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Abstract

Background: Genome sequencing provides a powerful tool for pathogen detection and can help resolve outbreaks
that pose public safety and health risks. Mapping of DNA reads to genomes plays a fundamental role in this approach,
where accurate alignment and classification of sequencing data is crucial. Standard mapping methods crudely treat
bases as independent from their neighbors. Accuracy might be improved by using higher order paired hidden
Markov models (HMMs), which model neighbor effects, but introduce design and implementation issues that have
typically made them impractical for read mapping applications. We present a variable-order paired HMM that we term
VarHMM, which addresses central issues involved with higher order modeling for sequence alignment.

Results: Compared with existing alignment methods, VarHMM is able to model higher order distributions and
quantify alignment probabilities with greater detail and accuracy. In a series of comparison tests, in which lon Torrent
sequenced DNA was mapped to similar bacterial strains, VarHMM consistently provided better strain discrimination
than any of the other alignment methods that we compared with.

Conclusions: Our results demonstrate the advantages of higher ordered probability distribution modeling and also
suggest that further development of such models would benefit read mapping in a range of other applications as well.

Keywords: Sequence alignment, Higher order, HMM, lon Torrent, Pathogen detection

Background

Accurate and fast identification of pathogens is a crucial
task for public safety and health [1]. Genomic sequencing
provides a high resolution methodology for epidemio-
logical studies and has recently been applied in cases
such as cholera outbreaks in Haiti and Escherichia coli
spread in Germany [2]. One approach in such investiga-
tions is to use ‘naive mapping, where alignment software
is used to classify clinical and metagenomic sequenced
reads to determine the strain involved (see for exam-
ple Francis et al. [3]). More recently, frameworks have
been developed that incorporate read mapping to classify
sequencing data to the correct strain. Such frameworks
typically align reads to the entire reference [3—5], where-
after ambiguous alignments are for example reassigned
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using the joint probabilities of the mapped reads, or use a
genomic marker approach such that reads are aligned to a
reference of genes [6]. Sequence alignment is hence criti-
cal in both the naive mapping approach and classification
frameworks, which by default typically utilize software
such as BLAST [7] or Bowtie2 [8] but also allow the use of
other alignment methods.

Many alignment methods use finite state automa (FSA,
[7-10]), which provide an efficient and powerful means
of finding the optimal alignment between two sequences.
The chance of a match, deletion, or insertion in an FSA
is assigned a ‘score;, where a score can be interpreted as
a log-likelihood ratio for each of these events. It is hence
important to utilize scores that accurately represent the
true event probability distributions. Although it is known
that higher order genome nucleotide distributions contain
unique information, and vary significantly across different
types of organisms (see for example [11]), standard FSAs
are limited to Oth order likelihood representations that are
often approximated using integer values.
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Efforts have been made to develop FSAs that use
higher order likelihoods, and Crooks et al. [12] for exam-
ple extended the Smith-Waterman algorithm [13] for
dipeptide protein alignment. Their model uses a pair-
wise substitution score matrix that contains approximated
log-likelihood values for dipeptide combinations at dif-
ferent distances apart (i.e. residues separating them),
while indels are handled using standard gap align-
ment penalty scores. No significant improvement was
observed compared with the standard Smith-Waterman
algorithm however. Hara et al. [14] extended this model to
include estimated transition probabilities between dipep-
tide alignments, and improved protein alignment per-
formance when they modified multiple sequence aligner
TCoffee [15] with their method. More indirect methods
have also been developed, where Lu and Sze [16] applied
a post-alignment algorithm that re-calculates alignment
scores by using an average across a position and its neigh-
boring sites. Their method was applied to different mul-
tiple sequence aligners and significantly improved protein
alignment performance.

Although extended FSAs have shown promising
improvements, they have primarily been designed for
multiple protein sequence alignment and do not model
probability distributions directly. They are also limited
to dipeptides or post-alignment processing, and use
standard gap penalties for indels. Thus for nucleotide
sequence alignment and classification, a different model
may be more suitable.

Paired hidden Markov models (HMMs) are very simi-
lar to FSAs but use probabilities instead of scores, and are
thus well suited if we want to directly model the proba-
bility distributions for different alignment events. Higher
order HMMs in particular, can provide a more detailed
representation of alignment distributions than FSAs and
Oth order HMMs, but their application in sequence align-
ment has so far been very limited. This is partly because
paired HMMs can be slow, but also due to additional
complexities that are introduced by higher order models.

Attempts to move beyond a standard Oth order paired
HMM for sequence alignment has hence been more lim-
ited than the case of FSAs, though Ndéndsi et al. [17]
recently developed two different types of HMMs that
are able to use previous sequence information to pro-
cess tandem repeats. Both of their models use a standard
paired HMM, but in their first model they add profile
HMM states to handle repeats, while in their second
model they extend the standard model with states that
follow the implementation in the repeat finder TANTAN
[18]; an HMM developed for detecting repeats in single
nucleotide/protein sequences. Néanasi et al. do not model
probability distributions, but instead utilize estimated
indel and mutation rates based on earlier studies. Their
models have so far only been tested in simulated scenarios
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but show a promising approach for scoring repeat regions
differently than other parts of a sequence.

In addition to the Nénadsi et al. [17] models, HMMs have
been developed that correct alignments of homopolymer
regions when using Ion Torrent reads [19, 20]. Such meth-
ods do not utilize higher order models to capture general
matches and indels, but specifically model repeats of dif-
ferent lengths. As these approaches correct existing align-
ments, they are complementary to read alignment and
can further improve results in the case of homopolymer
sequencing errors.

Although it is common to use sequence alignment when
performing pathogen classification with sequenced DNA,
alternative approaches have been developed for classify-
ing guanosine triphosphate proteins (GTPases) and pro-
tein folds, which use techniques such as neural networks
[21], random forests [22], and profile-based composition
vectors [23]. Such techniques rely on at least one descrip-
tor such as hydrophobicity or secondary structure, and
for example perform linear interporlation to normalize
sequence lengths, so it is unclear how well such mod-
els can be applied in the case of classification based on
DNA reads. Their use of sequences and data dimension
reduction offer an interesting approach however, and may
provide benefits if adopted for next generation sequencing
and classification.

We here present a variable order paired HMM for
sequence alignment and read classification that we term
VarHMM, which addresses higher order modeling issues
and exploits similarities between reads to improve pro-
cessing time. In contrast to previous methods, we directly
model probability distributions for higher order align-
ment and indel likelihoods, and our method has been
developed for nucleotide sequence alignment and clas-
sification. VarHMM uses the same states as a stan-
dard paired HMM, and is not mutually exclusive with
HMMs such as the Néndsi et al. [17] models, and can
for example be extended with states to handle tan-
dem repeats. Our model is applicable for distinguish-
ing amongst known bacterial strains, and is evaluated in
classification tests where it is compared with commonly
used alignment software packages as described in the
Results section. Several different next generation sequenc-
ing methods can be utilized for pathogen classification,
and we focused on reads from lon Torrent sequenc-
ing which offers a fast and viable method for pathogen
detection [24].

Implementation

Sequence data and aligners

Our alignment method VarHMMV,, is based on a higher
order paired HMM implementation. We implemented
VarHMM as well as Oth, 1st, and 2nd order models for
comparison (HMMO, HMM1, and HMM?2 respectively).
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In the following, we describe how seeding, alignment, and
training are performed, and how VarHMM and the higher
order paired HMMs were implemented.

Sequence alignment using paired HMMs

In this section, we briefly describe how the probability of
a single alignment is calculated, and in the next section
we will explain how this can be used to find the ‘best’
alignment.

All of the paired HMMs that we implemented use five
states as shown in Fig. 1a, where for a given alignment,
we start with the Begin state (B) and an finish with the
End state (E). We enter a match state (M) when two
nucleotides align, and enter an output state (X or Y) when
there is a nucleotide output in only one of the sequences
as can be seen in the example in Fig. 1b.

If we use a Oth order paired HMM to align Sequencel
and Sequence2 in Fig. 1b, then the probabilty of their
alignment po(S1 : S2) is:

po(S1:82)=apr-p(A:A)-app- p(T:T)-apx-q.(T)
-axm-p(A:A)-apm-p(G:G)-apy - qy(C) -aym -p(T : T)

* AME

b

Alignment Example
Align ATTAGT with ATAGCT:

Sequencel A T T A G - T
Sequence2 A T - A G C T
State M M X M M Y M

Fig. 1 Paired HMM: a States and connections: B = begin and E = end
states, and M = match, X,Y = output states (B to E connection not
shown). b Example of an alignment between two sequences (state
that was entered in the paired HMM is shown for each position of the
alignment)
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where the a4 values denote the state transion probabili-
ties (e.g. ayx is the probability of transitioning from M
to X), and for example p(A : A) is the probability that A
matches with A and g,(T) is the probability of outputting
a T nucleotide in Sequencel (all of these probabilities are
derived by training a paired HMM which we will describe
in the Training section).

In the case of a 1st order model, the alignment probabil-
ity of Sequencel and Sequence? is instead:

p1(81:82) =appyr - p(A:A) -app - p(T : T|A:A) - apx
qx(T|T) -axm - p(A: A) -amm - p(G: G|A : A) - apy
~qy(CIG) -aym -p(T : T) - ape

where p(T : T|A : A) for example is the probabil-
ity that T matches T given the prior alignment between
A and A, and ¢,(C|G) is the probability of outputting a
C with a G occurring immediately before in Sequence2.
When a gap occurs immediately before a match between
two nucleotides (or a gap occurs immediately prior in the
sequence where there is a nucleotide output), then a Oth
order model is used to calculate the probability as can be
seen in the case of the last match which uses p(T : T). As
will be described in further detail in the next section, all
of the paired HMM models use the highest order possi-
ble after previous gaps in the alignment have been taken
into account, while VarHMM also adjusts the order based
on which probabilities have sufficient training data to be
considered reliable.

Viterbi and higher order paired HMMs

In order to find what we think is the best alignment
between two sequences, we compare the probabilities of
different alignments. The general idea is to store the dif-
ferent alignment probabilities in an alignment matrix and
then use them to find the alignment we think is best. For
example, we can use the alignment matrices to store the
probability that we align the first nucleotide in Sequencel
in Fig. 1b to nucleotide 1,2,...,6 in Sequence2, and then
repeat again for Sequencel nucleotides 2—6.

There are different ways to implement the alignment
matrices and select a final alignment, but one approach is
to use the Viterbi algorithm [25], which uses the matrices
to find the path that gives us the highest alignment prob-
ability. Figure 2 provides a short summary of the Viterbi
algorithm and how it is implemented with a paired HMM
(for a more in depth description of paired HMMs and use
with the Viterbi algorithm see for example Durbin et al.
[26]), where Fig. 2a shows an example of an alignment
matrix, Fig. 2b illustrates how the alignment matrices
are traversed for Sequencel and Sequence2, and Fig. 2c
describes how the alignment with the highest probability
is found using Viterbi.
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a Alignment matrix
One matrix for each state M,X,Y (which use VM,VX,VY respectively)
j 0 1 2 3 4 5 6

i A T A G C T

0

1 A V(1,1) | V(1,2) V(1,6)

2 T V(2,1)

3 T

4 A

5 G

6 T V(6,1) V (6, 6)
b
Sequencel A T T A G - T
Sequence2 A T - A G C T
Align. Matrix ~ VM(1,1)  VM(2,2) VX(3,2) vM(@4,3) VM(5,4) VY(5,5) VM(6,6)
C

anpa - VMG —1,5-1)
V(i) = Pa;y; " MAT § ax M VX —1,5-1)
aym - VY(i—1,5-1)

. apx - VM(@i—1,j
VX(i,5) = g, - < (. ; )
axx - V> (i—1,7)

ayy - VM (i, j — 1)

vY 0J) = Qy. *
(9 =, {aw-vY(i,j—m

Fig. 2 Finding the alignment using Viterbi: a For each state M, X, Y we calculate an alignment matrix: each matrix position contains the alignment
probability V(i,j) up until the position i in Sequence1 and j in Sequence2 (shown in Fig. 1). b Example of how the alignment matrices are traversed
using the alignment from Fig. 1. ¢ To find the alignment with the highest probability: V(i,j) is calculated for each of the states M: VM (i, j), X: VX (i, j), Y:
V' (i,j). The probability of transitioning between two states is given by a (e.g. from X to M is ay), and is multiplied by the alignment probability V' of
the state and position we are coming from (for example VM(i,j) = ayy - VX(i — 1,j — 1) if going from state X to M). We then transition from the
previous state and position which maximizes M (i,)) for alignment matrix M, and VX @i.)), VY(/',j) for the X,Y matrices. We perform this for each i, j
position and always store which previous state was transitioned from. The alignment with the highest probability Vmax can then be found using
traceback: given a Sequence1 of length n and a Sequence2 of length m, traceback starts from the state given by: Ve = max{aye - VM(n, m), X:

axe - VX(n,m), Y:aye - VY (n,m)} where aye, axe, and aye are the transition probabilities from M, X, and Y respectively to E

One difficulty with higher order paired HMMs is that
they need to look back at the preceding nucleotides at
each position in an alignment. HMMs are designed with
the assumption that probabilities in a state are indepen-
dent however, and so using higher ordered probabilities
with a paired HMM and an algorithm such as Viterbi
introduces difficulties that must be addressed. In par-
ticular, a higher order probability is dependent on the
preceding alignment, but matches between the preced-
ing nucleotides are not decided until we have calculated
the alignment matrices as seen in Fig. 2. For example,
if there are indels in the preceding aligned nucleotides
then we must take them into account when we calcu-
late the higher order probabilities at each position in an
alignment matrix. To address this issue, we exploited the
same traceback system as the Viterbi algorithm to keep
track of when an insertion was last made for each position
in an alignment. In the following, we consider the align-
ment between Sequencel and Sequence2 to describe how
this functions, and use i and j to refer to the nucleotide
positions in Sequencel and Sequence2 respectively.

In the higher order models, the Markov order that is
used for the alignment probability is dependent on what

occurred in the preceding states, which can be seen if we
consider the three following examples:

1) Sequencel T A A T C G
Sequence2 T A A T - G
States M M M M X M

2) Sequencel T A A T C G
Sequence2 T A A T - -
States M M M M X X

3) Sequencel T A A T - -
Sequence2 T A A T C G
States M M M M Y Y

If we are in the M state, and the previous state produces
an indel as shown in the first example, then we utilize
an order of 0 because the immediate position before our
current one contains a gap in Sequence2. In contrast, if
we are in state X as in the first and second examples,
then we only need to be concerned with preceding gaps in
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Sequencel and can ignore Sequence2 (while we only need
to consider preceding gaps in Sequence2 when in state Y
as in the third example). At each position i, in the align-
ment matrix (Fig. 2), we therefore count the number of
nucleotides since a gap last occurred in either sequence,
which we store in matrices X and Y.: X counts the num-
ber of nucleotides since a gap was made in Sequencel and
Y. contains the counts for Sequence2.

As shown in Fig. 3a and b, the counts are updated at
each position i,j similar to how the Viterbi matrices are
updated (where the state column in Fig. 3b refers to the
state that we are in at position i,j). If we for example
enter a match state, then the number of times that we
had a nucleotide output in both Sequencel and Sequence2
increases by one, and we therefore increase the XZCV[(i, 7
and YM(i, /) counts by one. This is done by adding a value
of one to %} and y}, which represent the x. and y, values
that are chosen from the Viterbi path when we use the
equations in Fig. 3b (i.e. x} and y} give us the counts from
the state we are coming from in the Viterbi path). In con-
trast, if we entered state X, then there was a nucleotide
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output in Sequencel and a gap in Sequence2. In this
case, we increase the counts for XX(i,j) by one, but set
Yg‘(i, j) = 0 (and vice versa for state Y, where there is an
output in Sequence2 and gap in Sequencel, we increase
the counts for YX(i,j) by one and set XX(i,j) = 0). We
again update using the counts from the previous state in
the Viterbi path, as given by x} and y}. For initialization at
position i = 0 and j = 0 all counts are set to zero.

The X, and Y, counts are then used to help determine
the order when we calculate the probability of an align-
ment Payyy and the nucleotide output g, qy at each i,j
position for the alignment matrices as shown in Fig. 3a
and c.

Datasets

We used sequencing data from E. coli K12 substrain
DH10B for training and testing. Two different sequencing
sets from an Ion Torrent PGM 314v2 were used (datasets
from https://figshare.com/s/6101b0605da5e9a6{72¢): 1)
C24-698, mode read length >200bp (average read length
244bp) and 35.7X average coverage, 2) B22-730, mode

a

VM, j) = Papyn - maw {

ayy - VM(GE—1,5—1)
axm - VX(i—1,5-1)
aya - VY(i—1,5-1)

e =XM(i—1,j—1), ye =Y (i — 1,5 — 1), n=min[zc,Ye, Norder]
e =X3(i—1,j—1), ye = Yo (i—1,j — 1), n = min[zc, Ye, norder]
e =X (-1, —1), ye =Y (i—1,j — 1), n = min[zc, Ye; Norder]

SN
*2 1
*3 1

X/ {aMM VMGE=1,5) , me =XY (G~ 1,7), n=min[ze, norder]
V7(i,7) = qun - maz X : X, : .
¢ axm - VI(i—1,5) , zc=X (i—1,5), n=min[zc,norder]
VY (i) = gy - maz {aMM . V\l\/{ (1] —1) Y= Yi::(l,] —1), n= m.in [Yesnorder)
J axy -V i(i,j—1) ,ye=Y_ (i, —1), n= 'm,zn[ywno,,de,.]
b
To State Update
M XM(i,j) =2t +1
Yl 4) =yr+1
X X3 (i,j)=a,+1
YX(,5) =0
Y XY (i,5) =0
Y (64) =y +1
C
Sequencel A T T A G - T
Sequence2 A T - A G C T
Order Used 0 1 2 0 1 2 0
Align. Matrix vM(1,1) vM(2,2) VvX(3,2) VvM(4,3) VM(5,4) VY(5,5) VM(6,6)
X. Updated xM(1,1) xXM(2,2) XX(3,2) XM(4,3) XM(5,4) XY(5,5) XM(6,6)
New Value 1 2 3 4 5 0 1
Y. Updated M, 1) YM2,2) YX(3,2) YM(4,3) YM(5,4) YY(5,5) YM(6,6)
New Value 1 2 0 1 2 3 4

Fig. 3 a The Viterbi equations, extended for the higher order paired HMMs. In addition to the X. and Y. counts, a higher order HMIM is also
restricted by its order which we term ne,qer (see Fig. 2 for definition of other variables). The order used to calculate Py G Gy is then taken as the
minimum between the X, Y¢ counts and neger as shown above. b Update of count matrices, where x* and y;* are the xc and y, values we from the
Viterbi path we take in the (a) equations (see text for details) € The order used and the X and Y. values updated at each alignment position for a
2nd order paired HMM (using Fig. 2 example). The order used at each position is based on the X. and Y. counts from the previous position and the
equations in (a). For example when A aligns to A at VM(3,4), the previous alignment position was at (2, 3) in state X, and so the order used to
calculate VM(3,4) is the minimum of [XX(2,3), YX(2,3), Norger], which is equal to zero as YX(2,3) = 0
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read length of 400bp (average read length 325bp) and
33.9X average coverage (494921 reads). We refer to the
first dataset as R200 and the second dataset as R400. Half
of the R200 dataset was used for training and the other
half testing, which we term R200-train and R200-test
respectively.

Training

The training set was constructed by first aligning the
R200-train reads to E. coli DHIOB with Last using its
default parameters (see Additional file 1: Section S4 for
details). Only alignments that were greater than 150 in
length and which had a Last mismap probability score
less than 0.001 were used for training. We then utilized
maximum likelihood estimation (MLE) with this set for
all of the pair HMMs to estimate initial transition, align-
ment, and output probabilities (see for example Durbin
et al. [26] section 3.3 for details on how transition, align-
ment, and output probabilities are calculated from a set
of alignments for paired HMM training using maximum
likelihood estimation). After initialization, we used the
Viterbi algorithm to re-align all of the alignments in the
training dataset with the HMM, and re-estimated all of
the probabilities with MLE. Training was stopped if the
difference between the logarithmic values of the total
probability of the new and old alignments was less than
Dstop = 0.8, or if n;; = 5 iterations was reached (for both
the full dataset used in the Results, and the half dataset
used in Additional file 1: Section S2.3, training stopped
after 5 iterations).

VarHMM: a variable higher order paired HMM

When training higher order HMMs, the training data set
might not be sufficiently large to properly capture the
higher order distributions in which case the model may
perform worse than a lower order HMM. This was notice-
able in the training set, where a 3rd order HMM appeared
to yield worse results than a 2nd order model. To address
this issue, we implemented VarHMM, which is a variable
order paired HMM. VarHMM uses the same implemen-
tation as the higher order paired HMMs, but for each
order (Oth to 3rd order), it also counts the number of
samples for all of the alignment and nucleotide output
probabilities (e.g p(A|A), p(C|A),...etc.). If the counts for
a given alignment or output is below a count of ¢y,
then a lower-order conditional probability is used (high-
est possible is then selected). We used a maximum order
of 3 for both the M and the X and Y states, and a value
of 100 for ¢, .

Seeding and alignment

VarHMM and the Oth, 1st, and 2nd order paired HMM
models all performed global alignment, and used the same
method for seeding and aligning sequences. A detailed
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description of how this was implemented, as well as
parameter values used for all of these models is provided
in Additional file 1.

Results and discussion

To evaluate VarHMM and the different paired HMMs, we
compared their performance with commonly used align-
ment software packages: Bowtie2 [8], Last [9], Segemehl
[10], and TMAP (part of the Torrent Suite at https://
github.com/iontorrent/TS). We evaluated each method by
aligning reads from E. coli K12 substrain DHI0B, and
focused on classification between substrains as this can be
particularly difficult due to the high degree of similarity.

Reads from the R200 and R400 datasets were aligned
to a sequence database comprising two genomes: E. coli
DH10B (NC_010473.1) and either 1) E. coli MGI1655
(U00096.3), or 2) E. coli C3026 (NZ_CP014272.1). All of
the alignment software parameters except for Last were
set according to Caboche et al. [27] (see Additional file 1
for Last parameters and for version details of all the
alignment methods).

In each test, if a read was classified to the E. coli DH10B
genome it was marked as a correct mapping. If a read
was mapped to more than one position it was classified
to a genome according to two criteria: 1) If all the aligned
positions were in the same genome, then the read was
classified to that genome, 2) If the first criterion were
not true, then the highest scoring alignment was selected
if it was greater than the second best alignment by a
given threshold value (which we varied for all the different
alignment methods, altering the percent of wrongly and
correctly mapped reads; for Last we varied the maximum
mismap probability which has a similar effect).

In the case of TMAP, the first criterion caused the
results to decrease significantly in one of the test sets
because it was unable to find any matches in the E. coli
DH10B genome for a set of reads (this significant decrease
was not observed for any of the other aligners). We there-
fore derived two sets of results for TMAP, with one set
based on both criteria that we label “TMAP’ in the plots,
and an additional set where only the second criterion
was used which we label ‘TMAP* (i.e. in “TMAP* a read
is only classified if the difference between the best and
second best alignment scores is above the supplied thresh-
old, while in “TMAP’ a read is also classified if all of the
alignments occur in only one of the genomes).

For each alignment method, we compared the percent of
wrongly mapped reads with the percent that was correctly
mapped. Figure 4a and b show the results for the first test
set, where reads from R200 and R400 where aligned to
E. coli DH10B and MG1655. For both the R200 and R400
sets, VarHMM showed the best performance, followed
by Last which at most points outperformed the Oth, 1st,
and 2nd order models. The 1st order model sometimes
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a DH10B+MG1655 R200

_| © Segemehl

—— TMAP

1.0

- — TMAP*

—— Last
Bowtie2

—— VarHMM
HMM2

0.8

%Correctly Mapped
0.6

—— HMM1
—— HMMO

0.4

0.2

T T T T
0.000 0.005 0.010 0.015
% Wrongly Mapped

DH10B+C3026 R200

% Correctly Mapped

04 05 06 07 08 09 10 1.1

T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012
% Wrongly Mapped

b DH10B+MG1655 R400

Fig. 4 Comparison of different alignment methods: a R200 reads aligned to DH10B and MG1655, b R400 reads aligned to DH10B and MG1655, € R200
reads aligned to DH10B and C3026, d R400 reads aligned to DH10B and C3026

22
I

20

1.8

% Correctly Mapped
1.6

T T T T T
0.000 0.005 0.010 0.015 0.020
% Wrongly Mapped
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performed better than the 2nd order model, and illustrates
how the performance of a higher order paired HMM can
decrease due to insufficient training data as described in
the Methods section. Bowtie2 performed slightly better
than TMAP, while TMAP scored higher than Segemehl
for the R400 set in Fig. 4b but worse for the R200 set
in Fig. 4a.

When using both criteria 1 and 2 for classifying reads,
TMAP was able to align a small number of extra reads
compared with the other alignment methods when the
percent of wrongly mapped reads was relatively high in
Fig. 4a and b. In this case, TMAP appears to only have
aligned reads to DHIOB which the other aligners likely
matched to both DHI0B and MG1655. Although this ben-
efited TMAP in the first test, in the second test with E. coli
DH10B and C3026, TMAP aligned a set of reads to only
C3026 and not DHIO0B, resulting in a significant number
of incorrectly mapped reads.

Figure 4c and d show the results for E. coli DH10B and
C3026. For the sake of visual clarity, the results for TMAP
are not included but shown in Additional file 1: Figure
S1 instead (TMAP started at approximately 0.06 and
0.04% wrongly mapped reads in Fig. 4c and d respectively,
making it harder to distinguish the results of the other

alignment methods). The results in Fig. 4c and d show
that VarHMM again performed the best and was followed
by Last. Bowtie2 showed stronger results than TMAP*,
while the TMAP* results were better than Segemehl in
the case of the R400 reads but worse for the R200 dataset.
Although the TMAP results in both tests didn't differ
greatly from Segemehl and Bowtie2, TMAP has been
designed for Ion Torrent sequencing, and so the results
were lower than expected.

As VarHMM was trained using Last alignments, the
HMM models may have achieved higher accuracy than
the other aligners in part due to Last’s performance. To
rule out this possibility, and also ensure that our estimated
parameters (Additional file 1: Table S2) for VarHMM were
not tailored to the Last training data, we trained two sep-
arate versions of VarHMM with alignments from Bowtie
and TMAP alignments (see Additional file 1: Section S2.2
for details). A comparison was then made between these
two versions of VarHMM and the other alignment meth-
ods, where we used the same parameters for VarHMM
as before (parameters shown in Additional file 1: Table
S2). As can be seen in Additional file 1: Figure S2, this
prompted a smaller decrease in VarHMM’s performance
compared with the results in Fig. 4, but performance was
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otherwise similar for both VarHMM trained with Bowtie
and with TMAP alignments.

Unlike the other HMMs, VarHMM uses ¢;,;; as a cut-
off as explained in the “VarHMM: a variable higher order
paired HMM?” section. This posed questions such as how
often the ¢, threshold was met during training, and
how results would be affected by a smaller training set.
An analysis of how frequently the ¢, threshold is met,
and what portion of the data the higher orders capture, is
described in Additional file 1: Section S2.3 (results shown
in Additional file 1: Table S3). Interestingly, increasing
¢min only caused more rare cases to be excluded in the
higher order modeling of the M state, while the X and Y
states were largely unaffected. As an additional control,
we trained a VarHMM model with half of the Last train-
ing data that was used to train the VarHMM in Fig. 4
(using the same ¢, = 100 value as before). The results
are shown in Additional file 1: Figure S3, and as can be
seen, VarHMM showed only very minor changes com-
pared with Fig. 4, illustrating how the variable order model
can compensate for changes in the training data size.

In addition to the alignment tests performed in Fig. 4,
we made a more detailed comparison between VarHMM
and the other aligners to measure how well they could
determine a strain using a given set of reads. We imple-
mented a similar test framework as Francis et al. [3],
who used low coverage datasets to model factors such as
use of multiplexed sequencing and contamination of sam-
ples from other genomic sources (see Additional file 1:
Section S2.4 for test details). Similar to the results seen in
Fig. 4, VarHMM showed the best performance, followed
by Last and then Bowtie and TMAP. The results suggest
that an aligner such as Bowtie or Last is likely to provide
the same accuracy when classifying a purified sample to
a small number of strains, while VarHMM can provide
greater accuracy in more difficult scenarios as described
in Francis et al. [3]. Our results here also illustrate how
VarHMM can be applied for pathogen detection, or for
example to distinguish between pathogenic and non-
pathogenic strains.

A comparison between the run times of the different
alignment methods was made using the R200 dataset with
E. coli DH10B and MG1655 and can be seen in Table 1. All

Table 1 Run times for the different alignment methods for
aligning the R200 reads to DH10B and MG1655

Aligner Run time (minutes)
Bowtie2 1.10

Last 1.85

TMAP 2.10

Segemehl 48.24

VarHMM 21045
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of the aligners were run on a basic system consisting of a
1.4 GHz Intel Core i5 and 4 GB of memory to see if they
could run on a relatively lower end system. The paired
HMMs were the slowest (Table 1 only shows VarHMM
results but the other paired HMM:s had similar run times),
followed by Segemehl. Bowtie2, Last, and TMAP were all
significantly faster, though Bowtie2 had the fastest run
time. Although VarHMM was able to run on a low level
system, using more high end specifications such as an Intel
Core i7 based system is hence recommended, allowing for
run times under an hour.

Conclusions

VarHMM achieved the best performance amongst all of
the alignment methods that we compared with. Although
we focused on Ion Torrent reads, accurately modeling
nucleotide distributions is fundamental to alignment of
any sequenced data. As such, a higher order based model
such as VarHMM should also provide advantages with
other types of sequencing.

All of the paired HMMs were slower than the other
alignment methods that we compared with, and future
work will be focused on improving algorithm design
and implementation to increase speeds. We also limited
VarHMM to a maximum 3rd order model, but it would
be possible to make a more dynamic design that uses
higher orders for the output states to further improve
performance.

VarHMM is complementary rather than competitive
to fast aligners such as Bowtie2. Its relative slowness
makes it inappropriate for huge datasets, and its niche is
smaller datasets where best-possible accuracy is desired.
An obvious example is bacterial strain discrimination,
where our results suggest that VarHMM can provide
better sensitivity and accuracy for more difficult sce-
narios as described in the Results section. In addition
to smaller datasets, VarHMM could also be applied
alongside a fast alignment method for mapping shorter
reads as they tend to be harder to align. Ultimately,
standard zero-order methods will hit an accuracy ceil-
ing that can be broken only by higher-order sequence
modelling.

Pathogen detection and biosurveillance is crucial for
public safety, and accurate classification of reads is funda-
mental when using epidemiological methodologies. Our
results show that VarHMM can achieve both high accu-
racy and sensitivity when classifying reads, providing a
powerful tool that can be used for pathogen detection.
These findings also have important implications going
forward, where our results demonstrate the advantages
of using higher ordered probability distribution model-
ing, and suggest that further development of such models
would benefit read mapping in a range of other applica-
tions as well.
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Availability and requirements

Project name: VarHMM

Project home page: https://github.com/gitvarhmm/varhmm
Operating system(s): Windows, Mac, Linux
Programming language: C++

Other requirements: None

Licence: GNU General Public License v3.0

Additional file

Additional file 1: Supplementary information. This file contains the
following sections: S1 - Details about seeding, alignment steps, and
parameter selection. S2 - Contains details and graphs for additional testing
and results described in the Results section of the main text. S3 - Version
details for the different aligners. S4 - Parameters used for Last training and
alignment, and also Last training results. S5 - Where to download and how
to use Varhmm software, as well as training results from VarHMM.

(PDF 318 kb)

Abbreviations

E. coli: Escherichia coli; FSA: Finite state automaton; HMM: Hidden Markov
model; HMMO: 0th order hidden Markov model; HMM1: 1st order hidden
Markov model; HMM?2: 2nd order hidden Markov model; VarHMM: Variable
order hidden Markov model
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