the last step runs on CPU side
using the DBSCAN algorithm [30], as needed to cluster
cavity voxels into separate cavities.

Voxelization of the bounding box - Kernel 1

This is the first CUDA kernel. The voxelization of the
bounding box D consists in partitioning D into a grid of
equally-sized voxels (i.e., cubes) of length A = 1.0A.
Considering that the voxels are all axis-aligned, it thus suf-
fices using only the 0-th corner (also called node) of each
voxel to represent it, because the remaining seven corners
of a voxel are 0-th corners of its adjacent voxels. There-
fore, it suffices to allocate a 3-dimensional array of such
0-th corners representing the voxels on GPU side; this
array is named V. The location of each 0-th corner is also
calculated on the GPU side.

Computation of Fj, - Kernel 2

This kernel launches N threads (i.e., the size of array V),
one per 0-th corner. Each thread calculates the value of F;,
(see Eq. (3)) at each corner in V. These function values are
stored in a 3D array on GPU, called FIN, with the same
size as V. But, before running this CUDA kernel on GPU,
it is first necessary to allocate memory for FIN on GPU, as
described in the third pre-processing step.

Computation of F,y: — Kernel 3
This kernel is identical to the previous one, with the dif-
ference that now we use another 3D array on GPU to hold
the values of Fy,; (cf. Eq. (4)).

Computation of voxel flags for F;, - Kernel 4

To determine the intermediate voxels between the inner
and outer surfaces in Step 6, we need to find the voxels
outside of the inner surface. For that purpose, we deter-
mine the 8-bit flag for each voxel of the scalar field Fj,.
Each bit is associated with each voxel corner so that we
have 28 = 256 possible configurations for each voxel.
If F;, < c at a voxel corner, its bit takes the value 1;
otherwise, it takes on the value 0. Therefore, the flag
11111111, = 255p¢ indicates that the corresponding
voxel is outside the inner surface because the value of Fj,
decreases with the distance to the protein. The flags are
stored in a 3D array, called FLAGIN, which is of the same
size as FIN.

Computation of voxel flags for F,,: — Kernel 5

This kernel is the same as the previous kernel, with the
difference that now the computation of voxel flags is for
F,,: instead of F;,. But, now we are interested in voxels
whose flag is 00000000, = 019, that is, voxels inside of

Dias et al. BMC Bioinformatics (2017) 18:493

the outer surface. The flags are stored in a 3D array, called
FLAGOUT, which is of the same size as FOUT.

Identification of the intermediate voxels — Kernel 6

Based on the results of 4-th and 5-th kernels, an interme-
diate voxel (i, , k) between the inner and outer surfaces is
easily identified through the condition FLAGIN(, j, k) =
255 and FLAGOUT(G, , k) = 0, here called the intermedi-
ate condition.

Identification of cavity voxels - Kernel 7

This kernel retrieves the set of cavity voxels from the set of
intermediate voxels. Note that not all intermediate voxels
are cavity voxels. The condition for an intermediate voxel
being a cavity voxel is that it is surrounded by a 3 x 3 x 3
neighborhood of intermediate voxels. This is so because
we have to guarantee a water molecule of radius 1.4 A fits
inside a cavity. Finally, the set of cavity voxels encoded into
a 3D array called CAVITYVOXELMARK is copied back
to CPU via the function cudaMemcpy3D to be processed
by the DBSCAN clustering algorithm.

Formation of protein cavities

The last step of the GaussianFinder runs on CPU. We
use the DBSCAN clustering algorithm to separate cavity
voxels into clusters featuring protein cavities. The code
of DBSCAN is publicly available at https://github.
com/gyaikhom/dbscan. The reader is referred to
Ester et al. [30] for further details about DBSCAN.

Molecular triangulation
The graphics visualization of each protein requires the
triangulation of the Gaussian molecular surface defined
by Fi,(x) = c. This triangulation is carried out entirely
on GPU side using the variant of the marching cubes
algorithm introduced by Dias and Gomes [31-34].

Figure 3 shows the Gaussian surfaces (in gray) of tree
proteins after their triangulation, as well as some of their

Page 50f 10

cavities, whose locations are identified by small balls in
red, as determined by the GaussianFinder. The small balls
in blue indicate the certified locations of the same cavities
as given by the PDBsum ground truth. We see that there
is a match between the locations of cavities calculated by
our algorithm and those determined by PDBsum dataset.

Results

The experimental testing results were obtained using a
methodology built upon the following aspects: (i) hard-
ware/software setup; (ii) a ground-truth dataset of protein
cavities; (iii) set of benchmarking protein cavity detec-
tion methods; (iv) performance quality; (v) GPU time
performance; and (vi) GPU memory space consumption.

Hardware/software setup
Testing was accomplished using a desktop computer run-
ning the Linux Fedora 25 operating system and equipped
with an Intel-Core 17 6800K 3.4GHz GHz Processor, 32GB
RAM, one Nvidia Tesla K40, and one Nvidia Quadro
M6000. Most computations to detect cavities of proteins
and other molecules took place on the Nvidia Tesla K40.
Also, all the computations needed to triangulate surfaces
of molecules and their cavities were performed on the
same Nvidia Tesla K40. The Nvidia Quadro M6000 was
only used for graphics output and visualization.
Furthermore, GaussianFinder was written in C/C++
together with CUDA 9.0 to run on GPU. As noted above,
we used the DBSCAN clustering algorithm to form clus-
ters of cavity voxels featuring protein cavities. This clus-
tering step runs on CPU side. Triangulating and rendering
surfaces of proteins and binding sites on GPU were per-
formed using a variant of the GPU-based implementation
of the marching cubes algorithm by Dias and Gomes [31-34].

Ground-truth dataset of protein cavities
We used PDBsum (www.ebi.ac.uk/pdbsum/) as the
ground-truth dataset of protein cavities because it

() the protein 148L with 1323 atoms and 4 out of 7 cavities

Fig. 3 Gaussian surfaces and cavity locations determined by GaussianFinder (in red) and their homologous cavity locations set by the PDBsum
ground truth (in blue) of: (a) the protein 1B2L with 1969 atoms and 2 out of 7 cavities; (b) the protein TA58 with 1365 atoms and 3 out of 7 cavities;

https://github.com/gyaikhom/dbscan
https://github.com/gyaikhom/dbscan
www.ebi.ac.uk/pdbsum/

Dias et al. BMC Bioinformatics (2017) 18:493

provides us with already known binding sites for a set of
proteins [22]. In practice, we only used a subset of proteins
in PDBsum; specifically, we used the dataset of proteins
available in the LigASite database [35] which consists of
816 apo proteins and 1788 holo proteins, in a total of 2604
proteins. Recall that an apo protein is a protein without
ligands, while a holo protein is a protein-ligand complex.
The corresponding PDB files were retrieved from PDB
Data Bank (www.rcsb.org). By inspection of the LigASite
dataset in the PDBsum, we counted 8150 cavities on apo
proteins, and 17850 cavities on holo proteins.

Benchmarking cavity detection methods
For benchmarking sake with GaussianFinder, we used the
following protein cavity detection methods:

e POCASA. It is essentially a grid-based method, called
Roll, though it also uses a crust-like surface of probe
spheres (see Yu et al. [36]).

e SURFNET. It includes the sphere-based method
proposed by Laskowski [37].

e PASS. It includes the sphere-based method proposed
by Brady et al. [38].

e Fpocket. It includes a triangulation-based method
based on a Voronoi tessellation and alpha spheres on
the top of a convex hull algorithm (see Guilloux et al.
[39]).

e GHECOM. It includes the sphere-based method
proposed by Kawabata [40].

e ConCavity. It includes the grid-based method
proposed by Laskowski [41].

e 3V. This grid-and-sphere method was proposed by
Voss and Gerstein [23].

Page 6 of 10

e KVFinder. This grid-and-sphere method was
introduced by Oliveira et al. [10].

These methods and the GaussianFinder were run on the
same desktop computer to guarantee a fair comparison
between them. Note that the first six methods listed above
are also part of Metapocket [42].

Quality of performance

Let us now to analyze the performance quality of each
benchmark cavity detection algorithms relative to the
PDBsum ground-truth dataset of apo and holo proteins.
For that purpose, we first counted 8150 cavities on the 816
apo proteins, and 17850 cavities on the 1788 holo proteins
of the ground-truth dataset.

Then, upon execution of the DBSCAN, we extracted the
number of clusters identified as cavities, here called pos-
itive cavities Cp. These positive cavities include the true
positive (TP) and false positive (FP) cavities (see Tables 1
and 2). We use the PDBsum ground-truth dataset, where
the certified cavities are described per protein, to decide
if a positive cavity outputted by DBSCAN is either a true
positive or a false positive. Such a decision builds upon
the overlapping condition which states that the geomet-
ric center of a protein cavity, as determined by a given
benchmarking method, must be within a distance d <
[0.0,4.0]A from the geometric center of the homologous
cavity provided by the PDBsum ground-truth. For exam-
ple, Table 1 shows the GaussianFinder was able to identify
8730 apo protein cavities within a maximum distance
d = 4.0A, 7697 of which were correctly identified; that
is, for GaussianFinder, Cp = 8730, TP = 7697, and
FP = Cp — TP = 1033.

Table 1 Performance of benchmarking detection methods for apo proteins in terms of: (d) distance (FN) false negatives to PDBsum

ground-truth cavity centers; (TP) true positives; (FP) false positives; (TN) true negatives; (S,) sensitivity; (S¢) specificity; (a) accuracy; (rg)
ratio of detected ground-truth cavities; and (C,) cumulative number of undetected ground-truth cavities

GaussianFinder ConCavity POCASA SURFNET PASS GHECOM Fpocket 3V KVFinder
d €[00,1.0] 7100 1512 2310 1737 4915 4562 5869 3751 4578
de€]o,2.0] 188 107 176 1227 884 255 195 417 476
d €]20,3.0] 227 127 226 520 117 380 207 291 305
d €]3.0,4.0] 182 203 297 432 157 413 257 148 193
TP 7697 1949 3009 3014 6073 5610 6528 4607 5552
FP 1033 2103 863 902 325 581 878 1017 979
N 2045 860 1697 1247 3086 2540 2827 1782 1889
FN 393 207 289 216 44 500 148 428 467
Sy 0.951 0.904 0912 0933 0.993 0918 0.978 0915 0922
Se 0.664 0.290 0.663 0.580 0.905 0.814 0.763 0.636 0.659
a 0.872 0.549 0.803 0.792 0.961 0.883 0.901 0.815 0.837
rd 0.944 0.239 0.369 0.369 0.745 0.688 0.801 0.565 0.681
Cy 453 6201 5141 5136 2077 2540 1622 3543 2598

www.rcsb.org

Dias et al. BMC Bioinformatics (2017) 18:493

Page 7 of 10

Table 2 Performance of benchmarking detection methods for holo proteins in terms of: (d) distance (FN) false negatives to PDBsum
ground-truth cavity centers; (TP) true positives; (FP) false positives; (TN) true negatives; (S,) sensitivity; (S¢) specificity; (a) accuracy; (r4)
ratio of detected ground-truth cavities; and (C,;) cumulative number of undetected ground-truth cavities

d GaussianFinder ConCavity POCASA SURFNET PASS GHECOM Fpocket 3V KVFinder
d €[0.0,1.0] 16081 3133 5234 3668 11738 10438 14063 9174 12493
d €]1.0,2.0] 366 239 338 2574 2100 571 432 703 719

d €]20,3.0] 410 296 419 1063 281 789 406 811 813

d €]13.0,4.0] 334 488 609 925 360 932 504 349 418
TP 17191 4156 6600 8230 14479 12730 15405 12049 14443
FP 2460 2155 2083 1806 634 1278 2151 1564 1941
™N 3231 916 2673 1559 4080 4968 3423 2476 2725
FN 440 362 214 227 207 658 391 511 553
Sy 0.975 0919 0.969 0.973 0.986 0.951 0.975 0.959 0.963
Se 0.568 0.298 0.562 0463 0.866 0.795 0614 0.612 0.584
a 0.876 0.668 0.801 0.828 0.957 0.901 0.881 0.875 0.873
rd 0.963 0.233 0.369 0461 0.811 0713 0.863 0.675 0.809
Cy 659 13694 11250 9620 3371 5120 2445 5801 3407

Note that the maximum distance d = 4.0 between geo-
metric centers of homologous cavities has to do with the
minimum size of a cavity, which in turn is related to the
size of the water molecule. Most algorithms consider that
the water molecule has a radius of 1.4A to 1.8A, so
its diameter is 3.6 A maximum. For example, Paramo et
al. [43] use a 50 A3 for the cavity’s minimum size, which
corresponds to a cube length of 3.684 A. Thus, a dis-
tance of 4.0 A between the center of cavity detected by a
given method and the center of its homologous cavity in
the PDBsum ensures that such cavities extensively over-
lap, unless they are very small cavities. In fact, as Pérot
et al. [44] noted, a drug-binding cavity has an average vol-
ume of about 930 A3 when one uses a geometric-based
method [14], and about 610 A% in the case of using an
energy-based approach to detect pockets [45].

Finally, it is worth noting that DBSCAN rejects some
clusters as cavities, here called negative cavities Ci;. These
negative cavities include the true negative (TN) and
false negative (FN) cavities (see Tables 1 and 2). So, we
repeat the matching process between negative cavities and
ground-truth cavities to decide which of them are not cav-
ities truly (TN), and, consequently, those that are cavities
but that were incorrectly classified as not (FN). For exam-
ple, Table 1 shows that DBSCAN rejected 2438 clusters as
cavities of apo proteins, 393 of which are cavities indeed;
that is, for GaussianFinder, Cxy = 2438, TN = 2045, and
FN = Cy — TN = 393.

The performance quality of the predictions can be
assessed using various metrics, namely: sensitivity or true

cps TP ope . .
positive rate (SV = m), specificity or true negative
_ _IN _ TP+TN
rate (SC = +FP>, accuracy (a =

TP+FP+FN+TN>’ rate

of detected ground-truth cavities <rd = %), and unde-

tected ground-truth cavities (C, = C — TP). Recall
that the number of apo protein ground-truth cavities is
C = 8150, while C = 17850 is the number of ground-
truth cavities for holo proteins. From Tables 1 and 2, we
observe that all methods have high values of sensitivity
(Sy > 0.9), but GaussianFinder ranks behind PASS, GHE-
COM, and Fpocket regarding specificity because the value
of TN is not much greater than the value of FP. How-
ever, these four methods possess an accuracy about 90%
(S &~ 0.9). Among these methods, GaussianFinder ranks
first because its rate of detected ground-truth cavities (r;)
stands out above the other methods (see Fig. 4). This
means that GaussianFinder is more accurate than other
benchmark methods relative to the number of detected
ground-truth cavities. Note that the number C, of unde-
tected ground-truth cavities is far less for GaussianFinder
than for any other method.

Time performance

The experimental time performance of our cavity detec-
tion algorithm on GPU is shown in Fig. 5a, whose (dashed)
trend line satisfies the following expression:

t = 0.00000304# + 0.232 (5)

That is, the GaussianFinder runs in O(#) time. Eq. (5)
was obtained by curve fitting [46]. Thus, the experimen-
tal time complexity of our method is linear on GPU. For
example, finding the cavities of a molecule with 3000
atoms takes about 0.24 s GPU. For the entire set of
proteins, the GaussianFinder takes 636.40 s (11 minutes
approximately) to determine all the data needed to pass

Dias et al. BMC Bioinformatics (2017) 18:493

Page 8 of 10

a Apo proteins
100 . . \

100

d

(@) apo structures; and (b) holo structures

Holo proteins

Surfnet
3v
KVFinder

Fig. 4 Cumulative cavity percentage (100. ry) of various detection methods in function of the distance d to ground-truth geometric centers for:

to DBSCAN algorithm to make the cavities of all pro-
teins. These times are end-to-end GPU run-times, i.e.,
times needed to run the seven steps or kernels of the
GaussianFinder.

Memory space consumption

A brief glance at Fig. 5b shows that the memory consump-
tion is linearly related to the increase of the number of
atoms. But the memory consumption of this algorithm is
not very high when compared with other algorithms that
also use a grid-based approach. This is so because the grid
spacing (or voxel length) is 1.0 A for GaussianFinder. It
is clear that a smaller grid spacing would consume much
more memory space on GPU.

Discussion

In light of previous results, also depicted in Fig. 4,
we summarize our findings as follows. In our experi-
ments, GaussianFinder seemingly outperforms all other
cavity detection methods. Additionally, grid-based meth-
ods (ConCavity, and POCASA) are less accurate than
sphere-based methods (SURFNET, PASS, and GHECOM)
in our test conditions; in turn, sphere-based methods are
less accurate than triangulation-based methods (Fpocket).
In regards to the grid-and-sphere methods, we observe
that KVFinder ranks third together with GHECOM, just
behind Fpocket, while 3V performs not so well, but even
so with a cumulative cavity percentage above 60%. Note
that we used default parameters to obtain those results;

a b
0.6
e Time vs. atoms 1.5 ® Memory vs. atoms
- - - Trend line ° ,‘ - - - Trend line
.-o-"
-7 o« "
® -7 -
— 04} £]
5 * .- — 1 - .
= » ’J. - as) -7 /O
S - D O - []
: ' B
0 ~
Zz . IS
= 0.2 0.5
0 - ‘ 0
0 2 4 6 8 0 2 4 6 8
n (atoms) 104 n (atoms) 104
Fig. 5 GaussianFinder on GPU: (a) experimental time performance; (b) experimental memory space occupancy

Dias et al. BMC Bioinformatics (2017) 18:493

for example, 3V uses the default radii of 1.5 A and 6.0 A for
solvent and probe spheres, respectively, while KVFinder’s
default radii are 1.4 A and 4.0 A, respectively.

Furthermore, every single benchmark geometric
method tends to detect most cavities in the first interval
[0.0, 1.0]. Also, every single benchmark method performs
better for holo proteins than for apo proteins. Note
that, in our tests, we only considered geometric detec-
tion methods for cavities (i.e., tentative binding sites).
Moreover, we used actual locations of binding sites of
proteins (via PDBsum) as the ground-truth for the cavi-
ties detected by those benchmarking methods, including
GaussianFinder.

Conclusions

We have introduced a novel grid-and-surface based algo-
rithm, called GaussianFinder, for identifying cavities on
protein surfaces without using a visibility criterion. The
leading idea of the method is to determine the grid nodes
between two Gaussian isosurfaces of each molecule,
which are then aggregated into clusters of nodes fea-
turing cavities. This avoids possible geometric ambigu-
ities (concerning the limits of cavities) inherent to the
use of grid-based methods to detect cavities of the pro-
tein surface. GaussianFinder is considerably fast, with
the cavity detection stage finishing in a matter of a few
seconds on a GPU-based workstation equipped with a
Nvidia Tesla K40 and a Nvidia Quadro M6000. Shortly,
we intend to parallelize other cavity detection algo-
rithms existing in the literature for a more comprehen-
sive comparison between algorithms in terms of time
performance.

Availability and requirements

Project name: GaussianFinder;

Project home page: sourceforge.net/projects/gaussianfinder;
Operating system(s): Linux Fedora 25;

Programming language: C/C++;

Other requirements: CUDA 9.0;

Any restrictions to use by non-academics: The source
code is freely available under the GPLv3 License.

Abbreviations

CUDA: Compute unified device architecture; CPU: Central processing unit;
DNA: Deoxyribonucleic acid; GPU: Graphics processing unit; SES:
Solvent-excluded surface

Acknowledgements
We would like to thank the anonymous reviewers for their suggestions that
contributed to improve our paper.

Funding

This research has been partially supported by the Portuguese Research Council
(Fundacdo para a Ciéncia e Tecnologia), under the doctoral Grant SFRH-BD-
69829-2010, the Austin-Portugal project UTAP-EXPL/QEQ-COM/0019/2014
(Algorithms for Macro-Molecular Pocket Detection), and also by FCT Project
UID/EEA/50008/2013. Also, we gratefully acknowledge the support of NVIDIA
Corporation that made available the graphics cards used in this research.

Page 9 of 10

Authors’ contributions

The authors were equal contributors and jointly responsible for developing
the algorithm and writing the manuscript. Nevertheless, SEDD was mainly
responsible for developing the algorithm for GPU computing. AMM was
mainly responsible for the experimental work to identify the parameters of the
formulation of the Gaussian surface that better approximates the solvent-
excluded surface (SES). QTN was mainly responsible for the experimental
results and benchmarking; specifically, he dealt with the dataset of cavities
(PDBsum), including all scripting to extract and handle cavities from PDBSum.
AJPG conceived of the study, and participated in its design and coordination.
All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 26 November 2016 Accepted: 1 November 2017
Published online: 16 November 2017

References

1. KawabataT, Go N. Detection of pockets on protein surfaces using small
and large probe spheres to find putative ligand binding sites. Protein
Struct Funct Bioinforma. 2007,68(2):516-29.

2. Volkamer A, Griewel A, Grombacher T, Rarey M. Analyzing the Topology
of Active Sites: On the Prediction of Pockets and Subpockets. J Chem Inf
Model. 2010;50(11):2041-52.

3. Krone M, Kozlikova B, Lindow N, Baaden M, Baum D, Parulek J, Hege
HC, Viola I. Visual Analysis of Biomolecular Cavities: State of the Art.
Comput Graph Forum. 2016;35(3):527-51.

4. Simoées T, Lopes D, Dias S, Fernandes F, Pereira J, Jorge J, Bajaj C,
Gomes A. Geometric detection algorithms for cavities on protein surfaces
in molecular graphics: a survey. Comput Graph Forum. 2017.
doi:10.1111/cgf.13158.

5. Voorintholt R, Kosters MT, Vegter G, Vriend G, Hol WG. A very fast
program for visualizing protein surfaces, channels and cavities. J Mol
Graph. 1989;7(4):243-5.

6. Zhang X, Bajaj C. Extraction, quantification and visualization of protein
pockets. In: Proceedings of the Computational Systems and
Bioinformatics Conference (CSB'2007). California: Life Sciences Society;
2007. p. 275-86.

7. Levitt DG, Banaszak LJ. POCKET: A computer graphics method for
identifying and displaying protein cavities and their surrounding amino
acids. J Mol Graph. 1992;10(4):229-34.

8. Krone M, Reina G, Schulz C, Kulschewski T, Pleiss J, Ertl T. Interactive
extraction and tracking of biomolecular surface features. Comput Graph
Forum. 2013;32(3):331-40.

9. Kalidas Y, Chandra N. PocketDepth: A new depth based algorithm for
identification of ligand binding sites in proteins. J Struct Biol. 2008;161(1):
31-42.

10. Oliveira SH, Ferraz FA, Honorato RV, Xavier-Neto J, Sobreira TJ,
de Oliveira PS. KVFinder: steered identification of protein cavities as a
PyMOL plugin. BMC Bioinformatics. 2014;15(1):197.

11. ZhuH, Pisabarro MT. MSPocket: an orientation-independent algorithm for
the detection of ligand binding pockets. Bioinformatics. 2011,27(3):351-8.

12. Dias SED, Nguyen QT, Jorge JA, Gomes AJP. Multi-GPU-based detection
of protein cavities using critical points. Futur Gener Comput Syst. 2017,67:
430-40.

13. Gomes A, Voiculescu |, Jorge J, Wyvill B, Galbraith C. Implicit Curves and
Surfaces: Mathematics, Data Structures, and Algorithms. London:
Springer; 2009.

https://sourceforge.net/projects/gaussianfinder
http://dx.doi.org/10.1111/cgf.13158

Dias et al. BMC Bioinformatics (2017) 18:493

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Nayal M, Honig B. On the nature of cavities on protein surfaces:
Application to the identification of drug-binding sites. Proteins.
2006;63(4):892-906.

Connolly M. Measurement of protein surface shape by solid angles. J Mol
Graph. 1986;4(1):3-6.

Natarajan V, Wang Y, Bremer PT, PascucciV, Hamann B. Segmenting
molecular surfaces. Comput Aided Geom Des. 2006,23(6):495-509.
Zachmann CD, Heiden W, Schlenkrich M, Brickmann J. Topological
analysis of complex molecular surfaces. J Comput Chem. 1992;13(1):
76-84.

Parulek J, Turkay C, Reuter N, Viola I. Implicit surfaces for interactive
graph based cavity analysis of molecular simulations. In: Proceedings of
the 2012 IEEE Symposium on Biological Data Visualization (BioVis'2012).
Washington: IEEE Press; 2012. p. 115-22.

Richards FM. Areas, volumes, packing, and protein structure. Annu Rev
Biophys Bioeng. 1977,6(1):151-76.

Grant JA, Pickup BT. A Gaussian description of molecular shape. J Phys
Chem. 1995;99(11):3503-10.

Borland D. Ambient occlusion opacity mapping for visualization of
internal molecular structure. J WSCG. 2011;19(1-3):17-24.

Laskowski RA, Hutchinson GE, Michie AD, Wallace AC, Jones ML,
Thornton JM. PDBsum: a web-based database of summaries and analyses
of all PDB structures. Trends Biochem Sci. 1997;22(12):488-90.

Voss NR, Gerstein M. 3v: cavity, channel and cleft volume calculator and
extractor. Nucleic Acids Res. 2010;38:555.

Blinn JF. A generalization of algebraic surface drawing. ACM Trans Graph.
1982;1(3):235-56.

Chowdhury R, Rasheed M, Keidel D, Moussalem M, Olson A, Sanner M,
Bajaj C. Protein-protein docking with f2dock 2.0 and gb-rerank. PLoS ONE.
2013;8(3):1-19.

Gabdoulline RR, Wade RC. Analytically defined surfaces to analyze
molecular interaction properties. J Mol Graph. 1996;14(6):341-53.

Zhang Y, Xu G, Bajaj C. Quality meshing of implicit solvation models of
biomolecular structures. Comput Aided Geom Des. 2006;23(6):510-30.
Bajaj CL, Chowdhury R, Siddahanavalli V.fzdock: Fast fourier
protein-protein docking. IEEE/ACM Trans Comput Biol Bioinforma.
2011;8(1):45-58.

Cook S. CUDA Programming: A Developer's Guide to Parallel Computing
with GPUs, Applications of GPU Computing. San Francisco: Morgan
Kaufmann; 2012.

Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for
discovering clusters a density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining
(KDD'96), Portland, Oregon, USA, August 2-4. Palo Alto: AAAI Press; 1996.
p.226-31.

Dias S, Bora K, Gomes A. CUDA-based triangulations of convolution
molecular surfaces. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing. HPDC "10.
New York: ACM; 2010. p. 531-40.

Dias S, Gomes A. Graphics processing unit- based triangulations of Blinn
molecular surfaces. Concurr Comput Pract Experience. 2011;23(17):
2280-91.

Dias S, Gomes AJP. Computational Electrostatics for Biological
Applications In: Rocchia W, Spagnuolo M, editors. Cham: Springer; 2015.
p.177-98.

Dias SED, Gomes AJP. Triangulating molecular surfaces over a LAN of
GPU-enabled computers. Parallel Comput. 2015;42:35-47.

Dessailly BH, Lensink MF, Wodak SJ. LigASite: a database of biologically
relevant binding sites in proteins with known apo-structures. Acid
Nucleic Res. 2008;36:667-73.

YuJ, ZhouY, Tanaka |, Yao M. Roll: a new algorithm for the detection of
protein pockets and cavities with a rolling probe sphere. Bioinformatics.
2010;26(1):46-52.

Laskowski RA. SURFNET: A program for visualizing molecular surfaces,
cavities, and intermolecular interactions. J Mol Graph. 1995;13(5):323-30.
Brady J, Patrick G, Stouten PW. Fast prediction and visualization of protein
binding pockets with PASS. J Comput Aided Mol Des. 2000;14(4):383-401.
Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: An open source platform
for ligand pocket detection. BMC Bioinformatics. 2009;10(1):168.

40.

41.

42.

43.

44,

45.

46.

Page 10 of 10

Kawabata T. Detection of multiscale pockets on protein surfaces using
mathematical morphology. Proteins. 2010;78(5):1195-211.

Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA.
Predicting protein ligand binding sites by combining evolutionary
sequence conservation and 3d structure. PLOS Comput Biol. 2009;5(12):
1-18.

Huang B. MetaPocket: A meta approach to improve protein ligand
binding site prediction. OMICS. 2009;13(4):325-30.

Paramo T, East A, Garzén D, Ulmschneider MB, Bond PJ. Efficient
characterization of protein cavities within molecular simulation
trajectories: trj_cavity. J Chem Theory Comput. 2014;10(5):2151-64.
Pérot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO.
Druggable pockets and binding site centric chemical space: a paradigm
shift in drug discovery. Drug Discov Today. 2010;15(15-16):656-67.

An J, Totrov M, Abagyan R. Pocketome via comprehensive identification
and classification of ligand binding envelopes. Mol Cell Proteome.
2005;4(6):752-61.

Arlinghaus S. Practical Handbook of Curve Fitting. Boca Raton: CRC Press;
1994.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	The Gaussian surface
	The leading idea
	The GaussianFinder method: overview
	Voxelization of the bounding box – Kernel 1
	Computation of Fin – Kernel 2
	Computation of Fout – Kernel 3
	Computation of voxel flags for Fin – Kernel 4
	Computation of voxel flags for Fout – Kernel 5
	Identification of the intermediate voxels – Kernel 6
	Identification of cavity voxels – Kernel 7
	Formation of protein cavities
	Molecular triangulation

	Results
	Hardware/software setup
	Ground-truth dataset of protein cavities
	Benchmarking cavity detection methods
	Quality of performance
	Time performance
	Memory space consumption

	Discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

