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Abstract

Background: Bioluminescent proteins (BLPs) widely exist in many living organisms. As BLPs are featured by the
capability of emitting lights, they can be served as biomarkers and easily detected in biomedical research, such as
gene expression analysis and signal transduction pathways. Therefore, accurate identification of BLPs is important
for disease diagnosis and biomedical engineering. In this paper, we propose a novel accurate sequence-based
method named PredBLP (Prediction of BioLuminescent Proteins) to predict BLPs.

Results: We collect a series of sequence-derived features, which have been proved to be involved in the structure
and function of BLPs. These features include amino acid composition, dipeptide composition, sequence motifs and
physicochemical properties. We further prove that the combination of four types of features outperforms any other
combinations or individual features. To remove potential irrelevant or redundant features, we also introduce Fisher
Markov Selector together with Sequential Backward Selection strategy to select the optimal feature subsets.
Additionally, we design a lineage-specific scheme, which is proved to be more effective than traditional universal
approaches.

Conclusion: Experiment on benchmark datasets proves the robustness of PredBLP. We demonstrate that lineage-
specific models significantly outperform universal ones. We also test the generalization capability of PredBLP based
on independent testing datasets as well as newly deposited BLPs in UniProt. PredBLP is proved to be able to
exceed many state-of-art methods. A web server named PredBLP, which implements the proposed method, is free
available for academic use.
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Background
Bioluminescence is a special process of chemilumines-
cence, which is common in many living organisms
across the lineages of bacteria, eukaryota and archaea
[1]. Bioluminescent proteins (BLPs), with the capability
of emitting light by converting chemical energy to light
energy, play a critical role in bioluminescence [2, 3].
Employed as highly sensitive labels, they are enormously
useful in non-invasive in-vivo biomedical research, such
as gene expression analyses [4] and signal transduction
pathways [5]. Since BLPs can be easily detected, they are

widely used in bioluminescence imaging (tagging bio-
logical entities or process), as biosensors for environ-
mental contaminants, and as detectors to map neuronal
circuits [6]. Particularly, BLPs can be used for non-
invasive analyses of molecular functions in living cells
and organisms. With the help of bioluminescence mi-
croscopy, scientists can trace and monitor the chemical
reaction by quantifying the photon emission of BLPs
(such as luciferase) [7]. The quantified visible light pro-
vides clues about the location and status of BLPs im-
planted into tumors or tissues.
Bioluminescence imaging and biosensors are fea-

tured by its capability of providing high-sensitive
identification of BLPs. However, these methods all
suffer several potential problems, which affect the
performance of the detection. First, BLPs are sensitive
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to the microenvironment [8]. For instance, D-Luciferin
exhibits the peak spectrum in green region in acidic solu-
tion while in red region at basic pH [9]. Second, the vivo
organisms largely scatter or absorb the majority regions of
the spectrum. Although low temperature can reduce ther-
mal noise, it might also kill the tissues as well as the BLPs.
Third, it is difficult to detect light-emitting which is pro-
duced inside a living animal without harming its skin.
Fourth, light emission is the most significant factor. How-
ever, for most bioluminescence signals, they are too weak
to detect. Additionally, the filtering to excitation light
might affect the corresponding emission light [10]. As a
result, the biophysical or biochemical experiments can be
benefit from the computational methods which process
the characteristic of predicting large amount of data ac-
curately and effectively.
Recent years have witnessed a number of computa-

tional methods for predicting BLPs. The earliest study in
recognizing BLPs based on computational methods can
be traced back to 2011 when Kandaswamy et al. used
544 physicochemical properties and support vector ma-
chine to predict BLPs [11]. They also built the first
sequence-based predictor named BLProt. Soon after
that, Zhao et al. proposed an improved method named
BLPre by using evolutionary profiles represented by pos-
ition specific scoring matrices to construct feature vector
[12]. Fan et al. adopted the concept of pseudo amino
acid composition to represent proteins and achieved a
good prediction quality [13]. Huang et al. introduced the
knowledge acquisition method in characterizing BLPs
and the evolutionary fuzzy classifier to build prediction
model [14]. They also proposed a scoring card method
to estimate the propensity scores of dipeptides and
amino acids as well as design prediction models [15].
Nath et al. adopted oversampling technique and un-
supervised K-means algorithm for predicting BLPs [16].
In summary, these methods provide important clues in

this field. Some of them provide web servers or pro-
grams. These prediction tools help biologists to fast pre-
dict potential BLPs and promote the development of this
field. However, as far as we have concerned, there are
two aspects that need to be further investigated. First,
most of these studies used various types of features to
encode the proteins (or the samples). However, they
lacked detailed analyses or descriptions of the features.
That is, it is uncertain about the discrimination capabil-
ity of these features. Second, most of these studies only
considered general BLPs. In other words, they didn’t
consider the differences across different lineages of
BLPs. Actually, based on our research, these existed dif-
ferences are valuable for deep investigation. They are ex-
pected to further promote the accuracy of the prediction
models. However, it has not yet received enough
attention.

Motivated by the above-mentioned two drawbacks,
in this study, we focus on the challenge of proposing
a novel accurate predictor for identifying BLPs based
on sequence-derived features. We collect and compile
four new datasets (one general and three lineage-
specific datasets), which contain non-redundant BLPs
and non-BLPs. Next, a series of sequence-derived fea-
tures, which have been proved to be involved in
BLPs, are mathematically computed to encode the
proteins. Detailed analyses are performed to empiric-
ally show the differences between BLPs and non-
BLPs, especially across lineage-specific BLPs. Then,
these differences are used to discriminate BLPs
against non-BLPs. For the convenience of biology re-
searchers, our method has been implemented as a
user-friendly web server named PredBLP (Prediction
of BioLuminescent Proteins), which is free available at
http://www.inforstation.com/PredBLP/.

Methods
Datasets
In this work, we construct four datasets, which in-
clude one general and three lineage-specific datasets,
for the investigation of BLPs. The three considered
lineages include bacteria, eukaryota and archaea. All
these datasets are compiled from 17,403 collected
BLPs from UniProt (Jul. 2016) [17]. Since the exist-
ence of homologous would lead to the bias of the
modeling and predicting processes, we further use
BLASTClust [18] to cluster all these proteins with a
cut-off of 30%. We choose BLASTClust because it is
capable of clustering sequences with low similarity as
well as long sequences. Next, we randomly pick one
protein from each cluster as the representative. Fi-
nally, we obtain 863 BLPs (positive samples). Among
these BLPs, 748 belong to bacteria, 70 belong to
eukaryota and 45 belong to archaea. Additionally, we
also collect 7093 non-redundant non-BLPs (negative
samples) to construct the negative samples. Among
them, 4919, 1426 and 748 proteins are affiliated with
bacteria, eukaryota and archaea respectively. We ran-
domly pick 80% of positives and equal number of
negatives in each dataset for balanced training. The
rest samples are used for independent testing. De-
tailed information of these newly compiled datasets
can be found in our web server.
To fairly compare our proposed method with previ-

ous studies [11–13, 15, 16, 19], we also introduce
Kandaswamy’s [11] training dataset. The BLPs in
Kandaswamy’s training dataset were selected from
Pfam database [20]. Then, they used CD-HIT [21] to
remove redundant proteins with more than 40% se-
quence similarity.
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The construction of feature vector
The features of amino acid composition
As the principal fundamental elements of the proteins,
amino acid composition (AAC) provides useful clues in
protein structure and function. The features of AAC are
widely used in bioinformatics [22–24]. In this work, the
features of AAC for each type of BLPs, including the
general BLPs and three lineages of BLPs, are calculated
by:

f AAC ið Þ ¼ AAi

L
ð1Þ

where AAi(i ∈ {1, 2, 3, … , 20}) represents i-th type of
amino acids, and L indicates the length of the query pro-
tein. Finally, we quantify the composition of 20 amino
acids in the query protein.

The features of dipeptide composition
Previous studies have proved that dipeptide composition
(DC) plays important roles in protein structure and
function, such as vivo activity and protein thermo stabil-
ity [25]. Hereby, the features of DC then can be formu-
lated as:

f DC i; jð Þ ¼
PL−1

n¼1AAnAAnþ1→AAiAAj

L−1
ð2Þ

where AAiAAj(i, j ∈ {1, 2, 3, … , 20}) represents 400 types
of dipeptide, n indicates the position of n-th residues in
the query protein with the length of L residues. AAnAAn

+ 1→AAiAAj denotes the dipeptide AAnAAn + 1 in the
query protein is same as AAiAAj in the 400 dipeptides.
fDC(i, j) quantifies the frequencies of dipeptides using a
straightforward statistical approach.

The features of sequence motifs
Sequence motifs (MTF) in protein sequences always in-
dicate the conserved regions [26]. Although many simi-
larities for proteins in the same family may disappear
after long-standing evolution, some inherited attributes

still exist because they are functionally or structurally re-
lated signals [27]. These signals help to control the cellu-
lar localization regions and corresponding biochemical
functions [28]. Thus, in this study, we introduce infor-
mation theory to compute the features of MTF that are
more favorable to BLPs against non-BLPs. We first cal-
culate the original information entropy of BLPs and
non-BLPs. Then, we iteratively generate a l-length pat-
tern P from “AXA” to “VXV” (“X” denote random amino
acid(s)). For each pattern P, we calculate its occurrence
frequencies in BLPs and non-BLPs. If its frequency in
BLPs is larger than the minimal preset occurrence fre-
quency threshold T (in this study, we preset T = 10%),
we use this pattern P to reclassify samples and calculate
the updated information entropy. Then, we compare the
original information entropy with the updated one, and
generate corresponding information gains of the consid-
ered P. Next, we calculate the difference of these two in-
formation gains (DIG). The higher the difference is, the
more discriminatory the pattern is. The pseudo-code of
the aforementioned procedure is shown in Fig. 1.
In this work, we choose the top 10 motifs which are

sorted by descending order of DIG values. Next, we cre-
ate a 10-dimensional binary vector to denote whether or
not a query protein contains the considered 10 motifs.
We use the number ‘1’ to represent the positive and ‘0’
to indicate the negative.

The features of physicochemical properties
Since amino acids serve as building blocks of proteins,
the physiochemical properties (PCP) of amino acids in-
fluence the microscopic environment, which includes
surface motions, energy, and dynamics [23, 27, 29]. In
this part, we further investigate several properties related
to BLPs.
Alipour et al. found that the insertion and substitution

of positively-charged residues effect the light shift mech-
anism [30]. Li et al. proved that the hydrophobicity in
active site determines the activity of BLPs [31]. Moradi
et al. pointed out that the change in polarity of the

Fig. 1 The pseudo-code of the calculation of motifs
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emitter site of BLPs lead to the modulation of the bio-
luminescence color [32, 33]. Particularly, the movement
of flexible loop in BLPs usually concomitantly changes
the polarity of the emitter site [32]. For instance, if a
bulge appears in a flexible loop, the emission lights shifts
color from green to red. With the help of energy accep-
tors, the energy transfer changes the bioluminescence
intensity as well as effects the spectral shifts [34, 35].
Silva et al. stated that the increase in polarity causes a
decrease in the emission energies. They also provide the
evidences that the change of solvent and pH affect the
structural and electronic properties of BLPs [36]. Con-
sidering this, we collect the physicochemical properties,
which include hydrophobicity [31], hydrophilicity [37],
polarity [38], polarizability [39], transfer free energy [40],
solvent contact area [41], positively-charge [42], flexibil-
ity [43] and protein kinase A [44]. Given a query protein,
its features of PCP are calculated as follows:

f PCP ið Þ ¼
PCPi−min 1

L

PL
j¼1 PCPi;j

� �

max 1
L

PL
j¼1 PCPi;j

� �
−min 1

L

PL
j¼1 PCPi;j

� �

ð3Þ
where i representes the i-th PCP and j indicates the j-th
amino acid in the query protein with the length of L res-
idues. Detailed information of these properties is pro-
vided in Additional file 1: Table A1.

Feature selection strategy
The combination of various types of features could pro-
vide more useful information in constructing a model
[22]. However, the existence of irrelevant features (noisy
features) or redundant features may potentially deterior-
ate the prediction quality of the predictor. In view of

this, we adopt Fisher-Markov Selector [45] together with
Sequential Backward Selection [46] to perform feature
selection. The Fisher-Markov Selector is a typical filter
method. It uses Markov random fields to achieve the
exact global optimization in calculating the correlation
coefficients between features and labels. The output of
Fisher-Markov Selector is a list of ranked features ac-
cording to the calculated coefficients. Next, Sequential
Backward Selection strategy is introduced by iteratively
removing the least irrelevant features. A feature will
never be considered once it is eliminated. The iteration
stops until the elimination of features cannot achieve
better results. At that time, the remaining features con-
struct the optimal feature subsets.

Model construction and performance evaluation
Support vector machine (SVM) [47] has been proved to
be a powerful machine learning algorithms [48]. It is
widely used to construct prediction model in predicting
protein structures and functions [12, 27, 49]. In this
study, we use LIBSVM (version 3.20) [50] to train model
and perform the prediction. The radial biases function is
used as the kernel function and the grid search is
adopted to find the optimal parameters and optimize
SVM model. Shown in Fig. 2 is the flowchart of our pro-
posed method.
We assess our method using two statistical methods,

namely k-fold cross-validation and the independent test.
For the k-fold cross-validation, the samples in training
dataset are divided into k equal subsets. In each iter-
ation, k-1 subsets are used as training data to train the
model and the remaining one is used as the validation
data to test the model. This procedure repeats k times,
and the final performance is measured by averaging the
results of k iterations. For the independent test, the

Fig. 2 The flowchart of the proposed method
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samples in the testing dataset are independent from
those in the training dataset. The model that trained in
the training dataset is used to predict testing datasets. In
this study, the binary-based criteria, including accuracy,
sensitivity, specificity and Matthew’s Correlation Coeffi-
cients (MCC) are used to evaluate the methods which
output binary predictions.

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð4Þ

Sensitivity ¼ TP
TP þ FN

ð5Þ

Specificity ¼ TN
TN þ FP

ð6Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TN þ FNð Þ TP þ FNð Þ TN þ FPð Þp

ð7Þ

where TP, TN, FP, FN indicate the true positives (cor-
rectly predicted as BLPs), true negatives (correctly pre-
dicted as non-BLPs), false positives (incorrectly
predicted as BLPs) and false negatives (incorrectly pre-
dicted as non-BLPs), respectively. In the case that the
prediction probability is available, we introduce score-
based metric for assessing the methods that produce
predicted propensities. Similar to other methods, we also
report AUC values, which stands for the area under the
ROC (Receiver Operating Characteristic) curve.

Results and discussion
The characteristics of the extracted features
In this work, we construct the feature space based on
multiple types of features including AAC, DC, MTF and
PCP. Before putting them into operation, we examine
their characteristics on BLPs and non-BLPs.
To investigate the amino acid preference of BLPs, we

calculate the features of AAC for BLPs and non-BLPs re-
spectively. Illustrated in Fig. 3 is the relative amino acid
composition of BLPs against non-BLPs in four datasets.
Generally, compared with the non-BLPs, BLPs are
enriched with charged residues. This phenomenon keeps
consistent in bacteria and archaea BLPs. Moreover, bac-
teria BLPs are enriched with buried and depleted with
acidic amino acids; eukaryota BLPs are enriched with ali-
phatic and aromatic amino acids; and archaea BLPs are
enriched with acyclic and cyclic amino acids and de-
pleted with aliphatic amino acids. We also find that the
relative differences on eukaryota BLPs against non-BLPs
are relative lower than those on bacteria and archaea
BLPs. Detailed data of their values is provided in Add-
itional file 1: Table A2. We empirically demonstrate that
amino acid compositions with relative difference higher
than 0.25% are discriminatory.
Illustrated in Fig. 4 is the relative dipeptide compos-

ition of BLPs against that of non-BLPs in four datasets.
Red block indicates the discriminatory enriched dipep-
tides, while green one represents the opposite. The dee-
per the color is, the more significant the enrichment/
depletion is. Generally, BLPs show high preference with
A-, R-, P- and G-related dipeptide, which keeps

Fig. 3 The relative amino acid composition of BLPs against non-BLPs on four datasets
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consistent with those in bacteria and archaea BLPs. For
general BLPs, the ‘A-A’, ‘A-R’, ‘R-A’ and ‘R-L’ dipeptides
show over-represented than normal level. In eukaryota
BLPs, I- and G-related dipeptides are more favored.
Moreover, the K-related dipeptides are under-
represented on both C-terminal and N-terminal side in
general BLPs and three lineages of BLPs. The motifs can
also be used to further discriminate various lineages.
Table 1 lists the top 10 selected motifs according to

the descending order of DIG values, which mathematic-
ally indicate the relative distinguish capability of various
motifs. The higher the DIG value is, the more quantified
difference the motif exists in BLPs against non-BLPs.
Illustrated in Fig. 5 are the median based box plots for

the considered nine physicochemical properties. We no-
tice that the variability of these properties in BLPs is
overall much lower than that for non-BLPs. For instance,
the values of polarity, positively charge and flexibility in
general BLPs are less volatile than those in non-BLPs.
This phenomenon keeps consensus in three lineage-

specific datasets. Additionally, eukaryota BLPs are
more flexible than bacteria and archaea BLPs. O’Brien
et al. pointed out that broad dynamic range and
stable signals in eukaryota BLPs are the reasons for
the increased flexibility [51].

The study on the direct feature combination
From the perspective of machine learning, the com-
bination of various types of features usually produces
better performance than individual features do. There-
fore, we test the effectiveness of individual features as
well as different combinations of features. Hereby, we
adopt five-fold cross-validation on the training data-
set. The final results are reported by calculating the
average value and standard deviations of five
experiments.
As shown in Table 2, four types of features all give

out promising prediction results. The features of DC
produce the highest MCC (0.650 ± 0.029) and AUC
(0.830 ± 0.016) among four individual features.

Fig. 4 The relative dipeptide composition of BLPs against that of non-BLPs in four datasets. The x-axis indicates the amino acids which are
cleaved on the C-terminal side; while y-axis stands for the N-terminal side. Detailed data of their values is provided in Additional file 1:
Tables A3-A6

Zhang et al. BMC Bioinformatics  (2017) 18:294 Page 6 of 13



Generally, the combination of two types of features
shows higher accuracy of prediction, which is also
true for three when compared with two. The com-
bination of four types of features achieves the best
performance with MCC = 0.676 ± 0.010 and
AUC = 0.850 ± 0.006. This experiment proves the
effectiveness of proposed features, and further indi-
cates that the combination of different types of fea-
tures can produce a promising result. Similar
experiments on the other three training sets are pro-
vided in Additional file 1: Table A7.

The performance of feature selection scheme
Although the combination of different types of features
can improve the prediction accuracy, some noisy data
would be also added in the feature vector. Here, we de-
cide to select the optimal feature subset. As stated in
Feature selection strategy, we first use Fisher-Markov Se-
lector to calculate correlation coefficients of different

features (Additional file 1: Figure A1). Next, we adopt
Sequential Backward Selection strategy to select the op-
timal classifier and corresponding optimal feature subset.
Finally, we obtain 199 features on the general BLPs data-
set, and 174, 204 and 129 features on three lineages-
specific BLPs datasets respectively (Table 3). Based on
the optimal feature subset, the classifier on general BLPs
achieves the MCC of 0.698 ± 0.018 and AUC of
0.883 ± 0.007, which are 0.022 (or 3.3%) and 0.033 (or
3.9%) higher than that based on the complete features.
Three lineages-specific models also show similar in-
crease in the prediction accuracy.
In section “The characteristics of the extracted fea-

tures”, we detailedly characterize the intrinsic differences
across general BLPs, bacteria BLPs, eukaryota BLPs, ar-
chaea BLPs and non-BLPs. After that, we perform the
feature selection. Then the calculated optimal feature
subset (Additional file 1: Table A8) is used to train the
model. To check whether these differences are still kept

Fig. 5 Basal levels of selected physicochemical and biological properties in four datasets. Midline, box boundaries, and whiskers indicate median,
quartiles, and 10th and 90th percentiles. The x-axis indicates the normalized values; and y-axis stands for twelve properties. In this work, a
physicochemical property is empirically regarded to be discriminatory provided that the overlap of two boxes is less than 80% of either box

Table 1 Selected top 10 motifs according to the descending order of DIG values

Lineage: general Lineage: bacteria Lineage: eukaryota Lineage: archaea

Motif DIG Motif DIG Motif DIG Motif DIG

EHH 0.669 EHH 0.693 G-T-G-P 0.617 DGW 0.809

EH-H 0.627 LS-GR 0.675 SG-T-G 0.574 G-GW 0.800

L-S-GR 0.608 EH-H 0.644 GM-E 0.563 A-TLD 0.779

E-HH 0.607 L-S-GR 0.629 G-M-E 0.518 A-A-T-D 0.745

LS-G-R 0.588 E-HH 0.624 FVE 0.505 D-W-P 0.741

L-G-GR 0.579 L-G-GR 0.621 TGD 0.494 A-T-LD 0.733

E-H-H 0.561 LS-G-R 0.608 FD-I 0.489 A-TL-D 0.726

S-G-G-R 0.536 S-G-G-R 0.587 D-GY 0.479 D-GW 0.726

A-A-T-R 0.519 E-H-H 0.565 F-YG 0.461 GFD 0.704

L-S-G-R 0.515 A-A-T-R 0.542 F-M-G 0.460 DG-W 0.704
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after the feature selection, we further investigate the
composition of the optimal feature subset.
Figure 6 shows the overlap between the discriminatory

and selected useful features, respectively. Among the 12
discriminatory features within AAC, 6 (or 50%) are se-
lected in the optimal feature subset. More importantly, it
occupies 85.7% (6/7 = 85.7%) of the selected AAC. The
overlap is even higher for the features of DC, MTF and
PCP. We notice that all discriminatory features are suc-
cessfully selected during the feature selection procedure.
This suggests that the calculated differences could be
valuable in distinguishing BLPs from non-BLPs. The
Venn diagrams for three lineage-specific optimal subsets
are illustrated in Additional file 1: Figure A2. We see the
similar results from Additional file 1: Figure A2. Math-
ematically, the existent differences in the features help
the classifier to discriminate samples. That’s why the
fraction of overlap is as high as expected. In follow-up
experiments, we use the optimal feature subset to train
universal model or lineage-specific ones.

Comparison of lineage-specific scheme with traditional
universal approach
As stated in section “The characteristics of the extracted
features”, we find that BLPs in different lineages have
various attributes on our considered features. These
various attributes can be used to further improve the
prediction performance by introducing lineage-specific
scheme. Considering this, we design three lineage-
specific classifiers in addition to traditional universal
one. In this section, we evaluate the effectiveness of this
scheme.
Table 4 compares the performance between lineage-

specific models (PredBLP-B, PredBLP-E and PredBLP-
A) and universal models (PredBLP-U) on three train-
ing datasets. The lineage-specific models improve the
average AUC values of 0.048 ~ 0.136 (or
5.5% ~ 20.3%) when compared with universal ones.
We also notice that this scheme performs the best for
eukaryota BLPs, which corresponds to the investiga-
tion of the differences across various lineages. To

Table 2 The experimental results of various individual and combinative features on the training set for general BLPs

Type Feature Sensitivity Specificity Accuracy MCC AUC

Individual AACa 0.729 ± 0.029 0.806 ± 0.023 0.767 ± 0.020 0.537 ± 0.039 0.802 ± 0.012

DCb 0.791 ± 0.017 0.857 ± 0.028 0.824 ± 0.014 0.650 ± 0.029 0.830 ± 0.016

MTFc 0.313 ± 0.017 0.942 ± 0.012 0.628 ± 0.008 0.328 ± 0.018 0.653 ± 0.010

PCPd 0.452 ± 0.010 0.910 ± 0.026 0.681 ± 0.010 0.408 ± 0.029 0.763 ± 0.014

Combinative AAC + DC 0.799 ± 0.015 0.862 ± 0.026 0.830 ± 0.008 0.663 ± 0.018 0.841 ± 0.012

AAC + MTF 0.764 ± 0.016 0.801 ± 0.021 0.783 ± 0.005 0.566 ± 0.011 0.810 ± 0.007

AAC + PCP 0.728 ± 0.013 0.809 ± 0.013 0.768 ± 0.007 0.538 ± 0.015 0.813 ± 0.008

DC + MTF 0.799 ± 0.014 0.854 ± 0.008 0.826 ± 0.008 0.653 ± 0.015 0.836 ± 0.005

DC + PCP 0.775 ± 0.014 0.878 ± 0.020 0.827 ± 0.004 0.658 ± 0.009 0.841 ± 0.006

MTF + PCP 0.477 ± 0.010 0.917 ± 0.016 0.697 ± 0.004 0.440 ± 0.014 0.764 ± 0.020

AAC + DC + MTF 0.772 ± 0.007 0.888 ± 0.011 0.830 ± 0.008 0.665 ± 0.016 0.842 ± 0.006

AAC + DC + PCP 0.780 ± 0.007 0.880 ± 0.016 0.830 ± 0.009 0.663 ± 0.019 0.845 ± 0.009

AAC + MTF + PCP 0.742 ± 0.011 0.793 ± 0.004 0.767 ± 0.005 0.536 ± 0.010 0.816 ± 0.004

DC + MTF + PCP 0.775 ± 0.014 0.886 ± 0.025 0.830 ± 0.011 0.665 ± 0.023 0.845 ± 0.014

AAC + DC + MTF + PCP 0.770 ± 0.010 0.894 ± 0.014 0.836 ± 0.004 0.676 ± 0.010 0.850 ± 0.006

The results are reported by maximizing the MCC value of prediction on the corresponding dataset over five-fold cross-validation. a indicates the features of amino
acid composition; b stands for the features of dipeptide composition; c is the features of motifs; d represents the features of physicochemical properties

Table 3 The performance of optimum feature subsets on four training sets using five-fold cross-validation

Lineage Number Sensitivity Specificity Accuracy MCC AUC

General 199 0.732 ± 0.010 0.949 ± 0.022 0.841 ± 0.006 0.698 ± 0.018 0.883 ± 0.007

Bacteria 174 0.832 ± 0.012 0.943 ± 0.016 0.888 ± 0.006 0.780 ± 0.013 0.920 ± 0.010

Eukaryota 204 0.667 ± 0.053 0.833 ± 0.053 0.750 ± 0.026 0.510 ± 0.054 0.806 ± 0.015

Archaea 129 0.825 ± 0.061 0.900 ± 0.094 0.863 ± 0.047 0.733 ± 0.095 0.917 ± 0.019

The results are reported by maximizing the MCC value of prediction on the corresponding dataset
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sum up, the experimental results demonstrate the ef-
fectiveness of the lineage-specific scheme.

Comparison with other methods on Kandaswamy’s
training dataset
To test the robustness of our method as well as perform
fair evaluation with previous studies [11, 12, 15, 16, 19],
we also introduce Kandaswamy’s training dataset [11].
Next, we compare our method with BLProt [11], BLPre
[12], Fan’s method [13], SCMBLP [15], BLKnn [19] and
Nath’s method [16]. The results of these methods on
Kandaswamy’s training dataset are directly obtained
from their reports. Since the Kandaswamy’s training
dataset does not particularly annotate the lineage of
BLPs, we use the traditional universal approach to build
the prediction model (PredBLP-U). Since all these
methods use different way to under-sample Kandaswamy’s
dataset, the potential bias may exist in the process of sam-
pling. Considering this, we repeat the under-sampling

procedure for 10 times and report the corresponding aver-
age results.
As shown in Table 5, all methods produce good results

with sensitivity > 0.7, specificity > 0.9 and AUC > 0.85.
We notice that all methods achieve good predictions. It
should be noted that Kandaswamy et al. used CD-HIT
[18] to remove redundant proteins with more than 40%
sequence similarity. Actually, a common rule is that two
sequences are homologous if they are more than 30%
identical over their entire lengths [52]. The existence of
homology proteins results in a relative easy dataset for
each method. Our method also shows promising results
with sensitivity = 0.912 ± 0.014 and specifi-
city = 0.962 ± 0.017. PredBLP-U yields an AUC value of
0.968 ± 0.009, which is slightly lower than that of Nath’s
method. Among these considered predictors, Nath’s
method gives out the highest AUC of 0.991. Our
PredBLP-U achieves the highest MCC value
(0.849 ± 0.019) and second highest AUC value
(0.968 ± 0.009).

Comparison with other predictors on independent testing
datasets
In order to test the generalization capability of our
method, we further test PredBLP on four independent
testing sets including general BLPs and three lineages of
BLPs. Here, we compare our method with BLProt [11]
and SCMBLP [15] because the rest predictors were ei-
ther no longer maintained or unavailable. Meanwhile,
we also test the universal model and lineage-specific
models on three lineages of BLPs. First, we random
picked 80% BLPs and 80% non-BLPs from our independ-
ent dataset. Next, we use these proteins to evaluate
BLProt and SCMBLP. We repeat this procedure for 10
times to avoid potential bias in under sampling. Finally,
we calculate the statistic differences of MCC values be-
tween among the stat-of-art predictors.
Table 6 summarizes the prediction results of stat-of-

art predictors on independent datasets. Since BLProt
and SCMBLP were all constructed based on general
BLPs, we compare our universal model with these two

Table 4 Comparison of lineage-specific models with traditional universal models on three training sets using five-fold cross-validation

Lineage Model Sensitivity Specificity Accuracy MCC AUC

Bacteria PredBLP-U 0.790 ± 0.010 0.918 ± 0.014 0.854 ± 0.003 0.714 ± 0.007 0.872 ± 0.006

PredBLP-B 0.832 ± 0.012 0.943 ± 0.016 0.888 ± 0.006 0.780 ± 0.013 0.920 ± 0.010

Eukaryota PredBLP-U 0.417 ± 0.053 0.883 ± 0.041 0.650 ± 0.033 0.340 ± 0.075 0.670 ± 0.017

PredBLP-E 0.667 ± 0.053 0.833 ± 0.053 0.750 ± 0.026 0.510 ± 0.054 0.806 ± 0.015

Archaea PredBLP-U 0.750 ± 0.079 0.875 ± 0.079 0.813 ± 0.040 0.637 ± 0.081 0.868 ± 0.016

PredBLP-A 0.825 ± 0.061 0.900 ± 0.094 0.863 ± 0.047 0.733 ± 0.095 0.917 ± 0.019

The results are reported by maximizing the MCC values of prediction on the corresponding dataset over five-fold cross-validation. PredBLP-U stands for the universal
model of the proposed PredBLP predictor. PredBLP-B, PredBLP-E and PredBLP-A indicate three lineage-specific models (i.e. bacteria-, eukaryota- and archaea- specific
model) respectively

Fig. 6 Venn diagrams of the overlap (green zone) between the
discriminatory (orange pie) and selected useful features (blue pie) in
the optimal subset for each type of features. D indicates the
discriminatory features and s stands for selected useful features
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predictors. In general, our predictor produce promising
results with the mean AUC > 0.75. Moreover, three
lineage-specific predictors all outperform corresponding
universal ones, which empirically prove the effectiveness
of the lineage-specific scheme. These results prove the
good generalization capability of our method as well as
the effectiveness of using lineage-specific strategy. To
test if the improvement is statistically significant, we
firstly use Shapiro-Wilk test [53] to check whether the
data are normal. If it follows a normal distribution, we
use student’s t-test [54]; otherwise, we use Wilcoxon
signed-rank test [55]. A p-value less than 0.05 indicates
the difference is statistically significant. This experiment
demonstrates the improvement of our method is signifi-
cant when compared with other predictors. Additionally,
we are able to demonstrate our PredBLP significantly
outperform the other predictors.

Application to newly deposited BLPs in UniProt
The computational tools are often used to identify
unknown proteins in real-life. Considering this, we

collect BLPs that were deposited from August 2016
to February 2017 in UniProt. Next, we build four
types of datasets, including general BLPs together
with bacteria, eukaryota, and archaea BLPs. We ran-
dom pick 80% BLPs as the testing dataset and repeat
this procedure for 10 times as stated in section
“Comparison with other predictors on independent
testing datasets”. Here, we compare our webserver
PredBLP with BLProt and SCMBLP. To achieve a fair
comparison, we use the default parameters for these
three predictors.
As listed in Table 7, for general BLPs, the proposed

PredBLP-U correctly identify about 90% BLPs, which
is 10% more than that for SCMBLP and BLProt. The
p-value indicates the improvement is statistically sig-
nificant. We see the similar results for bacteria BLPs
and archaea BLPs. Especially, the lineage-special
models all perform better results than that of the
universal model. Both SCMBLP and PredBLP
recognize more than 95% of archaea BLPs. However,
although the lineage-specific model gives out higher

Table 5 Comparison of the proposed PredBLP-U with previous methods on Kandaswamy’s training dataset

Method Sensitivity Specificity Accuracy MCC AUC

BLProt [11] 0.745 0.842 0.801 0.590 0.870

BLPre [12] 0.793 0.910 0.852 N/A 0.920

Fan’s method [13] 0.883 0.927 0.905 0.810 0.950

SCMBLP [15] 0.897 0.920 0.908 N/A N/A

BLKnn [19] 0.749 0.955 0.852 0.719 N/A

Nath’s method [16] 0.964 0.942 0.954 N/A 0.991

PredBLP-U 0.912 ± 0.014 0.962 ± 0.017 0.937 ± 0.009 0.875 ± 0.018 0.968 ± 0.009

Table 6 Comparison of PredBLP with other methods on the independent testing dataset

Lineage Predictor Sensitivity Specificity Accuracy MCC AUC p-value

General BLProt 0.348 ± 0.022 0.903 ± 0.007 0.888 ± 0.007 0.132 ± 0.006 0.672 ± 0.010 0.002

SCMBLP 0.471 ± 0.019 0.868 ± 0.008 0.858 ± 0.007 0.157 ± 0.004 N/A 0.002

PredBLP-U 0.611 ± 0.013 0.921 ± 0.005 0.913 ± 0.004 0.294 ± 0.007 0.784 ± 0.007 N/A

Bacteria BLProt 0.584 ± 0.020 0.769 ± 0.011 0.788 ± 0.010 0.166 ± 0.008 0.674 ± 0.008 0.002

SCMBLP 0.569 ± 0.021 0.840 ± 0.013 0.831 ± 0.012 0.194 ± 0.005 N/A 0.002

PredBLP-U 0.606 ± 0.015 0.909 ± 0.010 0.899 ± 0.009 0.299 ± 0.013 0.773 ± 0.009 0.002

PredBLP-B 0.638 ± 0.017 0.927 ± 0.008 0.917 ± 0.007 0.352 ± 0.012 0.817 N/A

Eukaryota BLProt 0.417 ± 0.037 0.966 ± 0.010 0.960 ± 0.010 0.212 ± 0.018 0.719 ± 0.016 0.002

SCMBLP 0.667 ± 0.053 0.914 ± 0.014 0.912 ± 0.013 0.209 ± 0.009 N/A 0.002

PredBLP-U 0.642 ± 0.038 0.954 ± 0.007 0.951 ± 0.006 0.279 ± 0.011 0.765 ± 0.007 0.004

PredBLP-E 0.750 ± 0.037 0.946 ± 0.006 0.944 ± 0.005 0.301 ± 0.010 0.836 ± 0.006 N/A

Archaea BLProt 0.583 ± 0.057 0.842 ± 0.016 0.838 ± 0.015 0.120 ± 0.010 0.666 ± 0.007 0.002

SCMBLP 0.550 ± 0.061 0.883 ± 0.013 0.878 ± 0.012 0.154 ± 0.019 N/A 0.002

PredBLP-U 0.775 ± 0.050 0.893 ± 0.014 0.891 ± 0.013 0.244 ± 0.012 0.751 ± 0.010 0.002

PredBLP-A 0.750 ± 0.056 0.922 ± 0.012 0.920 ± 0.011 0.279 ± 0.012 0.789 ± 0.010 N/A
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results, the improvements are not statistically signifi-
cant than that of universal model. The limited num-
ber of archaea BLPs could be the reason that
account for this.

Conclusion
In this study, we propose a novel predictor for the
identification of BLPs by using sequence-derived fea-
tures and lineage-specific scheme. Experiment on
benchmark datasets proves the robustness and effect-
iveness of our method. We ascribe the good perform-
ance of the proposed method to three aspects. First,
we collect the features which are capable to reflect
the intrinsic properties of BLPs against non-BLPs.
These features are also capable to distinguish various
lineages of BLPs. Second, the effectiveness of the fea-
ture selection procedure. We successfully select the
majority of the informative features as well as remove
noisy features. Third, the introduction of lineage-
specific strategy, which is proved to be more powerful
than traditional universal approaches. Actually, the
lineage-specific strategy is firstly introduced in this
field. It is featured by characterizing the BLPs in a
more specific way. The prediction performance on in-
dependent testing dataset and newly deposited BLPs
in UniProt demonstrates that our method has a good
generalization capability and is capable to exceed
many state-of-art methods. Additionally, we empiric-
ally show that our predictor would be competitive
when compared with currently public predictors.
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Table 7 Comparison of PredBLP with other methods on newly
deposited BLPs

Lineage Number of newly
deposited BLPs

Predictor Fraction of correctly
identified BLPs

p-value

General 3741 BLProt 0.621 ± 0.013 0.002

SCMBLP 0.792 ± 0.012 0.002

PredBLP-U 0.889 ± 0.016 N/A

Bacteria 3614 BLProt 0.625 ± 0.022 0.002

SCMBLP 0.795 ± 0.016 0.002

PredBLP-U 0.887 ± 0.016 0.037

PredBLP-B 0.912 ± 0.015 N/A

Eukaryota 106 BLProt 0.841 ± 0.041 0.002

SCMBLP 0.908 ± 0.032 0.002

PredBLP-U 0.651 ± 0.031 0.002

PredBLP-E 0.983 ± 0.013 N/A

Archaea 21 BLProt 0.497 ± 0.046 0.002

SCMBLP 0.954 ± 0.024 0.031

PredBLP-U 0.980 ± 0.029 0.625

PredBLP-A 0.993 ± 0.024 N/A
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