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Abstract

Background: The sequence of nucleotides in an RNA determines the possible base pairs for an RNA fold and thus
also determines the overall shape and function of an RNA. The Swellix program presented here combines a helix
abstraction with a combinatorial approach to the RNA folding problem in order to compute all possible non-
pseudoknotted RNA structures for RNA sequences. The Swellix program builds on the Crumple program and can
include experimental constraints on global RNA structures such as the minimum number and lengths of helices
from crystallography, cryoelectron microscopy, or in vivo crosslinking and chemical probing methods.

Results: The conceptual advance in Swellix is to count helices and generate all possible combinations of helices
rather than counting and combining base pairs. Swellix bundles similar helices and includes improvements in
memory use and efficient parallelization. Biological applications of Swellix are demonstrated by computing the
reduction in conformational space and entropy due to naturally modified nucleotides in tRNA sequences and by
motif searches in Human Endogenous Retroviral (HERV) RNA sequences. The Swellix motif search reveals
occurrences of protein and drug binding motifs in the HERV RNA ensemble that do not occur in minimum free
energy or centroid predicted structures.

Conclusions: Swellix presents significant improvements over Crumple in terms of efficiency and memory use. The
efficient parallelization of Swellix enables the computation of sequences as long as 418 nucleotides with sufficient
experimental constraints. Thus, Swellix provides a practical alternative to free energy minimization tools when
multiple structures, kinetically determined structures, or complex RNA-RNA and RNA-protein interactions are present
in an RNA folding problem.
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Background
Approximately 80% of the human genome is transcribed
into an RNA sequence, although only 2% of the genome
codes for proteins [1]. This discovery reveals the abun-
dance of noncoding RNA with as yet undetermined
function. The flood of RNA sequence information from
next generation high-throughput sequencing technology
and the explosion of discoveries for non-coding RNA
create an enormous need for RNA structure prediction
tools. RNA structure prediction methods facilitate inter-
pretation of sequence data to inform biological structure
and generate testable hypotheses for function. RNA
structure prediction tools form a key component in
many genome-wide RNA analysis pipelines [2–5]. Many

of these new RNA discoveries reveal RNA sequences
with multiple functional folds or partially unfolded RNA
[2, 4, 6, 7]. For example, one study estimates that 20% of
RNA in human cells have multiple folds based on the
existence of conflicting pairing constraints measured by
in vivo crosslinking [2]. Thus, there is a need for tools
that efficiently and thoroughly explore the conform-
ational landscape of an RNA sequence. This paper
presents a new computational method, Swellix, that com-
putes efficiently all possible non-pseudoknotted structures
for an RNA sequence by counting helices rather than base
pairs. Swellix also counts RNA motif frequency, and thus
provides insight into possible functional interactions that
may not be present in low-energy structure predictions.
The RNA folding problem is defined by base pairing

rules for Watson-Crick and GU pairs. An RNA second-
ary structure consists of a set of base pairs, noncanonical
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pairs, and non-paired nucleotides (Fig. 1). A minimum
number of 3 nucleotides is required for an RNA to fold
back on itself and form a new helix. Each nucleotide
may pair only once, and the pairs are nested, ie pseudo-
knots that cross previous pairs are not directly allowed.
Thus, the RNA folding problem can be viewed as a max-
imum pair matching problem with complexity of O(N3),
where N is the number of nucleotides. The number of
possible structures is approximately 1.8N [8]. The Nussi-
nov algorithm approaches the RNA folding problem by
finding the maximum scoring structure, or set of base
paired nucleotides [9, 10]. The most common scoring
function is based on thermodynamic parameters [11, 12]
and free energy minimization [13]. The thermodynamic
database is continually being updated and expanded [11,
12, 14]. The free energy minimization approach assumes
that the lowest free energy structure is the most likely
functional fold for the RNA sequence. This assumption,
however, does not account for co-transcriptional RNA
folding, kinetically determined RNA folds, potential
RNA tertiary structure interactions, or RNA-protein in-
teractions. Sampling suboptimal folds [15], computing
base pair probabilities [16], and computing centroid
structures [17] provides a broader view of the RNA con-
formational landscape than a single minimum free en-
ergy (MFE) structure but continue to use a
thermodynamic-based scoring function. Additional ex-
perimental constraints can be combined with free-
energy minimization in order to better predict functional
RNA folds [12]. Recent advances focus on predicting

RNA structures with 2 or 3 functional folds, but still rely
on thermodynamic scoring functions [7].
The first approach to complete enumeration of RNA

structures after the discovery of tRNA crystal structures
took more than 3 days and led to the general miscon-
ception that it is not possible or practical to completely
enumerate all the possible RNA secondary structures
[18]. Utilizing free energy constraints to reduce the con-
formational space, the Wuchty algorithm computes a
complete set of structures within a given energy window
of the MFE structure [19, 20]. The Crumple algorithm
used a different approach and modern supercomputing
resources to compute all possible structures and then
apply filters based on experimental data [21, 22].
Thermodynamic stability may be one criterion in the scor-
ing function, but is not necessarily part of the scoring
function. Crumple can include data from pairing con-
straints in phylogenetic analysis, SELEX experiments, or
chemical and enzymatic probing experiments, as well as
thermodynamic parameters. Crumple and the Sliding
Windows and Assembly application of Crumple can in-
corporate constraints on the minimum number and
length of helices from crystallography or cryoelectron mi-
croscopy data. Pairing constraints are the most powerful
for reducing conformational space [21]. Crumple and even
efficient parallelization of Crumple were limited by se-
quence length and long run times, however. The new
Swellix program builds on the Crumple algorithm and is
now able to compute all possible non-pseudoknotted
structures for RNA sequences up to 418 nucleotides with
sufficient helix constraints within 2 days with an XE6
node of the Blue Waters supercomputer, thus making
many functional noncoding RNAs accessible to thorough
analysis of conformational space. For example, the average
length is 435 nucleotides for the 5,391,569 RNA sequences
in the RFam database 12.1 [23].
The main conceptual advance in Swellix is to combine

all possible helices rather than combine all possible base
pairs in the generation of RNA structures. This helix ab-
straction is further developed by bundling together simi-
lar helices that exist in the same region of RNA
sequence. The use of abstract representations for RNA
helices has previously been applied to free energy
minimization approaches [24], but has not been applied
previously to complete enumeration methods. In
addition, improvements in memory use, computational
efficiency, and effective parallelization strategies at sev-
eral points in the algorithm further enable the Swellix al-
gorithm to generate all possible non-pseudknotted folds
for an RNA sequence and provide a count of functional
RNA motif occurrence. This approach provides an alter-
native to standard RNA structure prediction methods
when the assumptions of a free energy minimization ap-
proach may not hold true.

Fig. 1 RNA Folding Problem. The sequence is the ordered list of A, C, G,
and U nucleotides. The secondary structure is the set of Watson-Crick CG
and AU base pairs. GU pairs may also be included. The RNA folding
problem consists of how to best predict secondary structure (and
ultimately three-dimensional structure and function) from sequence. For
example, the sequence of a 14mer RNA oligonucleotide can fold into
119 secondary structures [21]. Two different hairpin secondary structures
are shown graphically and in dot-parentheses notation.
In dot-parentheses notation, dots represent unpaired nucleotides, and
parentheses represent paired nucleotides. In the graph, unpaired
nucleotides are red and paired nucleotides are blue. Vertical gray lines
connect nucleotides in sequence and horizontal gray lines connect nu-
cleotides in base pairs
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Methods
Swellix program
Swellix builds on the Crumple software [21, 25, 26].
Crumple focuses on individual base pairs and possible
combinations thereof. Swellix considers helices as
discrete components instead of base pairs. The Swellix
algorithm is iteratively recursive and based on the core
Crumple algorithm. However, there are multiple mecha-
nisms that Swellix uses which differentiate the two algo-
rithms. Swellix can be deconstructed into five major
pieces (Fig. 2):

1. Constructing the Pair Table
2. Constructing the Component List
3. Constructing the Interval Look-up Table
4. Constructing the Bundle List
5. Iteratively Recursive Combinatorics (Make Jump Tree)

Parts one through four serve solely to speed up the re-
cursive step. These are tables constructed to reduce the
number of operations needed when checking if a valid
helix exists within an interval. The bundling step serves
to group similar structures together and reduce the size
of the linked list that is sent to the recursive step. The it-
eratively recursive combinatorics step in Swellix is based
on the algorithm in Crumple and has improvements in
memory use and parallelization.

Constructing pair table
The input is an RNA sequence, or a string of A, C, G,
and U that represent the 4 nucleotides in RNA. All pair-
wise matching results of the entire RNA string are

tabulated on a look-up table to speed up the extremely
repetitive comparison procedure. The pairing rules are
based on Watson-Crick (A-U and C-G) and wobble (G-
U) base-pairing criteria. The data structure is a 2D inte-
ger array, where only the upper triangle region is used.
The pseudo code is provided in supporting materials
with time complexity O(n2), where n is the RNA se-
quence length.

Make component list
This phase features one of the key distinctions from the
Crumple algorithm. Instead of iterating through the
O(n2) process to identify the identical helices inside
slightly different intervals I’s, in this phase, Swellix ex-
plores all qualified helices that will possibly be used in
the entire runtime and documents them in an array of
linked lists. Each array index i represents the nucleotide
at the ith position of the input RNA sequence. Each node
in the linked list extending from array cell i represents
one component (ie, a helix) that begins at the ith nucleo-
tide. In other words, the 5′-end outermost nucleotide of
a helix is labeled the “type” of that component. Continu-
ing with that terminology, the ith array cell represents
the component type i, and all nodes of the linked list
from the ith array cell share the same type (starting
nucleotide).
The pseudo code is shown in the supporting materials,

with the time complexity of O(Ln2) for n > > L, where L
is the prescribed minimum helix length based on the ex-
perimental constraints. There are two points to making
the component list. First, k_1 and k_2 indices, iterating
through the entire RNA sequence, mark the boundary of
a candidate helix. i, j are the helix pair indices making
the k_3 stepwise matching checks starting from k_1 and
k_2, respectively. Second, at the conditional statement
‘if(i, j) can be paired’, the pair table is called. The runtime
saving for each if statement implementation is small, but
the collective benefit is substantial.

Make interval look-up table
In the array of the component list, not all array cells
(component types) have corresponding components, ie.,
some cells are empty. For some long RNA sequences
with many experimental constraints, most of the array
cells will be empty. To facilitate the Make Jump Tree
process, it is worthwhile to tabulate the bounds for each
interval so that the scanning process inside each interval
may skip the empty array cells. The pseudo code is listed
in supplemental material with the time complexity of
O(mn2), where m is the number of components in the
component list. The runtime saving of each empty-cell
skip is tiny, but the collective benefit is substantial.

Fig. 2 Flowchart of Swellix RNA Folding Program. The steps of the
swellix program are shown in a flowchart. The bundling and make
jump tree recursion were parallelized to improve run times
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Make bundle list
In order to reduce the input for the Make Jump Tree
phase and to facilitate identification of distinctly differ-
ent structures in the output, a bundle of similar helices
can be grouped together in one single representative
structure. For example, if the following three substruc-
tures occurred in a span of 15 nucleotides,. ((((…..)))).,.
((.((….))))., and. ((..((…))))., then only one helix would be
selected as the representative helix for the bundle, in this
case. ((((……))))., the helix with the most stacked pairs.
The Make Jump Tree phase is the most computation-
intensive part of the entire program, which inherits the
core spirit of the Crumple algorithm. It demands time
for recursion implementations and disk space to store
the solution structures. Thus, any reduction in the input
for the Make Jump Tree phase will reduce computa-
tional time.
The bundling step bypasses all recursion branches

which are guaranteed to resemble the representative
structure and therefore saves significant time and space.
For two helices to be regarded as similar, we proposed
this criterion: the distance from 5′ end to 3′ end must
not exceed the length of 4 L + 2 hp – 1, where L is the
minimum helix length and hp. is the minimum hairpin
loop length, both of which are determined by experi-
mental considerations. There are two reasons for defin-
ing similar helices in this manner:
a) From a computational perspective, 4 L + 2 hp. is the

minimum length to fit in two adjacent helices. Perform-
ing similar helices reduction for 4 L + 2 hp. size or larger
allows the possibility of treating two adjacent helices
“similar” with one helix inside the same interval, which
is apparently incorrect. The 4 L +2 hp. −1 limit does not
allow formation of a multibranch loop in the interval.
b) The wider the span of the interval, the less similar

the largest and smallest helices within the inside the
same interval will be. Therefore, there must be a fine
line somewhere as the cutoff.
For a given interval of size 4 L + 2 hp. – 1 or less, all

helices which fit in that sequence space are called similar
and are grouped in the same bundle. All helices of the
same bundle can be replaced by a representative helix.
This representative is selected from the bundle, based
on first the helix span and secondly on the degree of sat-
uration, ie the representative helix has the most possible
base pairs.
Through this reduction, the total number of solution

structures will be greatly reduced and therefore more
manageable and analyzable. In addition, a reference list
will be provided to contain all possible alternative helices
of the same bundle. Note that it is possible for a small
size helix to belong to more than one bundle, since bun-
dles can overlap each other, and therefore it is possible
that the overlap length is large enough to fit in a small

helix. The bundle list implementation is optional. Its
pseudo code is included in supporting materials and
shows a time complexity of O(m2) where m is the num-
ber of components.

Make jump tree
This phase is the most resource-intensive part of the en-
tire program. All the previous steps have been optimized
to improve the efficiency of Make Jump Tree. The core
implementation of Make Jump Tree inherits the spirit of
the Crumple algorithm. Therefore, it has exponential
time complexity. Fortunately, with the effective incorp-
oration of experimental constraints, the exponential co-
efficient can be scaled down and allow computations on
longer RNA sequences.
In the beginning of the function, the interval is exam-

ined (Refer to the pseudocode in supporting information).
If there is no interval on queue and if it is at the root of re-
cursion (recursion level 0), the entire RNA sequence
length is regarded as the interval. For a given interval,
components from the component list will be checked one
at a time to fit into the interval. If it fits, this component
will be inserted into the current structure either as a new
helix or to replace a certain old helix. Two new intervals
will also be made inside and behind the new helix. The
bound of the new inside interval is the inner edges of the
new helix. The boundary of the new behind interval is the
3′ end outer edge of the new helix and the 3′ end inner
edge of the helix containing the new helix. Then the
make_recursion function call is made, and another recur-
sion round begins.
The theoretical time complexity is O(nm) for the

worst case where n is the length of the sequence and m
is the number of components or bundles. In practice,
most of the RNA sequences are rather well-randomized,
and therefore the average time complexity is close to
O(asqrt(m)), where 1 < a < 3, depending on the experi-
mental constraints and m is the number of components.
The supporting functions that ensure completeness

and no duplication of structures add complexity to the
code. The descriptions of Restore_Interval and Duplica-
tion Prevention, which are part of the Make Jump Tree
step, are described next.

Restore interval
For most of the time, whenever an interval is examined,
it should be discarded to prevent duplication. However,
in some cases, the behind intervals should be condition-
ally kept after examination and reused later. Fig. 3 illus-
trates its importance. Solution structures a~f are all
correct and necessary, but without the restore interval
mechanism, solution structures e. and f. will be missing,
because the behind interval (B section) will be examined
only once and then discarded.
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Duplication prevention
The duplication prevention step includes the 2 L – 1 & qLr
rules, where L is the minimum length of helix, q is the quo-
tient, and r is the remainder. The first rule states that for a
given minimum length of helix, in the case where the mini-
mum helix size and larger are generated, the upper limit of
expansion is 2 L-1 in order to prevent duplication because
any component of the length 2 L can be replaced by two
helices of length L. The second rule is the variant of the
general linear equation a = q*d + r, where a, q, d and r are
all natural numbers; a is any random number; d is divider;
q is quotient; and r is remainder. The qLr rule states that
for a helix of any length, a, there must be a way to build it
with the helix length of L, L + 1, L + 2... 2 L-2, 2 L-1 (note
the 2 L-1 rule limit) without duplication or deletion of
structures in the output. So the expression is a = q * L + k,
or more precisely, a = (q – 1) * L + (L + k), where k is 0, 1,
2, …, L-1 (note k is remainder).
Note that in Swellix, helix length constraints like a

minimum helix length of 2, which effectively eliminates
any single, isolated, unstacked pairs, will produce a
smaller output set than an algorithm such as Crumple.
For Swellix, these length constraints are enforced in the
first step when it is analyzing the sequence for possible
components, ie individual helices. With Crumple, how-
ever, these length constraints will not be enforced until a
full possible structure has been assembled with base
pairs. At this point, the program looks for violations. For
example, if a minimum helix length of 2 is applied, the
output of Crumple and Swellix may differ as shown in
Fig. 4. With Swellix, helices A and B in the first struc-
ture never make it past the initial step by being added to
the set of components for consideration because they

are not at least 2 base pairs long. Thus, Swellix effi-
ciently eliminates single, isolated, unstacked pairs that
do not occur in natural RNA structures. In addition, this
adds to the reduction of the size of the component set
that will be considered combinatorically.

Parallelization
Bundling and the recursive “jump tree” algorithm do
not scale well with input size. The bundling process
has the effect of, given an n-nucleotide sequence, pro-
cessing n-many subsequences before beginning the
standard recursion. This negative performance impact
is magnified by factors such as sequence length and
runtime options like minimum helix length con-
straints. Bundling was identified as a parallelization
candidate due to the data-independence of those n-
many subsequences to be processed. Bundling and
the recursive jump tree are similar in that they both
have high potential for parallelization. They are
unique in the type of parallelization necessary for effi-
cient scaling.
The nature of the bundling algorithm can be ab-

stracted as such: for n nucleotides in a sequence, there
will be n units of work in the bundling step. Each unit of
work consists of running a slightly modified version of
Crumple on some substring of the RNA input sequence.
The results from these computations are consolidated
and used to improve the speed of Swellix’s recursion.
For each of these substrings from the input sequence,
only the data in one substring is required for its respect-
ive computation. Since each “unit” of work is completely
separate from the others, we chose to parallelize the
bundling stage by dividing the “units” equally among our
pool of MPI (Message Passing Interface) processing ele-
ments. The end result is akin to an OpenMP parallel for
loop: each MPI core uses its own rank, the world size,
and the length of the RNA sequence to calculate at what
index to start, and how many iterations of the loop to
process.
For Make Jump Tree, parallelization is more complex.

The same strategy used for bundling could be used here,
but the recursion is much more imbalanced than

Final Structure Valid with Crumple Valid with Swellix 

   A     B 

.((....)(....)). YES NO 

.((((....))...)) YES YES 

Fig. 4 Acceptable Base Pairs in Crumple and Swellix. The top
structure highlights an example when Swellix would not allow a
structure if a minimum helix length of two is a constraint. This
constraint effectively removes single, isolated, unstacked pairs, also
known as “lonely pairs”

A B
____ _____ 

a. (........)..........

b. (........)(........) 

c. (........)(.(.....)) 

d. (..(....)).......... 

e. (..(....))(........) 

f. (..(....))(.(.....)) 
Fig. 3 Restore Interval. All secondary structures a-f are valid when
single base pairs are allowed. Structures e and f are examples when
the behind interval (B) should be conditionally retained. For ex-
ample, if the B interval was not conditionally retained after evaluat-
ing structure b, then structure e would not be generated
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bundling. In an effort to achieve the most balanced com-
pute load as possible, we chose to implement a dynamic
load balancing algorithm for the recursive parallelization.
This parallelization relies on each node having a copy of
the component list. Then each node creates an array of
pointers to each component for rapid access instead of
iterating through a linked list.
Phase 1 of the parallelization strategy can be described

as a coarse master/worker paradigm. The master node
begins a loop from 0 to n (n = # components) in which it
probes the MPI network for work requests from idle
nodes. When it detects such a request, the master sends
its current loop index to the node, indicating which
index in the component array the worker node should
use for a new recursion. Immediately after the master

sends the nth index, it sends another message to all
nodes in the MPI pool indicating that Phase 1 is
complete. During phase 1, the worker nodes begin their
procedure by sending a work request message to the
master node. Then, they pause execution to wait for
some response. If they receive a response with an array
index, then the worker accesses the component array at
that index and begins a recursion using the same func-
tion call that serial Swellix uses normally. Once a recur-
sion is complete, the worker again requests work and
waits for a response. Upon receipt of the phase 1 com-
pletion message, a worker node simply continues to the
data consolidation stage where it will send the informa-
tion it generated back to the master node for display.
During phase 2, a version of Dijkstra’s token rings that

were applied to parallelization of the Crumple algorithm
were used again [21, 27, 28]. If a node is busy in its recur-
sion tree, then it regularly probes for a “work requested”
message. If the node detects a work request message, then
it breaks off a branch of its tree and sends the information
required to continue down that branch over to the node
who requested work. If a node detects a request for work
and isn’t ready to send work, the node should pass the
message around the “ring” of processors. After the detec-
tion that all nodes are finished, a kill signal is passed
around indicating that the processor nodes can finish the
recursive portion and display the results.

Computational resources
Early- to mid-stage development was done on University
of Oklahoma resources including both the Boomer and
Schooner Linux cluster supercomputers. For the Boomer
computations, the compute nodes used contained the
following hardware: 2 Intel Xeon E5–2650 “Sandy
Bridge” 8-core 2.0 GHz processors with 32 GB of RAM.
The compute nodes that we used on Schooner have the

Fig. 5 Comparison of Crumple and Swellix Times for RNA of
Different Sequence Lengths. The graph of run-time versus sequence
length shows how the run time for Crumple grows exponentially
after 35 nucleotides. Crumple is run with no lonely pairs (blue dia-
monds) and Swellix is run with a minimum helix length of two (red
squares). Each run time is the average of 10 repetitions of
the calculation

Table 1 Swellix Run Times for RNA Sequences

Sequence Nucleotides Components Components
w/ bundling

Bundles Structures w/ bundling Runtime (s) Runtime (s)
w/ bundling

Bundling Time
Efficiency (%)

14mer 14 12 8 8 15 8 0.2 0.29

28mer 28 53 40 28 833 374 0.2 0.4

42mer 42 130 108 48 67,014 25,862 0.35 0.58

MicA 50 221 193 71 1,127,719 391,111 3.27 1.7 48.0

tRNA asp 7 71 578 526 141 14,676,607,199 3,586,825,719 51,708.28 12,627.35 75.6

tRNA RG1660 74 471 436 98 2,098,681,265 658,285,383 7140.63 2216.78 69.0

tRNA 1EHZ 76 533 495 107 3,820,164,477 1,327,023,534 13,577.62 4685.58 65.5

Swellix computations were run with and without the bundling option on the Schooner computer and a minimum helix length of 2. The reduction in the number
of components, the number of structures, and the runtimes with the bundling option are highlighted in blue. Bundling time efficiency is calculated as the
difference in runtimes with and without bundling divided by the runtime without bundling. For the very short sequences with less than 1 s runtime, the time to
perform the bundling step increases the overall runtime. The 14mer sequence is 5′5’GCUCUAAAAGAGAG 3′. The 28mer and 42mer are concatamers of the 14mer
sequence. The MicA sequence is a domain of a bacterial noncoding RNA [40]. The three tRNA sequences are tRNA Asp 7 from Homo sapiens [41], tRNA Ala from
Shigella sonnei [42], and tRNA Phe from Sacchromyces cerevisiae (PDB# 1EHZ) [43]

Sloat et al. BMC Bioinformatics  (2017) 18:504 Page 6 of 12



following specifications: 2 Intel Xeon E5–2650v3 “Has-
well” 10-core 2.3 GHz processors with 32 GB of RAM.
Late-stage development took place almost exclusively

on the Blue Waters supercomputer through the Blue
Waters Project and Shodor Education Foundation’s Blue
Waters Student Internship Program. The typical com-
pute node used on Blue Waters was the XE6 node: 2
AMD 6276 Interlagos 16-core (“integer” core) 2.45 GHz
processors with 64 GB of RAM.

Results and discussion
Swellix performance
Swellix enables longer RNA sequences to be computed
and analyzed. Swellix with a minimum helix length of
one is nearly identical to Crumple. The performance
analysis in Fig. 5 shows a comparison between Swellix
with minimum helix length of 2 and Crumple with “no
lonely pairs”, ie no isolated, single, unstacked pairs. The
test consists of 10 trials, each with 50 unique, randomly
generated sequences of length 1–50. Each sequence in a
trial was 1 nucleotide longer than the previous. This
produced a total of 10 data points for each sequence
length 1–50, and these data points were averaged for a
resulting value of runtime versus sequence length. With

out bundling, Swellix performs nearly the same as
Crumple from 1 to 35 nucleotides. At this point, Swellix
and its additional computational procedures and im-
provements in efficient memory use greatly speed up
runtime while Crumple begins to slow down with appar-
ently exponential trend. The completeness and accuracy
of Swellix was checked by comparing the Swellix output
for minimum helix length of 1 with Crumple output.
Table 1 provides additional benchmarks for run times
for biological sequences of different lengths using the
Swellix program on the Schooner computer. As ob-
served in the column of run times without bundling in
Table 1, Swellix runtimes with a minimum helix length
of 2 do not begin to grow exponentially in run time until
approximately 70 nucleotides.
The abstract helix representation in bundling further

improves the ability of Swellix to compute longer se-
quences in a reasonable time. In order to test whether
bundling of similar helices was the prime contributing
factor to Swellix’s performance compared to Crumple,
sequences of increasing lengths were used: 14, 28, 42,
50, 71, 74, and finally 76 nucleotides. The first three se-
quences are artificial sequences used for general testing
and development. The “14-mer” is 5’GCUCUAAAAGA-
GAG3’ and was designed to produce a set of structures
that contain an example of each possible kind of soft
constraint for DMS-modified adenines. The 28- and 42-
mer are 2 and 3 concatamers of the 14-mer sequence.
The longest sequence is a tRNA sequence, yeast phenyl-
alanine tRNA (crystal structure PDB #1EHZ). As shown
in Table 1, the Bundling feature reduces the size of the
input which gets passed to the recursive portion of Swel-
lix. Note that the bundled structures can be “unbundled”
and thus this computational improvement doesn’t come
at the cost of solution completeness. This input size re-
duction inherently also reduces output size, and it fol-
lows that the runtime would also be decreased.

Table 2 Effect of Helix Constraints on Bundling of a 76-mer
tRNA

Minimum Helix
Length

Components Bundles Structures Runtime (s)

2 495 107 1,327,023,534 6875.18

3 215 56 563,026 8.06

4 91 28 8292 5.5

5 36 11 314 21.02

6 13 5 33 293.08

Swellix computations were run with the parallelized bundling option on the
Blue Waters computer. The sequence is the 1EHZ tRNA

Table 3 Swellix Computations of Longer RNA Sequences

Sequence Minimum Helix Length Nucleotides Components Bundles Structures Runtime (s)

MicA 5 50 9 9 22 27.45

tRNA asp 7 5 71 31 14 271 43.61

tRNA RG1600 5 74 22 12 254 14.51

tRNA 1EHZ 5 76 36 11 314 21.02

GA1 pRNA 5 161 154 26 417,535 29.43

SF5 pRNA 5 167 206 31 2,679,059 54.09

M2 pRNA 5 171 185 31 2,988,931 60.79

phi29 pRNA 5 174 270 57 47,596,862 200.28

Azoarcus gr. I intron 5 197 173 32 3,020,337 30.11

Tetrahymena gr. I intron 5 247 247 35 105,405,879 285.49

Swellix computations were run with the parallelized bundling option on the Blue Waters computer. The sequences are those in Table 1 as well as 4 prohead RNA
sequences [44] and 2 group I intron sequences [45]
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As a computational exercise several tRNA, pRNA, and
group I intron sequences were folded on the Blue Wa-
ters computer using the parallelized bundling option.
The minimum helix length was varied from 2 to 10.
Table 2 shows the results of this exercise for the tRNA
1EHZ sequence. This exercise revealed a “sweet spot” in
the bundling computations. For very short sequences,
the bundling computation added time. For very long
minimum helix lengths, the length of the sequence to be
analyzed according to the 4 L + 2 hp – 1 rule and the
computations to create the bundles add increasing
amounts of time. The best balance for the benefits of

bundling occur with a minimum helix length of 4 or 5.
Table 3 shows the results of folding sequences up to 247
nucleotides with a minimum helix length of 5. The fast
run times for longer sequences demonstrate that
complete enumeration is possible given sufficient experi-
mental constraints. Table 4 shows the parallelization of
tRNA and three HERV RNA sequences up to 418 nucle-
otides with minimum helix lengths ranging from 2 to 6
on the Blue Waters computer. A comparison of the serial
and parallel run times provides an estimate of the
parallelization efficiency, which has complex dependencies
on sequence length, number of bundled components, and
minimum helix length. The highest ratios of sequential to
parallel run times occur in cases with a large number of
bundled components and a short minimum helix length.
Although a minimum helix length of 2 is practical and
reasonable assumption for biological sequences without
further experimental data, additional experimental con-
straints can be generated from in vivo chemical probing of
paired nucleotides, ie the PARIS (psoralen analysis of
RNA interactions and structures) method [2], or cryoelec-
tron microscopy [26, 29]. Both the PARIS method and
cryoelectron microscopy are revealing an increasing num-
ber of RNA with multiple conformations and multiple
folds. Thus, Swellix will be a complementary tool to
analyze RNA sequences with multiple folds .

Swellix analysis of the effects of naturally chemically
modified nucleotides in tRNA
One of the roles of modified nucleotides in tRNA is to
reduce conformational space and prevent misfolding
[30]. Swellix was used to quantify the reduction in con-
formational space for individual modifications and the
collective effect of modifications in 17 tRNA sequences.

Table 4 Comparison of Serial and Parallel Runtimes for Longer RNA Sequences

Sequence Minimum Helix Length Bundled Structures Parallel Runtime (s) Serial Runtime (s)

tRNA-1EHZ 2 1,327,023,534 456.28 11,117.55

tRNA-1EHZ 3 563,026 3.25 7.61

tRNA-1EHZ 4 8292 4.71 10.24

tRNA-1EHZ 5 314 45.32 137.53

tRNA-1EHZ 6 33 718.27 2498.52

HERV 141 3 12,518,055,094 5550.62 112,162.24

HERV 141 4 1,463,580 8.06 22.24

HERV 141 5 3401 41.97 130.4

HERV 141 6 43 663.51 2303.08

HERV 244 5 195,971,275 256.02 2229

HERV 244 6 59,909 2116.68 7239.21

HERV 418 6 7,514,046,365 10,040.77 97,296.14

Swellix computations were run with the parallelized bundling option on the Blue Waters computer. Each sequence was given the same number of cores as
nucleotides in the sequence, ie tRNA-1EHZ has 76 nucleotides and cores. There are three HERV RNA sequences of different lengths: 141, 244, and 418 nucleotides
[46]. HERV141 is the shortest known HERV RNA fragment, and HERV418 is a self-folding domain that binds the Rev. protein [47]

Fig. 6 Effect of tRNA Modifications on Conformational Space. This
graph shows the percentage reduction in the number of
conformations as a function of the number of constraints applied to
naturally chemically modified nucleotides for 17 tRNA sequences.
The percentage reduction in folding space is calculated from the
total number of possible structures computed for the sequence with
and without constraining naturally chemically modified nucleotides
to be single stranded. All tRNA sequences were computed with
bundling and a minimum helix length of 2 on the
Boomer computer
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17 sequences (Additional file 1: Table S1) were selected
from the tRNA database [31]. Each sequence contains
76 nucleotides and varying numbers of total modified
nucleotides that interfere with Watson-Crick base
pairing. For example, given a sequence with a total of 9
chemically modified nucleotides that prevented Watson-
Crick base pairing, 10 variants of the sequence were cre-
ated. The first variant would instruct Swellix to fold the
sequence without constraints as if there were no modi-
fied nucleotides. The next would enforce the first modi-
fied nucleotide not to pair, and so on until the final
variant enforced constraints on all the chemically modi-
fied nucleotides. The order of constraint enforcement
depended on the distance from the 5′ end. The first
modification to be enforced was the 5′-most modifica-
tion and the last was the one closest to the 3′ end. With
these variants created, we ran them all in serial Swellix
with bundling on and with a minimum helix length of 2
on the Boomer computer. The longest computation took
~11.12 h, with the average runtime being ~1.18 h. In
parallelized Swellix, tRNA computations run in less than
a minute on the Blue Waters computer (Tables 3 and 4).
Fig. 6 demonstrates the relationship between reductions

in output size versus the number of enforced constraints
for naturally chemically modified nucleotides. Notably, the
trend isn’t linear. Subsequent enforced modifications don’t
necessarily cause the same amount of folding reduction as
their predecessors. Overall, the most significant reduction
in number of possible folds occurs with the first constraint
for modified nucleotides. The quantification of the reduc-
tion in the number of possible folds enables an estimate of
the entropic benefits of naturally chemically modified nu-
cleotides. The estimate of the entropic benefit can be cal-
culated using the Second Law of Thermodynamics (Eq. 1)

S ¼ k ln W

where S is entropy, k is Boltzman’s constant, and W is the

number of possible RNA folds. Thus, comparing the num-
ber of possible tRNA folds for 16 unmodified sequences
versus the fully modified sequences, the average entropic
difference in the tRNA folding reaction is −3.9 ± 0.4 J/
molK per modified nucleotide. The average entropy re-
duction for the first modified nucleotide is −4.9 ± 1.9 J/
molK. The maximum entropic benefit for the most modi-
fied sequence, a tryptophan tRNA from Triticum aesti-
vum, is −73.2 J/molK. Thus, our computations confirm
and quantify one role for naturally modified nucleotides in
reducing conformational space for RNA folding.
The above example illustrates how chemical modifica-

tions in natural RNA limit folding space. One further
application of the Swellix program in the field of syn-
thetic biology would be to estimate the optimal location
in a sequence to restrict folding with a nucleotide unable
to pair. When designing RNA sequences, incorporation
of chemically modified nucleotides are one method to
direct folding and restrict folding space in particular
ways or regions of the sequence. Thus Swellix may also
facilitate rational design of sequences with engineered
folds.

Swellix analysis of protein and drug binding motifs in
HERV RNA
The shortest Human Endogenous Retroviral RNA
(HERV) sequence is 141 nucleotides (Genbank #
AY944072.1). Folding this HERV RNA using the paralle-
lized Swellix on the Blue Waters computer generated
643 components and 12,518,055,094 bundled structures
in an average time of 23,951 s. Swellix does not save all
the generated structures, but a motif search can be com-
pleted for each structure before it is discarded. A search
for known RNA motifs [32–37] from HIV and Hepatitis
viral RNA yielded the results shown in Table 5. Although
these protein and drug binding motifs do not appear in
the minimum free energy structure, suboptimal structures,
or centroid structures predicted by Vienna [38] or

Table 5 Motif Searches in Swellix Analysis of HERV RNA

Motif % occurrence

GNRA tetraloop WWWGNRAWWW (((....))) 0.00

Hepatitis C 1 WWGAACUACWW_WWGCWW (((.....(((_)))))) 4.41

Hepatitis C 2 WWUACCCACCWW_WWGAGWW (((......(((_))).))) 2.71

HIV TAR WWAUCUGWW_WWCUWW (((...(((_)))))) 4.58

HIV and 7SK WWUCUUWW_WWARWW (((..(((_)))))) 0.73

HIV RRE 1 WWUGGAAWW_WWUGGGAGWW (((...(((_)))....))) 2.80

HIV RRE 2 WWGGGCWW_WWGGUACWW (((..(((_)))...))) 4.58

A 141-nucleotide Human Endogenous Retroviral (HERV) RNA sequence (Genbank # AY944072.1)was folded using a phase 1 parallelized Swellix on the Blue Waters
XE nodes with 16 cores per node. The computation generated 643 components and 12,518,055,094 bundled structures in an average runtime of 23,951 s. The
minimum helix length constraint is 3. The motifs that were counted are RNA loops, some of which bind small molecule drugs in HIV Trans Activating Response
(TAR) or Rev. Responsive Elements (RRE), 7SK RNA, or Hepatitis C RNA [32–37]. For the motif sequence, W indicates a Watson-Crick pair; N indicates any nucleotide;
and R indicates a purine. In the sequence and dot and parentheses notation, an underscore indicates any variable number of intervening nucleotides. The percent
occurence is the number of times the motif was counted during the computation divided by the total number of structures generated
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RNAStructure [39] programs (Fig. 7), the motif occur-
rence can be as high as 4.5%. Thus, Swellix can search the
entire conformational ensemble to identify motifs that
might otherwise be overlooked. The thermodynamic-
based predictions do not yield any structures with high
base pair probabilities, and the MFE structure occurrence
is only 1.17% of the ensemble. This HERV sequence does
not have one thermodynamically dominant predicted
structure, and thus Swellix is an alternative approach to
RNA folding that can provide new insights, such as reveal-
ing the presence of motifs that bind therapeutics.

Conclusion
Swellix effectively combines helix abstraction with a com-
binatorial approach to RNA structure determination in

order to efficiently compute all possible non-pseudoknotted
structures for an RNA sequence. Swellix can analyze an
RNA up to 418 nucleotides on the Blue Waters Super-
computer, and thus demonstrates that computer time and
nodes are the only limits to a combinatorial approach to
the RNA folding problem. The current capabilities of
modern supercomputers and efficient tools such as Swel-
lix make combinatorially complete searches of RNA con-
formational space a realistic option and dispel the myth of
impossible RNA computations. Swellix is capable of in-
corporating unique constraints, such as the minimum
number and length of helices, from crystallography or
cryoelectron microscopy experiments. The possible bio-
logical applications for Swellix are demonstrated by com-
puting the entropic benefits of reducing conformational

Fig. 7 HERV Minimum Free Energy and Centroid Structures. The minimum free energy structure (MFE) and centroid structure for the 141-
nucleotide HERV sequence (Genbank # AY944072.1)are shown. Base pairs are colored according to base pair probabilities computed with thermo-
dynamic parameters using the Vienna Program [38]. The same sequence folded using the RNAStructure program generates an MFE structure and
6 additional suboptimal structures, none of which contain the motifs in Table 5
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space with modified nucleotides in tRNA folding and
motif abundance in HERV RNA folding. Swellix reveals
protein and drug binding motifs that occur in the entire
ensemble but do not occur in the predicted minimum free
energy or centroid structures. Thus, Swellix provides an
alternative approach to RNA structure analysis when the
assumptions of free energy minimization do not apply or
when multiple conformations are present.

Additional file

Additional file 1: Supporting Information. Supporting Information
includes the pseudocode and readme file for the Swellix program and
Table S1, a table of tRNA sequences and modifications. (PDF 86 kb)
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