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Abstract

Background: In biomedical articles, a named entity recognition (NER) technique that identifies entity names from
texts is an important element for extracting biological knowledge from articles. After NER is applied to articles, the
next step is to normalize the identified names into standard concepts (i.e., disease names are mapped to the National
Library of Medicine’s Medical Subject Headings disease terms). In biomedical articles, many entity normalization
methods rely on domain-specific dictionaries for resolving synonyms and abbreviations. However, the dictionaries are
not comprehensive except for some entities such as genes. In recent years, biomedical articles have accumulated
rapidly, and neural network-based algorithms that incorporate a large amount of unlabeled data have shown
considerable success in several natural language processing problems.

Results: In this study, we propose an approach for normalizing biological entities, such as disease names and plant
names, by using word embeddings to represent semantic spaces. For diseases, training data from the National Center
for Biotechnology Information (NCBI) disease corpus and unlabeled data from PubMed abstracts were used to
construct word representations. For plants, a training corpus that we manually constructed and unlabeled PubMed
abstracts were used to represent word vectors. We showed that the proposed approach performed better than the
use of only the training corpus or only the unlabeled data and showed that the normalization accuracy was improved
by using our model even when the dictionaries were not comprehensive. We obtained F-scores of 0.808 and 0.690 for
normalizing the NCBI disease corpus and manually constructed plant corpus, respectively. We further evaluated our
approach using a data set in the disease normalization task of the BioCreative V challenge. When only the disease
corpus was used as a dictionary, our approach significantly outperformed the best system of the task.

Conclusions: The proposed approach shows robust performance for normalizing biological entities. The manually
constructed plant corpus and the proposed model are available at http://gcancer.org/plant and http://gcancer.org/

normalization, respectively.

Keywords: Text mining, Named entity recognition, Entity name normalization, Disease names, Plant names, Neural

networks

Background

With the rapid accumulation of biomedical articles, devel-
oping accurate and efficient text-mining techniques for
extracting knowledge from articles has become impor-
tant. In the text-mining, named entity recognition (NER)
is an important element. Named entities are meaningful
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real-world objects in predefined specific domains, and
they are presented as single words or multi-word phrases
in texts. NER involves identifying both predefined enti-
ties as well as the domain of the entities or the entity
types from informal texts [1]. After single words or multi-
word phrases in texts have been recognized, the next
step is named entity normalization by assigning suit-
able identifiers to recognized entities. For general enti-
ties, several natural language processing (NLP) studies,
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such as assigning entities to relevant Wikipedia abstracts
or corresponding nodes in knowledge base, have been
performed [2—4].

In biomedical articles, named entity normalization is
challenging because many biological terms have multi-
ple synonyms and term variations, and they are often
referred to using abbreviations [5]. To resolve these ambi-
guities, several NER and normalization studies have been
conducted for several entity types such as biological enti-
ties (genes, proteins, diseases, and disorders) and chem-
ical entities (drugs and compounds) [6-9]. The Critical
Assessment of Information Extraction in Biology (BioCre-
ative) organized biomedical NLP challenges. One of the
subtasks in BioCreative V was NER and normalization for
disease names [10].

Although machine-learning (ML) approaches have been
used for normalization, most normalization tools rely on
the accuracy of domain-specific dictionaries or rules. This
is because biological entities (1) have many synonyms; (2)
are often referred to using abbreviations; (3) are described
by phrases; and (4) are mixtures of alphabets, figures,
and punctuation marks. The ProMiner [11] system fol-
lows a dictionary-based approach based on an approxi-
mate string-matching method; it was designed to detect
and normalize gene and protein names. This system uses
preprocessed dictionaries that include biological entities
with known synonyms. MetaMap [12] was developed to
improve the retrieval of relevant MEDLINE citations. This
program maps biological entities to concept identifiers in
the Unified Medical Language System (UMLS) Metathe-
saurus. GenNorm [7] and GNAT [8], which are used
for gene name normalization, and ChemSpot [9], which
is used for chemical name normalization, also normal-
ize entities that were extracted by their own dictionary
components. Gimli [13] is an NER tool designed to rec-
ognize the names of various biomedical entities. Because
Gimli only performs NER, its functionalities are inte-
grated into Neji [14] for providing general normalization
based on prioritized dictionaries. Lee et al. [15] achieved
a highest F-score of 86.46% for disease NER and normal-
ization among 16 teams in BioCreative V. They used a
dictionary-lookup approach based on the priority of dic-
tionaries they assigned. Moara [6] recognized gene and
protein mentions using a hybrid methodology for normal-
ization; the normalization task consists of flexible match-
ing and ML-based matching strategies. Flexible matching
is accomplished by exact matching from dictionaries; ML-
based matching follows a feature-based approach such as
prefix/suffix, bigram/trigram similarity, and string/shape
similarity. tmChem [16] applied a rule-based approach for
concept normalization that converts identified mentions
from articles to lexical variations such as lowercasing and
removing whitespace and punctuations, and then maps
them to specific database identifiers.
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Unlike previous studies, DNorm [17] uses pairwise
learning to normalize disease names; it assigns men-
tions in the text to proper concept names in a controlled
vocabulary, where a mention and a concept name are
represented as a vector. DNorm outperformed MetaMap
and Lucene when it was trained and tested using the
National Center for Biotechnology Information (NCBI)
disease corpus [18]. However, because the vector consists
of tokens appearing in mentions or concept names, tokens
not appearing in a labeled data set might not be normal-
ized properly. Thus, the importance of the labeled data
set and predefined dictionaries, including synonym and
abbreviation dictionaries, is emphasized, and it requires
domain-specific dictionaries for normalization.

To some extent, the reliance on dictionaries can be
reduced by understanding words at the semantic level.
Word semantics are better understood within the context
of these words, which are represented by the surround-
ing words to the left or right. For example, sentences
similar to “The standard systemic treatment for prostate
cancer (PCa) is androgen ablation, which causes tumor
regression by inhibiting activity of the androgen receptor
(AR). (PubMed ID: 18593950)” and “AR remains impor-
tant in the development and progression of prostate can-
cer. (PubMed ID: 15082523)” are frequently repeated in
biomedical texts. This allows us to infer that “prostate can-
cer’, “androgen receptor’, and “AR” are related words in
their semantics.

Rumelhart et al. [19] represented words in a vector
space, where similar words are located close together.
Recently, neural-network-based approaches have been
developed for word representations; these methods are
useful for identifying word similarities [17]. These meth-
ods have become popular because word representa-
tion can be learned from a large amount of unlabeled
data. Deep learning approaches using a large amount of
unstructured data have attracted much attention [20],
and they have been applied to many NLP problems with
considerable success. Lample et al. [21] utilized a long
short-term memory (LSTM) architecture and character-
based word representations for the NER task. Ma et al.
[22] proposed a neural network architecture that com-
bines bidirectional LSTM, convolutional neural networks,
and conditional random fields for the sequence labeling
tasks, including part-of-speech tagging and NER. To eval-
uate the proposed NER system, they used the English data
set from the CoNLL 2003 shared task [1]. However, these
studies were not extended to the normalization task.

In this study, we propose a method for normal-
izing biological entities, for example, disease names
and plant names, by representing words in continu-
ous vector spaces using neural networks. We combine
a dictionary-based approach and word representations
using a training corpus and unlabeled PubMed abstracts
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to incorporate the contexts of words. We compared
our new method to DNorm to normalize disease
names with and without an abbreviation dictionary.
We also applied our approach for normalizing plant
mentions, which does not have an abbreviation dictio-
nary. Without an abbreviation dictionary, this approach
showed good performance for normalizing biological
entities.

Methods

Data resources

Entity dictionary

Disease name dictionary For the disease name dic-
tionary, we used MErged DIsease vocabulary (MEDIC)
[23] that combines the Diseases branch of the National
Library of Medicine’s Medical Subject Headings (MeSH)
and the Online Mendelian Inheritance in Man (OMIM).
MeSH is a controlled vocabulary that includes synonyms
in a hierarchical tree structure ranging from 16 general
categories (e.g., Neoplasms) to more specific ones (e.g.,
Retinoblastoma) across 13 hierarchical levels. This hier-
archy provides a way to navigate from higher to specific
levels so that the relationships between diseases can be
found. To merge the disease names in the two dictionar-
ies, the terms under the Diseases branch was used. OMIM
is a well-known resource for human genetic diseases.
OMIM, unlike MeSH, is a flat list of different concepts
such as phenotypes and genes, and it does not provide
connections between similar diseases. MEDIC is a dis-
ease dictionary that combines the strengths of MeSH and
OMIM, and it provides disease information, including dis-
ease names, concept identifiers (IDs), definitions of the
diseases, information about parent nodes, and synonyms.
MEDIC contains around 9700 disease names and 67,000
synonyms.

Plant name dictionary In this study, the term “plants”
refers to a wide range of organisms, including trees,
shrubs, and primitive plants, such as fungi, mosses, algae,
and lichens. For thousands of years, plants have been val-
ued for their medicinal and healthful qualities. Various
scientific and common names are used for plants, because
plant names have been derived from several civilizations
(e.g., Greek and Chinese), and plants have evolved into
various structures. Compared to other biological entities
such as genes or proteins, for which several normaliza-
tion studies have been performed, few studies on plant
name normalization have been performed. To normal-
ize plant names, we need a well-organized dictionary
of plant identifiers. We extracted a viridiplantae ontol-
ogy for plants from the NCBI Taxonomy database [24]
that consists of NCBI taxonomy IDs, scientific names,
synonyms, and hierarchical taxonomic information. The
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NCBI taxonomy database indexes over 150,000 viridiplan-
tae that are constructed from whole, partial, or phoneti-
cally spelled organism names, and it provides information
about organisms that are commonly used in biological
research [25].

Corpus

Disease and plant corpora were used for training and test-
ing normalization models. Table 1 shows the size of the
corpora used in this study.

Disease corpus For diseases, the NCBI disease corpus
[18] was used in the present study. This corpus consists
of 793 PubMed abstracts, 6 892 disease mentions, and 790
unique disease concepts using disease terms in MEDIC
[23]. Preannotation was performed using PubTator [26].
After this step, the abstracts were manually annotated
by 14 annotators. Finally, the annotated abstracts were
curated by biomedical experts. The annotated abstracts
consist of a training set, a development set, and a test
set; these were respectively used to construct the mod-
els, set the hyperparameters in normalization models, and
evaluate the models.

Plant corpus For plants, we manually constructed train-
ing, development, and test sets because no appropriate
corpus specific for plants is available. From 208 abstracts
with 19 mentions per abstract, a total of 3 985 mentions
were extracted and then mapped into concepts in the
NCBI taxonomy database. Two annotators participated in
constructing the corpus; their inter-annotator agreement
(IAA) scores were 0.985 and 0.889 for plant name recog-
nition and normalization, respectively, suggesting a high
level of agreement. Details about the annotations, includ-
ing the curator guidelines and IAA, are provided in the
Additional file 1.

Abbreviation dictionary
In biomedical articles, long disease names occur many
times, and they are often referred to using acronyms

Table 1 NCBI disease corpus and our plant corpus

Data set Abstracts Tgtal Ulmque Unique
disease disease concept
mentions mentions  IDs

Disease training set 592 5145 1170 670

Disease development set 100 787 368 176

Disease test set 100 960 427 203

Total 792 6892 2136 790

Plant training set 128 2647 1543 1143

Plant development set 40 709 400 329

Plant test set 40 629 427 298

Total 208 3985 2370 1770
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and other shorthand. However, a general rule for using
acronyms does not exist, different abbreviations are often
used for the same names, and some authors even cre-
ate new acronyms. Therefore, two different words written
in the same paragraph may indicate the same entities,
or two different diseases may be written using the same
word. For example, “Angelman Syndrome” and “Ankylos-
ing Spondylitis” are both abbreviated as “AS”. Therefore,
resolving abbreviations is an important issue in NER
research. DNorm [17] used their own abbreviation dictio-
nary to solve the problem of acronym normalization.

For disease names, we used the abbreviation dictionary
provided by DNorm. It consists of PubMed IDs, disease
acronyms, and original long words. However, this dic-
tionary is optimized for the NCBI disease corpus. As
shown in Fig. 1, out of the 592 abstracts in the train-
ing corpus, 415 had abbreviations for disease names, 84%
of which are in the dictionary. Similarly, out of the 100
abstracts in the test corpus, 68 had abbreviations for
disease names, 83% of which are in the dictionary. In
addition, although a well-constructed dictionary of dis-
ease abbreviation exists, dictionaries of other biological
entities such as plant abbreviation names do not exist.
Thus, when we compared our approach to DNorm, we
measured performances with and without this abbrevi-
ation dictionary. For plant names, we did not use an
abbreviation dictionary because no dictionary is available.

Training a normalization model

Figure 2 shows an overview of the training and test steps
in our approach. In the training step, abstracts in the
NCBI disease corpus and plant corpus and unlabeled
data are used to construct the normalization model. In
this study, the unlabeled data include a set of abstracts
(or sentences) from which disease and plant names were
extracted using NER tools. Note that they are considered
unlabeled data because the disease and plant names were
not normalized. The disease and plant names in the unla-
beled PubMed abstracts were extracted using BANNER
[27] and LingPipe [28], respectively. Then, we modified
the training corpus and the unlabeled data from PubMed
using synonyms and concepts of biological entities in the
dictionaries. Finally, we represented all words in the mod-
ified training data sets and unlabeled data from PubMed
in the vector space using Word2Vec [29]. The details are
described in the following subsections.

Incorporating information in training data sets

We describe how information in the entity dictionaries
and the training corpus are incorporated before we con-
struct word vectors for all tokens in the training corpus,
unlabeled data, and entity dictionaries. Throughout this
paper, the names for biological entities in the sentences
are called mentions.
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NCBI Training Corpus (592 abstracts)

o

70% 84.82%
(415) (352)

NCBI Test Corpus (100 abstracts)

0 68% 83.82%
(68) (57)

Fig. 1 Comparison between the NCBI disease corpus and the
abbreviation dictionary. The upper and the lower pie charts represent
the NCBI training corpus and the NCBI test corpus, respectively. The
dark gray parts represent abstracts in which disease names are not
abbreviated, and yellow parts represent abstracts that contain at least
one disease name abbreviation. Among the abstracts in yellow, the
red parts represent abstracts with disease abbreviation information in
the abbreviation dictionary, and the gray parts represent abstracts
that contain at least one disease name abbreviation that is not
included in the abbreviation dictionary

We replaced mentions in the sentences from the train-
ing corpus and unlabeled data with synonyms in the dic-
tionary and concepts in the training corpus. For example,
if “cancer” was mentioned in a sentence, new sentences
were created in which “cancer” was replaced by its syn-
onyms such as “neoplasms’, “tumor’, “tumors’, “tumour’,
or “tumours”. We also added stemming variations of dis-
ease names. The lexical variations were obtained with
a stemming analyzer in Apache Lucene, which imple-
ments the Porter Stemming Algorithm [30]. For example,
if “metabolism” was mentioned in a sentence, the root
form “metabole” and common variations of “metabole’,
including “metabolic’, “metabolite’, and “metabolize’, were
replaced to create new sentences.

If mentions comprised multiple words, we connected
each word using an underscore symbol, thus generating a
single word. For example, if the mention “breast cancer”
was identified from a sentence, a new sentence was cre-
ated in which “breast cancer” was replaced by the single
word “breast_cancer”. In addition, mentions that were not
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Fig. 2 A schematic of the proposed approach

included in the training data cannot be represented as vec-
tors. To increase the coverage of entities to be represented
in the vector space, disease or plant names and their syn-
onyms in the entity dictionary that were not included in
the training data were added to the training data.

Word representations

Mikolov et al. developed Word2Vec [29], a neural network
approach for computing the vector representations of
words. Vectors can be constructed using two algorithms: a
continuous bag-of-word (CBOW) model and a skip-gram
model. The CBOW model learns word representations
by predicting a word in a sentence using its surrounding
words, and the skip-gram model learns word representa-
tions by predicting the surrounding words of a word in

the input layer. In Word2Vec, words are represented by — where Wi ooy

e CBOW equation:

e Skip-gram equation:

Wi—1, Wi+15 - - -

position in a sentence is calculated by maximizing the
average log probability as follows:

1 T
T Zlogp (wtlwt_%, o Wi, Wit 1 e o wt+%) ,
=1

1)

1 T
T E logp (wt_%, e WL, Wig Ly e e Wit |wt) ,
=1

2)

»and wy ¢ are vectors for

vectors in hundreds of dimensions, and words that have
related meanings are more likely to have similar values in
the vector space. A vector w; for a word located at the ¢-th

the surrounding ¢ words in the sentence, and T is the
number of tokens. We applied several options of a vector
size of a word and a window size for surrounding words
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for both CBOW and skip-gram algorithms to train the
models, and then, we chose the best options using the
development sets.

To use unlabeled data in PubMed, we collected four
groups of texts: (1) all PubMed abstracts (hereafter
referred to as “all abstracts”), (2) biological-entity-specific
abstracts that contain at least one biological entity name
in the abstracts (“entity-specific abstracts”), (3) sentences
that include at least one biological entity name in the
sentence (“evidence sentences”), and (4) a collection of
“evidence sentences” and modified evidence sentences
(“modified evidence sentences”). Here, biological entities
were identified using NER tools. For disease names, we
used BANNER [27] because it has been used in sev-
eral disease name recognition systems including DNorm
and in several studies [17, 18, 31]. For plants, we applied
LingPipe using exact matching based on the plant dictio-
nary because several systems have used dictionary-based
approaches for plant or species name recognition [32, 33].
Note that the NER systems were used to construct unla-
beled data because the amount of unlabeled data is too
large to manually curate entity names. Modified evi-
dence sentences were constructed by replacing mentions
of biological entities with concepts in the training set
and synonyms in the dictionary as described in the
“Incorporating information in training data sets ” section.
For example, “Van der Woude syndrome” is abbreviated as
“VWS” and has a synonym of “lip pits” Thus, a sentence in
the trainning data “Affected males and females are equally
likely to transmit VWS. (PubMed ID: 4019732)” generates
following modified sentences:

(1) “Affected males and females are equally likely to
transmit Van der Woude syndrome”,

(2) “Affected males and females are equally likely to
transmit Van_der_Woude_syndrome”,

(3) “Affected males and females are equally likely to
transmit lip pits”, and

(4) “Affected males and females are equally likely to
transmit lip_pits”.

We propose four semi-supervised learning models.
Each model constructs a vector set V' of words represent-
ing words in the vector space by applying Word2Vec [29]
to the training corpus and unlabeled data sets: (1) semi-
supervised learning with unlabeled data of “all abstracts”
(hereafter referred to as “SSL-all abstracts”), (2) semi-
supervised learning with unlabeled data of “entity-specific
abstracts” (“SSL-entity abstracts”), (3) semi-supervised
learning with unlabeled data of “evidence sentences”
(“SSL-evidences”), and (4) semi-supervised learning with
unlabeled data of “modified evidence sentences” (“SSL-
modified evidences”). In addition to these four models,
we constructed (5) semi-supervised model that used only
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modified evidence sentences without the training corpus
(“SSL-only modified evidences”). For comparison, we also
constructed a supervised learning model with the training
corpus (“SL-only training data”).

Prediction for normalizing biological entities

As shown in Fig. 2, in the test step, abstracts in the
NCBI disease corpus and in the plant corpus were used
to test the normalization model. Biological mentions were
extracted from the abstracts. If an extracted mention was
exactly matched to a concept name, it was assigned to a
corresponding concept ID, and additional normalization
steps were not performed. Next, we applied an abbrevia-
tion resolution step, in which acronyms were changed to
the original long words by using the abbreviation dictio-
nary. The abbreviation resolution step is indicated by a
dashed square because we investigated our proposed tool
with and without the abbreviation step. For plants, we did
not use the abbreviation step.

For the normalization, test mentions are mapped to
their concepts by calculating the cosine similarities
between a vector of the test mention and vectors of every
possible concept in the entity dictionary. Then, words
with high cosine similarities were considered candidate
concepts (Fig. 2). Let a mention m and a candidate concept
¢ be represented vectors v, and v, respectively. When a
mention m comprises a single token such as “cancer” or
“tumours’, a vector for the single token in the vector set V'
is assigned to v,,. When a mention m comprises multiple
tokens, vy, is assigned as the average of vectors for tokens
in the mention as follows:

1
Vim = ; ;Vmp (3)
i=

where v, is the vector of the i-th token in the men-
tion and #, the number of tokens. If the j-th term vector
Vm; € V, we assign a zero vector to vy, and calculate the
average vector v,, by using Eq. (3). Note that concepts with
multiple tokens were converted into a single token using
an underscore symbol in the training step. After the men-
tions for biological entities were represented as vectors,
concepts with high cosine similarities in word vectors v,
€ V to the vector v,, of a query biological entity were
recommended as normalized concepts.

Evaluation metric

To measure the performance of the disease name nor-
malization tools, we compared highly ranked predicted
concepts with manually mapped concepts in the test cor-
pus. Table 2 shows an example of normalized disease
names from the NCBI test set. “C7 defects” is the synonym
of “COMPLEMENT COMPONENT 7 DEFICIENCY” as
a disease mention in the NCBI disease test corpus, and
the corresponding concept identifier is “OMIM:610102"
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Table 2 An example of candidate normalized disease names for
the mention “C7 defects”

Ranks  Candidate names Cosine
similarity
* 1 COMPLEMENT_COMPONENT_7_DEFICIENCY  0.559244
* 2 complement_compon_7_defici 0.554464
* 3 c7_defici 0549911
* 4 complement_component_7_deficiency 0.540654
* 5 C7_DEFICIENCY 0.533657
* 6 c/7_deficiency 0.525014
7 antibodi_defici_syndrom 0.510718
8 Immunologic_Deficiency_Syndromes 0.499981
9 immunolog_defici_syndrom 0.492753
x 10 c7d 0491925

The concept id of “C7 defects” is "OMIM:610102", and the asterisk mark (x) in the first
column indicates that candidate names belong to "OMIM:610102"

For a given mention, other names were ranked according
to cosine similarities with the mention in the vector rep-
resentation. Because a concept identifier includes several
disease synonyms, asterisks in the first column indicate
that these words are synonyms for the concept identifier,
meaning that they are correctly recommended answers.
In Table 2, the candidate mentions ranked first, sec-
ond, third, fourth, fifth, sixth, and tenth are the correct
results.

We measured the performance of the normalization
model for all mentions in the test set for each rank thresh-
old. For the given rank threshold, the predicted names (or
their corresponding concept IDs) that ranked higher than
the threshold were considered positively predicted. True
positives (TP) were correct positive predictions, false pos-
itives (FP) were incorrect positive predictions, and false
negatives (FN) were mentions that are not positively pre-
dicted. For the case in which an extracted mention was
exactly matched to a concept name, only a single con-
cept ID was assigned, and it was a correct normalization.
Therefore, when calculating the performance for each
rank threshold, this exact match was treated as a true pos-
itive. Figure 3 shows an example of the candidate lists and
TP, FP, and FN. The precision (p), recall (r), and F-score
(f) are calculated as follows:

P TP

2%xpxr
= r = = ——
TP + FP TP + FN

f= p+r

p (4)

Results

Disease name normalization

To measure the performance of disease name normaliza-
tion tools using the test corpus, we first extracted disease
mentions in the 100 test abstracts using BANNER [27],
and then, we manually curated correct disease mentions,
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thereby generating 843 test mentions. Note that because
DNorm applied BANNER to extract candidate disease
mentions from test abstracts, we also applied BANNER to
compare normalization results under the same condition
as DNorm.

For disease name normalization, we constructed six
models: (1) “SSL-all abstracts” with 1,167,886 word vec-
tors from 13,408,565 PubMed abstracts, (2) “SSL-entity
abstracts” with 756,089 word vectors from 7,980,370
disease-related “entity-specific abstracts’, (3) “SSL-
evidences” with 350,011 word vectors from 4,758,992
disease-related “evidence sentences’, (4) “SSL-modified
evidences” with 740,353 word vectors, (5) “SSL-only
modified evidences” with 714,575 word vectors, and (6)
“SL-only training data” with 51,619 word vectors from the
592 NCBI disease training corpus.

Table 3 shows the comparison results of the four semi-
supervised models, which combine training data and
unlabeled data, for normalizing 843 disease mentions. To
construct the word vectors used in the models, we used
the default parameter values for the CBOW algorithm
in Word2Vec: window size = 8 and vector dimension =
200. When “SSL-all abstracts” was used, the precision
and F-score were the lowest. However, the model’s per-
formance was similar to that of “SSL-evidences” and
“SSL-entity abstracts” Although more unlabeled data may
increase the model performance in general, the results
show that unlabeled data that are more relevant to enti-
ties led to slightly better results. “SSL-modified evidences”
was the most powerful normalization tool, showing that
the direct incorporation of entity synonyms in unlabeled
data improved the normalization performance.

Next, to find the optimal hyperparameters to learn
word vectors, we applied different hyperparameters to the
“SSL-modified evidences” model. When the NCBI dis-
ease development set was used to select hyperparameters,
window size = 5 and vector dimension = 300, and a skip-
gram method were selected (Table 4). The performance
of the test set with these parameters was also close to the
highest performance. Thus, these values were used in the
following comparison.

Moreover, we compared “SSL-modified evidences” with
two additional cases: (1) “SL-only training data” and (2)
“SSL-only modified evidences” with 714,575 word vectors.
In addition, we compared DNorm [17] with our approach.
Figure 4 shows performance comparisons with and with-
out the abbreviation step. “SL-only training data” was
better than “SSL-only modified evidences’, although “SSL-
modified evidences” outperformed both cases. The results
show that the normalization accuracies were improved
when unlabeled data were incorporated with training
data. The accuracy of “SSL-modified evidences” showed
the best performance. Although the performance of our
model was slightly higher than that of DNorm with the
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Fig. 3 An example of lists of candidate concepts and accuracies. When the rank threshold is third, we consider concepts ranked from first to third as
positives. “O" indicates that the predicted concepts are correct and “X" indicates that they are incorrect

abbreviation step, it significantly outperformed DNorm
without the abbreviation step. For DNorm, the F-score
decreased significantly from 0.747 to 0.656 without the
abbreviation step.

Plant name normalization

For plant name normalization, we constructed three
plant models: (1) “SL-only plant training data” with
94,338 word vectors, (2) “SSL-only modified plant evi-
dences” with 594,802 word vectors, and (3) “SSL-
modified plant evidences” with 649,759 word vectors.
For plant evidence sentences, we collected 2,620,684
sentences containing plant names in the NCBI tax-
onomy database from PubMed abstracts. Note that
because “SSL-modified evidences” showed the best per-
formance for disease name normalization, we tested
“SSL-modified plant evidences” among the several SSL
models.

For selecting proper hyperparameters, we constructed
the “SSL-modified plant evidences” model by applying
different hyperparameters to the plant development set.
Table 5 shows a comparison of several hyperparameters.
We selected the hyperparameters as window size = 7 and
vector dimension = 200, and we used the CBOW method.

Table 3 Comparison of F-score of our disease normalization
models using four biomedical text groups

Models Win Dim Method Precision Recall F-score
SSL-all abstracts 8 200 CBOW  0.627 0832 0.715
SSL-entity abstracts 8 200 CBOW 0633 0.838 0.721
SSL-evidences 8 200 CBOW 0633 0.840 0.722
SSL-modified evidences 8 200 CBOW  0.706 0.891 0.788

The bold font denotes the best result for each column

We tested the models using the plant corpus, for which
an abbreviation dictionary was not available. Figure 5
shows the normalization results of 629 plant mentions
from the plant test corpus. For plant normalization, “SSL-
modified plant evidences” showed the best performance.
Unlike the disease normalization result, “SSL-only mod-
ified evidences” was better than “SL-only training data”
Because an abbreviation dictionary was not available and
plant names are usually represented by several types of
names depending on their context, region, or language,
plant name normalization showed lower accuracy com-
pared to disease name normalization.

Discussion

In this study, we compared the proposed approach to
DNorm for disease name normalization. In the BioCre-
ative V challenge [10], DNorm was used as a base-
line system in the disease named entity recognition and
normalization (DNER) task, and the F-score was 0.806.
Therefore, we further evaluated our approach using a
data set in the DNER task. Because our approach con-
tains only the normalization step, we assumed that we
already knew the correct disease mentions in the test data
set of the DNER task, and then, we measured the nor-
malization performance. In the DNER task, Lee et al’s
approach [15] ranked first with an F-score of 0.865; their
approach used dictionary-based normalization by using
five dictionaries with priorities in the order of CDR devel-
opment/training sets from a subset of the BioCreative V
corpus, MEDIC, NCBI disease corpus, and MEDIC exten-
sion lexicon. When we re-evaluated their normalization
approach after assuming that all disease names were
correctly recognized, the F-score was 0.982. For the pur-
pose of comparison, we used the same dictionaries, and
then applied the “SSL-modified evidences” model with
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Table 4 Performance comparison of disease normalization models using various parameters

Development set Test set
Parameters Win Dim Method Precision Recall F-score Precision Recall F-score
5_200_CBOW 5 200 CBOW 0.740 0918 0.819 0.684 0.896 0.776
5_200_skip 5 200 Skip-gram 0.730 0.909 0.809 0.719 0.890 0.795
5_300_CBOW 5 300 CBOW 0.738 0918 0.818 0.674 0.892 0.767
5_300_skip 5 300 Skip-gram 0.746 0916 0.822 0.722 0.893 0.798
5_400_CBOW 5 400 CBOW 0.730 0918 0.813 0.661 0.878 0.754
5_400_skip 5 400 Skip-gram 0.732 0916 0.813 0.730 0.905 0.808
7_200_CBOW 7 200 CBOW 0.738 0.919 0.819 0.676 0.891 0.769
7_200_skip 7 200 Skip-gram 0.719 0.900 0.799 0.698 0.882 0.780
7_300_CBOW 7 300 CBOW 0.709 0911 0.798 0.662 0.880 0.756
7_300_skip 7 300 Skip-gram 0.683 0.895 0.775 0.776 0.769 0.772
7_400_CBOW 7 400 CBOW 0.702 0.898 0.788 0.632 0.850 0.725
7_400_skip 7 400 Skip-gram 0.690 0.896 0.779 0.667 0.887 0.761
8_200_CBOW 8 200 CBOW 0.710 0.907 0.797 0.706 0.891 0.788

The bold font denotes the best result for each column

a With the abbreviation step
F-score
075 0.70 065 060 0.55 0.50

o
1
=)
o
S
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i

040 035 035 040

b Wwithout the abbreviation step

F-score
050 055 060 065 0.70

o
>
[l
o
N
a
o
1
S]
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L

m DNorm

B SSL-only modified evidences

M SL-only training data

m SSL-modified evidences

c . . (A) With abbreviation step (B) Without abbreviation step
D name nor ion model
Precision Recall F-score Precision Recall F-score
DNorm 0.799 0.786 0.793 0.718 0.679 0.698
SL-only training data 0.682 0.880 0.768 0.657 0.867 0.748
SSL-only modified evidences 0.623 0.843 0.716 0.584 0.808 0.678
SSL-modified evidences 0.722 0.893 0.798 0.688 0.884 0.774

Fig. 4 Performance comparison between DNorm and our models for disease name normalization with and without the abbreviation resolution
step. In (a) and (b), dark-aqua bars indicate “DNorm” and the gray, dark-gray, and red bars indicate the “SL-only training data”, “SSL-only modified
evidences” and “SSL-modified evidences” models, respectively. The x-axis represents the thresholds for ranks, and the y-axis indicates the F-scores of
the models for each rank. € The precision, recall, and F-scores are shown for the four models
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Table 5 Performance comparison of plant normalization models using various parameters

Development set Test set

Parameters Win Dim Method Precision Recall F-score Precision Recall F-score
5_200_CBOW 5 200 CBOW 0.7284 0.8939 0.8027 0.594 0.824 0.690
5_200_skip 5 200 Skip-gram 0.6821 0.8812 0.7690 0524 0.783 0.628
5_300_CBOW 5 300 CBOW 0.7326 0.8934 0.8051 0576 0.811 0.674
5_300_skip 5 300 Skip-gram 0.6836 0.8813 0.7699 0533 0.787 0.635
5_400_CBOW 5 400 CBOW 0.7311 0.8940 0.8044 0.568 0.809 0.667
5_400_skip 5 400 Skip-gram 0.7164 0.8878 0.7929 0.540 0.790 0.642
7_200_CBOW 7 200 CBOW 0.7331 0.8934 0.8054 0.590 0.822 0.687
7_200_skip 7 200 Skip-gram 0.7062 0.8840 0.7852 0.521 0.774 0.623
7_300_CBOW 7 300 CBOW 0.7320 0.8933 0.8047 0.589 0.818 0.685
7_300_skip 7 300 Skip-gram 0.7067 0.8833 0.7852 0.528 0.781 0.630
7_400_CBOW 7 400 CBOW 0.7163 0.8862 0.7922 0.554 0.798 0.654
7_400_skip 7 400 Skip-gram 06218 0.8859 0.7706 0.525 0.786 0.629

The bold font denotes the best result for each column

the following parameter values: window size = 5 and
vector dimension = 300 for the skip-gram algorithm in
Word2Vec. As a result, we obtained an F-score of 0.986.
The performances of these two systems were similar with
very high accuracies; this might be due to the high-quality

dictionaries used, such as the CDR development/training
sets and MEDIC. Therefore, after excluding dictionaries
from the CDR development/training sets, MEDIC, and
MEDIC extension lexicon and by using the NCBI disease
corpus, we evaluated the two systems. Note that because

q L0
o= ‘°=—Q
0.90
0.80
0.70
0.60
0.50
1 2 3 4 5 6 7 8 9 10
SL-only plant training data =0-SSL-only modified plant evidences|
-o-SSL-modified plant evidences
Plant name normalization model Precision Recall F-score
SL-only plant training data 0.516 0.768 0.617
SSL-only modified plant evidences 0.580 0.815 0.678
SSL-modified plant evidences 0.590 0.822 0.687
Fig. 5 Performance comparisons of the proposed models for plant name normalization without the abbreviation resolution step. In (a), the
light-green, dark-green, and red lines indicate the “SL-only plant training data”, “SSL-only modified plant evidences’, and “SSL-modified plant
evidences” models, respectively. The x-axis represents the thresholds for ranks, and the y-axis indicates the recall of models for each rank. b The
precision, recall, and F-scores are shown for the three models for plant name normalization
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we excluded MEDIC, we used the “SSL-evidences” model
in this evaluation; training data was constructed using the
NCBI disease corpus and unlabeled data was constructed
using sentences containing disease names from PubMed.
The F-scores of the dictionary-based approach and our
approach reduced to 0.324 and 0.659, respectively. This
shows the importance of high-quality dictionaries; at the
same time, our system can achieve better performance
even without good dictionaries.

In this study, we applied the Word2Vec algorithm for
the word representation. In addition to Word2Vec, sev-
eral studies for word representation have succeeded in
capturing fine-grained semantic meanings. GloVe [34] is
an alternative model for learning word embeddings. For
comparison with Word2Vec, we generated word embed-
dings using the GloVe algorithm with different sets of
parameters, and used them for the normalization. As a
result, we obtained an F-score of 0.639 for disease name
normalization using GloVe trained with the same param-
eters as Word2Vec as follows: window size = 5, vector
dimension = 300, and iteration = 1000. Compared to
Table 4, word embeddings obtained by Word2Vec outper-
formed those generated by Glove. Indeed, several studies
showed that Word2Vec outperformed GloVe on word
similarity tasks although GloVe achieved the best perfor-
mance on the word analogical reasoning task [35, 36]. In
addition to GloVe, Luong et al. [37] proposed morphologi-
cal recursive neural networks (RNNs) that combine RNNs
and neural language models to learn word embeddings
from morphemes. Wang et al. [38] applied the bidirec-
tional LSTM-RNN structure to represent word vectors,
which outperformed CBOW and skip-gram approaches
in Word2Vec when tested for the NER task. Thus, in
the future work, we will improve the normalization
performance by enhancing a neural network architecture
for word representation.

Conclusions

In this study, we integrated training data and unlabeled
data for word representation in entity name normalization
and verified that the proposed normalization model is a
useful tool for disease names and plant names. For many
biological entities, there is no comprehensive dictionary;
therefore, our approach will be useful for normalizing
various entities.

Additional file

Additional file 1: Guidelines of our plant corpus. (PDF 177 kb)
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