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Abstract

Background: Colorectal cancer (CRC) is one of the most common malignancies worldwide with poor prognosis.
Studies have showed that abnormal microRNA (miRNA) expression can affect CRC pathogenesis and development
through targeting critical genes in cellular system. However, it is unclear about which miRNAs play central roles in
CRC’s pathogenesis and how they interact with transcription factors (TFs) to regulate the cancer-related genes.

Results: To address this issue, we systematically explored the major regulation motifs, namely feed-forward loops
(FFLs), that consist of miRNAs, TFs and CRC-related genes through the construction of a miRNA-TF regulatory
network in CRC. First, we compiled CRC-related miRNAs, CRC-related genes, and human TFs from multiple data
sources. Second, we identified 13,123 3-node FFLs including 25 miRNA-FFLs, 13,005 TF-FFLs and 93 composite-FFLs,
and merged the 3-node FFLs to construct a CRC-related regulatory network. The network consists of three types of
regulatory subnetworks (SNWs): miRNA-SNW, TF-SNW, and composite-SNW. To enhance the accuracy of the
network, the results were filtered by using The Cancer Genome Atlas (TCGA) expression data in CRC, whereby we
generated a core regulatory network consisting of 58 significant FFLs. We then applied a hub identification strategy
to the significant FFLs and found 5 significant components, including two miRNAs (hsa-miR-25 and hsa-miR-31),
two genes (ADAMTSL3 and AXIN1) and one TF (BRCA1). The follow up prognosis analysis indicated all of the 5
significant components having good prediction of overall survival of CRC patients.

Conclusions: In summary, we generated a CRC-specific miRNA-TF regulatory network, which is helpful to
understand the complex CRC regulatory mechanisms and guide clinical treatment. The discovered 5 regulators
might have critical roles in CRC pathogenesis and warrant future investigation.
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Background
Colorectal cancer (CRC) is one of the most common
malignant tumors in the human digestive system and
has the third highest incidence and mortality of all ma-
lignancies [1–3]. Uncovering the regulation and progres-
sion mechanisms of CRC is important for developing
effective molecular therapeutic strategies. In the last de-
cades, substantial efforts have been made to collect

samples and generate the data, from which the findings
have greatly improved our understanding of the molecu-
lar basis of cancers; these efforts include genomic profil-
ing analysis of cancer such as large-scale genome
sequencing projects [4–6]. The Cancer Genome Atlas
(TCGA), one of the largest cancer-related genome ana-
lysis projects, contributed many impellent effects to the
understanding of the underlying genetics of CRC, such
as mutation characteristics and copy number alterations
[7–9]. Moreover, there were several genome-wide ana-
lyses which greatly contributed to the comprehensive
profiling of CRC whose results provided significant evi-
dence for the association between loci or genes and
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CRC. These included single nucleotide polymorphisms
(SNPs) in genes encoding SMAD7, laminin gamma 1, T-
box 3, cyclin D2, etc. [10–13]. These studies have dem-
onstrated that there are many genetic and epigenetic al-
terations in one or several processes simultaneously.
Although these findings seemed not so systematical to
reveal an intuitive concept for the biological process of
CRC, it provided a hint that a comprehensive method
should be used to uncover the underlying regulation
mechanism of these bio-molecules.
Network analysis, such as feedback loop (FBL) and

feed-forward loop (FFL), is a powerful way to investigate
the underlying global topological structures of molecular
networks [14–17]. miRNA-transcription factor (TF) co-
regulation is one of the important FFL type. Building
and mining miRNA-TF co-regulation networks served as
a valuable approach to investigate the cell regulation in
many systems and cell types, including various kinds of
cancers [17–19]. miRNAs are evolutionarily conserved,
endogenous, small, and noncoding RNAs molecules of
about 22 nucleotides in length. miRNAs play important
roles in post-transcriptional gene regulation during the
initiation and progression of human cancers [20–23]. A
spectrum of dysregulated miRNAs were also identified
between CRC and normal colorectal tissues [24]. For ex-
ample, over expression of miR-20a and weak expression
of miR-133b have been consistently reported in CRC
versus normal tissues, and play crucial roles in both me-
tastasis and survival [25–28]. TFs regulate gene expres-
sion through translating cis-regulatory codes into
specific gene-regulatory events. Accompanied with miR-
NAs, TFs participate in the regulatory network that con-
trols thousands of mammalian genes [14]. Through the
co-regulation model, miRNA and TF regulate their mu-
tual target genes: miRNAs regulate gene’s post-
transcription through binding the 3′ untranslated region
(UTR) while TFs regulate gene’s transcriptions through
binding to the gene’s promoter region [29]. Additionally,
TF can regulate miRNA, or to be regulated by miRNA,
so that the relationships among miRNAs and TFs and
their shared targets form a diversity of feed-forward
loops (FFL) [14]. The typical mixed FFL motif defined as
a 3-node FFL consists of three components: TF, miRNA
and their mutual regulated gene. Recently, FFL-based
combinatorial regulatory network approach has emerged
as a promising tool to elucidate complex diseases, such
as schizophrenia [30], glioblastoma multiforme [31, 32],
ovarian cancer [33], lung cancer [34], and osteosarcoma
[35]. However, network based on 3-node FFLs has not
been established in CRC, one of the common cancers.
In this study, we investigated the comprehensive

miRNA-TF co-regulatory network in CRC through
modifying the well-developed framework in our previous
studies [32, 33]. Among the candidate genes, we

identified the potential targets of CRC-related TFs and
miRNAs, then built a comprehensive CRC-specific
miRNA-TF mediated regulatory network. Finally, we di-
vided this massive network into three subnetworks on
the basis of their inside regulatory relationships,
followed by a topology analysis. However, such regula-
tions might include some false positives due to the limi-
tation to recent regulatory prediction databases.
The TCGA studies generated vast quantities of gene ex-

pression profiling and other molecular profiling from hun-
dreds of CRC samples, which provide the promising
opportunity to uncover the basic building blocks of regu-
latory networks in CRC [9]. Thus, compared to our previ-
ous methods [32, 33], we took the advantage of the gene
and miRNA expression data in CRC patients from TCGA
project to improve the accuracy of the results [7, 9]. This
integration with experimental data from patients is a com-
plement to the FFL studies which mostly relied on the
predicted regulation information by reducing false posi-
tives. After these systematic analysis, we identified six hub
components. To verify the implication of these compo-
nents, we further explored the associations between the
expression level of identified components and CRC sur-
vival. This study established a valuable CRC progress
regulation network, which can provide information about
further experimental exploration and help to reveal the
complicated regulatory mechanisms and find out new
markers or targets for the diagnoses and treatments for
CRC.

Methods
CRC-related genes and miRNAs
We collected CRC-related genes from five sources (Fig. 1).
These sources included the Cancer Gene Census (CGC,
available at [36]), the Online Mendelian Inheritance in
Man (OMIM, available at [37]), The Cancer Genome Atlas
(TCGA) publication [9] and its mutation data (available at
[38]), and a mutation landscape research [39]. Finally 464
unique genes were obtained (Additional file 2: Table S1
and Additional file 3: Text S1).
To obtain the dysregulated miRNAs in CRC, we

searched the miR2Disease (available at [40]), Pheno-
miR2.0 (available at [41]), and HMDD2.0 (available at
[42]) by using the keywords “colorectal cancer” or
“colorectal neoplasms or colonic neoplasms”. The ex-
pressions of miRNAs obtained from miR2Disease and
PhenomiR2.0 have already been recorded. For
HMDD2.0, we downloaded the full papers through
the related PubMed ID and read those texts to iden-
tify the expression comparison between CRC and nor-
mal controls. Finally, 257 unique miRNAs were
retrieved as CRC-related miRNAs (Additional file 2:
Table S2 and Additional file 3: Text S2).
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Prediction of the regulatory relationships
We applied the TargetScan and the miRanda to ob-
tain the regulatory relationship between miRNAs
and CRC-related genes or human TFs. We down-
loaded the TargetScan database (Release 6.2, avail-
able at [43]) and extracted the miRNA-gene pairs.
These pairs are evolutionarily conserved in the four
species (include human, mouse, rat and dog) and
have a total context score higher than −0.30. For mi-
Randa (available at [44]), we extracted the target
pairs conserved in human, mouse and rat with the
condition of S > 90 and ΔG < −17. Then we merged
the two sets of miRNA-gene pairs together. To ob-
tain the regulation of miRNA to TF, we retrieved
1201 TFs from the TRANSFAC Professional

Database (release 2011.4) [45]. We extracted the TFs
based on its CRC-related target promoter region se-
quences (−1500/+500 around TSS). Then we per-
formed a binding sites search of TFs to the defined
promoter region of the CRC-related targets. Then
we used pre-calculated cut-offs to minimize false
positive (minFP) matches and created a high-quality
matrix. To restrict the search, we required a core
score of 1.00, a matrix score of 0.95, and TF that
only belong to the human genome. To further re-
duce false positive prediction, we required the pre-
dicted pairs to be conserved among humans, mice
and rats. For the regulation of TF to genes/miRNAs,
we followed the procedure we utilized in our previ-
ous work [32].

Fig. 1 Process of miRNA-TF regulatory network construction and significant FFLs identification in colorectal cancer (CRC). This process contains six
steps. 1) Data compilation. We extracted CRC-related genes, CRC-related microRNAs (miRNAs), and human transcription factors (TFs) from multiple
databases. 2) Prediction of the regulatory relationships. The four regulatory relationships include TF-gene, TF-miRNA, miRNA-gene, miRNA-TF. 3)
Feed-forward loop identification. Based on the regulatory relationships above, the significant 3-node feed-forward loops were identified. 4) CRC-
specific miRNA-TF regulatory network construction and further analysis by merging the FFLs identified in step three. 5) TCGA expression correlation
calculation. We calculated the expression correlations of each pair in the network, and removed the false positive pairs. 6) Acquisition of significant
FFLs. We extracted the core subnetwork based on the significant pairs identified in step five. Furthermore, identification of critical miRNA and gene
components were performed
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Selection of significant regulations based on TCGA
expression data
The Cancer Genome Atlas (TCGA) project provides a
large data to the cancer research. We first downloaded
the CRC-related expression data from the TCGA Data
Portal (available at [38]), and calculated the correlation
among the gene and miRNA nodes of the regulatory
networks. Significant pairs were selected on the basis of
the expression Pearson correlation coefficient (R). For
TF-gene pairs, we required R ≥ 0.14 or R ≤ −0.14 (ad-
justed P-value <0.01, adjusted by FDR, one-tailed prob-
ability, sample size = 264). For miRNA-gene pairs, we
required R ≤ −0.15 (adjusted P-value <0.01, adjusted by
FDR, one-tailed probability, sample size = 243). For TF-
miRNA pairs, we required R ≥ 0.15 or R ≤ −0.15 (ad-
justed P-value <0.01, adjusted by FDR, one-tailed prob-
ability, sample size = 243). For miRNA-TF pairs, we
required R ≤ −0.15 (adjusted P-value <0.01, adjusted by
FDR, one-tailed probability, sample size = 243).

Significant component expression and survival correlation
analysis
Expression and survival data was obtained from the
OncoLnc database, available at [46]. The optimum cutoff
level of expression of each component was selected on
the basis of the association with the patients’ survival by
using a tool X-tile (version 3.6.1). A log-rank test was
used to compare survival curves.

Network visualization and data analysis
We visualized the network by using Cytoscape (version
3.2.0) [47]. All statistical analyses were performed with R
software and appropriate packages, available at [48].

Results
Regulatory relationships among miRNAs, TFs, and genes
To build miRNA-TF co-regulatory networks in CRC, we
modified the computational framework developed in our
previous studies (Fig. 1). In the process, the 464 CRC-
related genes with mutation evidence from five data

sources (Additional file 2: Table S1 and Additional file 3:
Text S1), the 257 miRNAs that reported to be dysregu-
lated in the CRC (Additional file 2: Table S2 and Add-
itional file 3: Text S2), and the 1201 TFs from
TRANSFAC Professional (release 2011.4) [49] were col-
lected. 1201 TFs were not preselected based on other ev-
idences related to CRC, but filtered out by strict
requirements when identified regulatory (see Methods).
Four types of regulatory relationships among genes,
miRNAs and TFs were predicted by using the methods
described in our previous study [32]. Prediction results
of the regulatory relationships were summarized in
Table 1. These predicted relationships were named as
prediction data.

CRC-specific regulatory networks generated from
prediction data
By merging the regulatory relationships predicted above,
3-node FFLs were formed (Table 2). The 3-node FFL, as
one of the most common types of motifs in transcrip-
tional network, can be classified into three categories:
miRNA-FFL, TF-FFL and composite FFL, which are
based on their inside regulations and have been de-
scribed in our previous study [32]. In general, in
miRNA-FFL, the miRNA represses both TF and gene ex-
pression while the TF regulates target gene expression.
In TF-FFL, the TF regulates the miRNA and the gene
while the miRNA represses the target gene. In
composite-FFL, the TF regulates the miRNA and target
gene while the miRNA represses the TF and the gene.
The three types of FFLs are exclusive to each other.
A miRNA-TF mediated network was constructed for

CRC based on 3-node FFLs obtained above. The net-
work contained 12,821 edges and 312 unique nodes of
the 13,123 FFLs (Additional file 2: Table S3). Among the
12,821 edges, 174 were miRNA-gene pairs, 57 were
miRNA-TF pairs, 7043 were TF-gene pairs, and 5547
were TF-miRNA pairs. Among the 312 nodes, 82 were
CRC-related genes, 59 were CRC-related miRNAs, and
171 were human TFs. Considering that these FFLs could

Table 1 Regulatory relationships among CRC-related genes, CRC-related miRNAs and TFs

Relationship Number of pairs Number of miRNAsa Number of genes Number of TFsb Method

miRNA-genec 201 60 91 - TargetScan and miRanda

miRNA-TFd 106 58 - 43 Match™

TF-genee 42,023 - 401 189 Match™

TF-miRNAf 25,109 234 - 189 Match™

Total 67,439 235 410 189 -
amiRNA: microRNA
bTF: transcription factor
cmiRNA-gene: miRNA repression of gene expression
dmiRNA-TF: miRNA repression of gene expression
eTF-gene: TF regulation of gene expression
fTF-gene: TF regulation of miRNA expression
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be categorized into miRNA-FFLs, TF-FFLs, and
composite-FFLs, three subnetworks consisted of corre-
sponding type of FFL were generated accordingly. We
named them miRNA-SNW, TF-SNW, and composite-
SNW, respectively (Fig. 2). To provide a general view of
them, we calculated the degrees and their distributions
in all the three subnetworks [50].
The miRNA-SNW composed of 25 (25 out of 13,123,

0.19%) miRNA-FFLs containing 61 edges and 45 individ-
ual nodes (Fig. 2a and Additional file 2: Table S4).
Among the 61 edges, 23 were miRNA-gene pairs, 15
were miRNA-TF pairs, and 23 were TF-gene pairs.
Among the 45 nodes, 20 (20 out of 82, 24.39%) were
CRC-related genes, 13 (13 out of 59, 22.03%) were CRC-

related miRNAs, and 12 (12 out of 171, 7.02%) were hu-
man TFs. The degree values for genes, miRNAs, TFs in
this network were in the range of 2–4, 2–7, and 2–7, re-
spectively. Especially, the degree distribution for miR-
NAs was strongest right-skewed. The distribution
pointed out that most of the nodes had low degrees (less
than or equal to 3), while only a small portion of them
had high degrees. There was only one miRNA hsa-miR-
25 had a high degree value (the degree value was 7) (Fig.
2 and Additional file 2: Table S5). This distribution ana-
lysis uncovered that hsa-miR-25 regulated more targets
than any other regulators.
The TF-SNW was consisted of 12,680 edges and 311

unique nodes from 13,005 (13,005 out of 13,123,

Table 2 Summary of 3-node feed-forward loops based on CRC-related prediction data

Number of nodesa Number of links

3-node motif Number of merged FFLsb Genes miRNAs TFs Total TF-gene miRNA-gene miRNA-TF TF-miRNA

TF-FFL 13,005 82 59 170 12,680 7001 174 0 5505

miRNA-FFL 25 20 13 12 61 23 23 15 0

Composite-FFL 93 42 30 24 225 64 77 42 42

Total 13,123 82 59 171 12,821 7043 174 57 5547
aDefinition of the nodes and links is the same as in Table 1
bFFL: feed-forward loop

Fig. 2 Graphical representations of three types of CRC-specific regulatory subnetworks. a) miRNA-SNW. This subnetwork was constructed by
miRNA-FFLs, including three types of regulatory relationships: miRNA-TF, miRNA-Gene, TF-Gene. b) TF-SNW. The subnetwork was constructed by
TF-FFLs, including three types of regulatory relationships: TF-miRNA, TF-Gene, miRNA-Gene. c) composite-SNW. This subnetwork was constructed
by composite-FFLs, including four types of regulatory relationships: TF-miRNA, miRNA-TF, TF-Gene, miRNA-Gene. In three subnetworks, the node
colors represent different molecules: red for CRC-related miRNAs, blue for transcription factors, and green for CRC-related genes. Edges in red
correspond to the repression of miRNAs to genes or TFs, and edges in blue correspond to the regulation of TFs to genes or miRNAs.
Scatter plots below the networks show the degree distributions of all nodes in 3 kinds of CRC-specific regulatory networks
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99.10%) TF-FFLs (Fig. 2b and Additional file 2: Table
S4). Among the 12,680 edges, 174 were miRNA-gene
pairs, 7001 were TF-gene pairs, and 5505 were TF-
miRNA pairs. Among the 311 nodes, 82 (82 out of 82,
100%) were CRC-related genes, 59 (59 out of 59, 100%)
were CRC-related miRNAs, and 170 (170 out of 171,
99.42%) were human TFs. The degree values of genes,
miRNAs, TFs ranged from 44 to 191, 97 to 264, and 3 to
200, respectively. However, their degrees followed a nor-
mal distribution. This means that there were few ex-
treme values and was not as helpful as the other two
subnetworks for finding biologically critical nodes (Fig. 2
and Additional file 2: Table S5).
In the composite-SNW, there were 93 (93 out of

13,123, 0.71%) composite-FFLs, 96 unique nodes, and
225 edges (Fig. 2c and Additional file 2: Table S4).
Among the 225 edges, 77 were miRNA-gene pairs, 42
were miRNA-TF pairs, 64 were TF-gene pairs, and 42
were TF-miRNA pairs. Among the 225 nodes, 30 (30
out of 59, 50.85%) were CRC-related miRNAs, 42 (42
out of 82, 51.22%) were CRC-related genes, and 24
(24 out of 171, 14.04%) were human TFs. The result
showed that the composite-FFLs occupied pretty low
proportion of all the FFLs, while recruited more than
half of CRC-related genes and miRNAs. This indi-
cated that the composite-FFLs might play more im-
portant roles than the other two kinds of FFLs. In
this subnetwork, degree values of genes, miRNAs and
TFs ranged from 2 to 10, 2 to 9, and 2 to 20, re-
spectively. The gene that had the largest degree was
MASP1; and the miRNA and TF having the largest
degrees were hsa-miR-25, hsa-miR-29b and HAND1
respectively (Fig. 2 and Additional file 2: Table S5).
Among above three subnetworks, 15 genes (FZD3,

KCNA4, RAD21, KIAA1109, LYST, SCN11A, AKAP6,
PCDHA13, ADAMTSL3, PCDH11X, MAP2K4,
COL11A1, FBN1, NAV3 and FN1), 7 miRNAs (hsa-miR-
25, hsa-miR-29a, hsa-miR-34a, hsa-let-7c, hsa-let-7e,
hsa-miR-27b, hsa-miR-27a) and 8 TFs (FOXG1, TCF12,
FOXJ2, MYCN, TFEB, CREB1, RUNX1, CBFB) partici-
pated in all subnetworks simultaneously, which sug-
gested that they might act extensively in the CRC

regulation. Interestingly, we noticed that hsa-miR-25 had
the highest degree value in both of the composite-SNW
and miRNA-SNW, suggesting that hsa-miR-25 might be
a critical molecule in the regulatory process of CRC.

CRC-specific significant regulatory network generated by
integrating TCGA expression data
The network generated above was systematical and com-
prehensive, but it was too complicated to explore the
specific regulation mechanisms in CRC. To obtain the
regulatory relationship with higher accuracy, we took
the advantage of the gene and miRNA expression data
in CRC patients from TCGA. Firstly, the correlation co-
efficients among genes, TFs, and miRNAs were calcu-
lated, and then stringent constraint conditions (see
Methods) were required to define a co-expression. Sub-
sequently, four types of links (miRNA-gene, miRNA-TF,
TF-gene, and TF-miRNA) were obtained (Table 3). We
named the dataset Experiment_data that included all
these pairs based on TCGA experimental data.
To reduce the false positives, pairs (regulatory rela-

tionships) were required to be conserved in both the
prediction data and Experiment_data. Finally, one
composite-FFL (hsa-miR-25, HAND1, ADAMTSL3), one
miRNA-FFL (hsa-miR-25, EGR2, ADAMTSL3) and 56
TF-FFLs were identified. The regulation details are pre-
sented in Fig. 3 and Additional file 1: Figure S1. The num-
ber of TF-FFL was significant more than the other two. In
these TF-FFLs, there were 115 edges (55 TF-gene pairs, 53
TF-miRNA pairs, and 7 miRNA-gene pairs) and 58
unique nodes (45 human TFs, 7 CRC-related genes, and 6
CRC-related miRNAs) Additional file 2: Table S6). There
are a few nodes exhibited a high degree, which acted as
the hubs that might play more important roles in the
regulatory networks [51, 52]. Using the hub definition
method proposed by Yu et al. [53], we determined the de-
gree cutoff value of 22, 26, and 7 for gene, miRNA and TF
hubs respectively (Additional file 2: Table S7). Accord-
ingly, two hub miRNAs (hsa-miR-25 and hsa-miR-31),
two hub genes (ADAMTSL3 and AXIN1) and one hub TF
(BRCA1) were identified.

Table 3 Summary of co-expression relationships among CRC-related genes, CRC-related miRNAs, and TFs from TCGA

Co-expression relationship Number of pairs Number of miRNAsa Number of genes Number of TFsb

miRNA-genec 550,079 567 19,570 -

miRNA-TFd 28,563 553 - 1141

TF-genee 1,126,334 - 19,701 1158

TF-miRNAf 60,794 570 - 1201
amiRNA: microRNA
bTF: transcription factor
cmiRNA-gene: anti-correlation between miRNA and gene expression
dmiRNA-TF: anti-correlation between miRNA and TF expression
eTF-gene: correlation between TF and gene expression
fTF-miRNA: correlation between TF and miRNA expression
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Significant components
As analyzed above, through our consecutive network
framework, 5 components were identified, including two
hub miRNAs (hsa-miR-25 and hsa-miR-31), two hub
genes (ADAMTSL3 and AXIN1) and one hub TF
(BRCA1). Such hub identification was mainly based on
their degrees in the network. Are these connective char-
acteristics specific to CRC, or just their innate property
of the complex regulatory mechanism in our body? We
found hsa-miR-25 had more targets (top 5.0%, Add-
itional file 2: Table S8) than most of others miRNAs col-
lected in TargetScan but less targets in miRanda (top
60.0%, Additional file 2: Table S9), and hsa-miR-31 had a
moderate number of target in both databases (top 36.8%
and 32.8%, respectively). However, some miRNAs, such
as hsa-miR-7b and hsa-miR-497, had a high number of
targets both in TargetScan (top 4.0% and 0.8%, respect-
ively) and miRanda (top 6.0% and 11.2%, respectively),
which were also included in our analysis, but they were
not identified as hub nodes after our consecutive ana-
lysis. These suggested that the significant miRNA identi-
fication was mainly contributed to the regulatory pattern
after our regulatory network construction, despite of the
relationship distribution and bias in databases might
make an impact on the topology of final network.
To further investigate the implication of the hub miR-

NAs, TFs and genes for CRC development, we analyzed
the correlation between their expression levels and sur-
vivals of patients with CRC by using data from OncoLnc
database [46]. Figure 4 shows the expression of the sig-
nificant components in CRC patients with low or high
risk to all-caused dead and the survival curves in the low

and high risk groups which were identified by the opti-
mal cut-off value of corresponding component expres-
sion level. All of the significant components showed a
well prediction value for the prognosis of CRC patients.
Among 5 significant components, hsa-miR-25, AXIN1,
ATF6 and BRCA1 exhibited a negative correlation be-
tween their expression levels and patients’ survival, while
higher expression of ADAMTSL3 was observed in pa-
tients with a better survival. Patients was subdivided well
into two groups (namely, low risk and high risk groups)
by using these components independently, with signifi-
cantly different survival curves.

Discussion
In this study, a co-regulatory network mediated by miR-
NAs and TFs was first time explored in CRC, one major
cancer type. Our results provides some insightful infor-
mation and a few miRNA and TF candidates, as well as
their regulation for further experimental validation in
CRC. In this study, our previous computational frame-
work was modified by integrating gene and miRNA ex-
pression data from TCGA to improve the result
accuracy. We extracted significant components from the
whole complex network based on prediction data by
using the data of Experiment_data. Then survival infor-
mation was used to determine the significant compo-
nents implication for CRC prognosis.
This unique computational framework has been de-

scribed in our previous studies [32, 33] and illustrated
that it is indeed possible to use a large panel of methods
to process multiple types of data (e.g., mutation data,
gene expression data, and knowledgebase) to identify

Fig. 3 Graphical representation of the significant FFLs. The regulatory network was generated from 3-node FFL motifs common to the prediction
data and Experiment_data. Shapes and colors definitions for nodes and edges are the same as in the Fig. 2

Wang et al. BMC Bioinformatics  (2017) 18:388 Page 7 of 11



potential disease-associated components in complex dis-
eases. To increase the confidence and accuracy in pre-
dicting biologically relevant regulations, one strategy is
to identify regulatory relationships that are consistent or
reproducible in multiple independent studies [54, 55]. In
this study, as the major improvement for our previous
computational framework, we specifically integrate the
prediction data and experiment data in our regulatory
network analyses. The experiment data was used to im-
prove the accuracy of results in the prediction data,
whereby the significant components were extracted from
the whole huge and complex network. So far, such a

strategy has not been applied to miRNA-TF co-
regulatory network analyses in CRC. Furthermore, with
the rapid growth in high-throughput expression profiling
studies, this strategy might become not only feasible, but
also necessary to identify complex gene regulation in
cellular systems and provides a supplement for regula-
tory network investigation.
Using the prediction data, a massive and complex net-

work was built for CRC, which could be subdivided into 3
exclusive subnetworks, namely composite-SNW, miRNA-
SNW, TF-SNW. We found that some components partici-
pated in three types of subnetworks simultaneously,

Fig. 4 Expression level of significant components and association with overall survival. The expression and survival data for CRC patients was
obtained from OncoLnc database. Optimum cut-off level of expression was determined on the basis of their associations with survivals by using
X-tile software
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including 15 genes (FZD3, KCNA4, RAD21, KIAA1109,
LYST, SCN11A, AKAP6, PCDHA13, ADAMTSL3,
PCDH11X, MAP2K4, COL11A1, FBN1, NAV3 and FN1), 7
miRNAs (hsa-miR-25, hsa-miR-29a, hsa-miR-34a, hsa-let-
7c, hsa-let-7e, hsa-miR-27b, hsa-miR-27a) and 8 TFs
(FOXG1, TCF12, FOXJ2, MYCN, TFEB, CREB1, RUNX1,
CBFB). In this study, we aimed to find out some significant
components (miRNA, gene, or TF), which could serve as
biomarker for the diagnosis, treatment, and prognosis of
CRC. Although there were some interesting findings in the
predictive network, it was difficult and unconvincing to de-
termine significant components for the two reasons. First,
the networks involved a great many components, especially
TF-SNW, the regulations were massive and complex. Sec-
ond, since the regulations involved in current networks
were on the basis of multiple data sources, not all of which
was validated by experiments, there might be some false
positives. To improve our network, we integrated the ex-
pression data from TCGA into our analysis and used the
co-expression to wash the unreliable regulations in the net-
work. We then applied the hub identification to the concise
network to determine significant components, whereby
two miRNAs (hsa-miR-25 and hsa-miR-31), two genes
(ADAMTSL3 and AXIN1) and one TF (BRCA1) were iden-
tified significantly. Some of those genes, miRNAs and TFs
have been reinforced by previous studies. To investigate
values of these components on prognosis, we further ana-
lyzed association between their expression levels and sur-
vivals. We found that all of five components showed a
promising predictive ability for CRC patients’ survival. For
instance, low expression of hsa-miR-25 was observed with
the increasing all-caused death risk for CRC patients. This
is consistent with previous reports. In Li’s study, miR-25
was found to be down-regulated in human colon cancer
tissues when compared to those in matched non-neoplastic
mucosa tissues [56]. Functional studies revealed that restor-
ation of miR-25 expression inhibited cell proliferation and
migration. In contrast, miR-25 inhibition could promote
the proliferation and migratory ability of cells. Stable over-
expression of miR-25 also suppressed the growth of colon
cancer-cell xenografts in vivo [57]. In Koo BH’s study, iden-
tification of frequent ADAMTSL3 mutations in colorectal
cancer suggested it might have a regulatory role in cellular
homeostasis in colorectal epithelium or in pathways to
colorectal malignancy [58]. In current study, the expression
level ADAMTSL3 was found correlated with all-caused
survival. Approximately half of the genes, miRNAs, TFs we
predicted to be key roles had been studied and found to be
associated with the regulation mechanism in CRC. These
results indicated that the comprehensive CRC-specific
regulatory network could provide valuable clues for re-
searchers to identify critical CRC-related components. Fur-
thermore, as hsa-miR-25 and ADAMTSL3 had been
proved playing important roles in CRC, but their exact

interaction mechanism have not been clarified yet. Other
significant components identified in our analysis also re-
main unclarified and need to explore by further researches.
A recent study by Fu et al. used a combinatorial strategy

to identify CRC-related miRNA-mRNA pairs [59]. This
study applied microarray expression data to identify dysreg-
ulated miRNAs and mRNAs, followed by anti-correlation
computation and target relationship prediction based on
TargetScan and miRanda. 72 miRNA-mRNA pairs were
captured by including 22 miRNAs and 58 mRNAs. But
these results were only limited in the binary regulation
model between miRNAs and mRNAs, and the sample size
of study was small (8 pairs). Although several studies aim-
ing to uncover the regulation system of TFs and miRNAs
have been reported [59–61], none have considered the inte-
gration of predictive data and experimental data in the ap-
plication of an FFL model in CRC, improving the stability
and reliability of the regulatory network. The process in
current study could be a useful method and complement
for revealing the complex regulation in other disease.
There also exist several limitations to our analysis. First,

the number of relationship and its collective bias in the
databases might make a potential effect on the final net-
work construction and following significant components
identification. In our analysis process, data selection were
performed by multisource to reduce such impact. Second,
as opposed to gene and miRNA, TF was not pre-selected
to be CRC-related, which might influence the topology
observation. In addition to the criteria used in regulation
prediction in current study, more effective selection need
to apply to CRC-related TF identification.

Conclusions
Recently, network analyses have been applied to many
diseases to reveal the complicated mechanisms and try
to find out new makers or targets for the diagnoses and
treatments. However, network analysis have not been
systematically applied in colorectal cancer (CRC). In our
paper, we build a systematic, comprehensive and compli-
cated network for CRC, and finally through topologic
analysis, we find some key miRNAs and feed forward
loops that possibly play important roles in the regulation
of CRC for further experiment design.
Furthermore, current FFL studies mostly rely on the pre-

dicted regulation information, which may lead to false posi-
tive outcomes. So some strategies are urgently needed to
reduce the false positive rate. In this field, we integrated the
predictive information and experimental co-expression data
of TCGA project. We finally extracted significant compo-
nents for CRC from a comprehensive and complex network
using this strategy, which was confirmed in the subsequent
prognosis analysis. This innovative strategy can be an in-
spiration for further researches in this field.
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