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Abstract

Background: Central to protein biology is the understanding of how structural elements give rise to observed
function. The surfeit of protein structural data enables development of computational methods to systematically
derive rules governing structural-functional relationships. However, performance of these methods depends critically
on the choice of protein structural representation. Most current methods rely on features that are manually selected
based on knowledge about protein structures. These are often general-purpose but not optimized for the specific
application of interest.
In this paper, we present a general framework that applies 3D convolutional neural network (3DCNN) technology
to structure-based protein analysis. The framework automatically extracts task-specific features from the raw
atom distribution, driven by supervised labels. As a pilot study, we use our network to analyze local protein
microenvironments surrounding the 20 amino acids, and predict the amino acids most compatible with
environments within a protein structure. To further validate the power of our method, we construct two
amino acid substitution matrices from the prediction statistics and use them to predict effects of mutations
in T4 lysozyme structures.

Results: Our deep 3DCNN achieves a two-fold increase in prediction accuracy compared to models that employ
conventional hand-engineered features and successfully recapitulates known information about similar and
different microenvironments. Models built from our predictions and substitution matrices achieve an 85%
accuracy predicting outcomes of the T4 lysozyme mutation variants. Our substitution matrices contain rich
information relevant to mutation analysis compared to well-established substitution matrices. Finally, we present
a visualization method to inspect the individual contributions of each atom to the classification decisions.

Conclusions: End-to-end trained deep learning networks consistently outperform methods using hand-engineered
features, suggesting that the 3DCNN framework is well suited for analysis of protein microenvironments and may be
useful for other protein structural analyses.

Keywords: Protein structural analysis, Amino acid similarities, Mutation analysis, Structural bioinformatics, Convolutional
neural network, Deep learning

Background
Protein sites are microenvironments within a protein
structure, distinguished by their structural or functional
role. A site can be defined by a three-dimensional location
and a local neighborhood around this location in which
the structure or function exists. Central to rational protein
engineering is the understanding of how the structural

arrangement of amino acids creates functional characteris-
tics within protein sites.
Determination of the structural and functional roles of

individual amino acids within a protein provides informa-
tion to help engineer and alter protein functions. Identify-
ing functionally or structurally important amino acids
allows focused engineering efforts such as site-directed
mutagenesis for altering targeted protein functional prop-
erties [1]. Alternatively, this knowledge can help avoid en-
gineering designs that would abolish a desired function.
Traditionally, experimental mutation analysis is used to
determine the effect of changing individual amino acids.
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For example, in Alanine scanning, each amino acid in a
protein is mutated into Alanine, and the corresponding
function or structural effects recorded to identify the
amino acids that are critical [2]. This technique is often
used in protein-protein interaction hot spot detection for
identifying potential interacting residues [3]. However,
these experimental approaches are time-consuming and
labor-intensive. Furthermore, there is no information
about which amino acids would be tolerated at these
positions.
The increase in protein structural data provides an

opportunity to systematically study the underlying pat-
tern governing such relationships using data-driven ap-
proaches. A fundamental aspect of any computational
protein analysis is how protein structural information is
represented [4, 5]. The performance of machine learn-
ing methods often depends more on the choice of data
representation than the machine learning algorithm
employed. Good representations efficiently capture the
most critical information while poor representations
create a noisy distribution with no underlying patterns.
Most methods rely on features that have been manually

selected based on understanding sources of protein stabil-
ity and chemical composition. For example, property-
based representations describe physicochemical properties
associated with local protein environments in protein
structures using biochemical features of different level of
details [6–9]. Zvelebil et al. have shown that properties in-
cluding residue type, mobility, polarity, and sequence con-
servation are useful to characterize the neighborhood of
catalytic residues [9]. The FEATURE program [6], devel-
oped by our group, represents protein microenvironments
using 80 physicochemical properties. FEATURE divides
the local environment around a point of interest into six
concentric shells, each of 1.25 Å in thickness, and evalu-
ates the 80 physicochemical properties within each shell.
The properties range from low-level features such as atom
type or the presence of residues to higher-level features
such as secondary structure, hydrophobicity and solvent
accessibility. We have applied the FEATURE program to
different important biological problems, including the
identification of functional sites [10], characterization of
protein pockets [11], and prediction of interactions
between protein pockets and small molecules [12], with
success.
However, designing hand-engineered features is labor-

intensive, time-consuming, and not optimal for some
tasks. For example, although robust and useful, the FEA-
TURE program has several limitations [6, 11, 13]. To
begin with, each biological question depends on different
sets of protein properties and no single set encodes all the
critical information for each application. Second, FEA-
TURE employs 80 physiochemical features with different
level of details; some attributes have discrete values, while

others are real valued. The high dimensionality together
with the inhomogeneity among the attributes can be chal-
lenging for machine learning algorithms [14]. Finally,
FEATURE use concentric shells to describe local microen-
vironments. The statistics of biochemical features within
each shell are collected but information about the relative
position within each shell is lost. The system is therefore
rotational invariant but can fail in cases where orientation
specific interactions are crucial.
The surfeit of protein structures [15] and the recent

success of deep learning algorithms provide an oppor-
tunity to develop tools for automatically extracting task
specific representations of protein structures. Deep
learning networks have achieved great success in com-
puter vision and natural language processing commu-
nity [16–19], and have been used in small molecule
representation [20, 21], transcription factor binding
prediction [22], prediction of chromatin effects of se-
quence alterations [23], and prediction of patient out-
come from electronic health records [24]. The power of
deep learning lies in its ability to extract useful features
from raw data form [16]. Deep convolutional neural
networks (CNN) [17, 25] comprise a subclass of deep
learning networks. Local filters in CNNs scan through
the input space and search for recurring local patterns
that are useful for classification performance. By stack-
ing multiple CNN layers, deep CNNs hierarchically
compose simple local spatial features into complex fea-
tures. Biochemical interactions occur locally, and can
be aggregated over space to form complicated and ab-
stract interactions. The success of CNNs at extracting
features from 2D images suggests that the convolution
concept can be extended to 3D and applied to proteins
represented as 3D “images”. In fact, Wallach et al. [26]
applied 3D convolutional neural networks to protein-
small molecule bioactivity predictions and showed that
performances of deep learning framework surpass con-
ventional docking algorithms.
In this paper, we develop a general framework that

applies 3D convolutional neural networks for protein
structural analysis. The strength of our method lies in
its ability to automatically extract task-specific fea-
tures, driven by supervised labels that define the
classification goal. Importantly, unlike conventional
engineered biochemical descriptors, our 3DCNN re-
quires neither prior knowledge nor assumptions about
the features critical to the problem. Protein microenvi-
ronments are represented as four atom “channels”
(analogous to red, green, blue channels in images) in a
20 Å box around a central location within a protein
microenvironment. The algorithm is not dependent on
pre-specified features and can discover arbitrary features
that are most useful for solving the problem of interest.
To demonstrate the utility of our framework, we applied
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the system to characterize microenvironments of the 20
amino acids. Specifically, we present the following:

(1)To study how the 20 amino acids interact with
their neighboring microenvironment, we train our
network to predict the amino acids most compatible
with a specific location within a protein structure.
We perform head-to-head comparisons of prediction
performance between our 3DCNN and models using
the FEATURE descriptors and show that out 3DCNN
achieved superior performances over models using
conventional features.

(2)We demonstrate that the features captured by our
network are useful for protein engineering applications.
We apply results of our network to predicting effects of
mutations in T4 lysozyme structures. We evaluate the
extent to which an amino acid “fits” its surrounding
protein environment and show that mutations that
disrupt strong amino acid preferences are more likely
to be deleterious. The prediction statistics over millions
of training and test examples provide information
about the propensity of each amino acid to be
substituted for another.We therefore construct two
substitution matrices from the prediction statistics and
combine information from the class predictions and
the substitution matrices to predict effects of mutation
in T4 lysozyme structures.

(3)We present a new visualization technique, “atom
importance map”, to inspect individual contribution
of each atom within the input example to the final
decision. The importance map helps us intuitively
visualize the features our network has captured.
Our 3DCNN achieves a two-fold increase in
microenvironments prediction accuracies compared
to models that employ conventional structure-based
hand-engineered biochemical features. Hierarchical
clustering of our amino acid prediction statistics
confirms that our network successfully recapitulates
hierarchical similarities and differences among the
20 amino acid microenvironments. When used to
predict effects of mutations in T4 lysozyme structures,
our models demonstrate strong ability to predict
outcomes of the mutation variants, with 85% accuracy
to separate the destabilizing mutations from the
neutral ones. We show that substitution matrices
built from our prediction statistics encode rich
information relevant to mutation analysis. When no
structural information is provided, models built from
our matrices on average outperform the ones built
from BLOSUM62 [27], PAM250 [28] and WAC [29]
by 25.4%. Furthermore, given the wild type structure,
our network predictions enable the BLOSUM62,
PAM250 and WAC models to achieve an average
35.8% increase in prediction accuracies. Finally, the

atom input importance visualization confirms that
our network recognizes meaningful biochemical
interactions between amino acids.

Methods
Datasets
T4-lysozyme free, protein-family-based training and test
protein structure sets
For the 20 amino acid microenvironment classification
problem, we construct our dataset based on the SCOP
[30] and ASTRAL [31] classification framework (version
1.75.) To avoid prediction biases derived from similar
proteins within the same protein families, we ensure that
no structure in the training set belongs to the same pro-
tein family as any structure in the test set. Specifically,
we first retrieved representative SCOP domains from the
ASTRAL database. We excluded multi-chain domains,
and identified protein families of the representative do-
mains using the SCOP classification framework, result-
ing in 3890 protein families. We randomly selected 5 %
of the identified protein families (194 protein families)
from the 3890 protein families to form the test family
set—with the remaining 3696 protein families forming
the training family set. Member domains of a given pro-
tein family were either entirely assigned to training set
or entirely assigned to test set. In addition, we removed
PDB-IDs present in both the training and test sets to
ensure there was no test chain in a family that was used
in training. To enforce strict sequence level similarity
criteria between our training and test set, we used CD-
HIT-2D [32] to identify any test chain that has a se-
quence similarity above 40% to any chain in the training
structure set, and removed the identified structures from
the test set.
Furthermore, to obtain fair evaluation of our down-

stream application that characterizes T4 lysozyme mu-
tant structures, we removed T4 lysozyme structures
from both datasets. Specifically, PDB-IDs of the wild-
type and mutant T4 lysozyme structures were first
obtained from the Uniprot [33] database. We then ex-
cluded structures containing domains in the same fam-
ily as any wild type or mutant T4 lysozyme structure
from both the training and test datasets. We obtained
the final selected protein structures from the PDB as of
date Oct 19 2016.

Input Featurization and processing
To facilitate comparison between deep learning and con-
ventional algorithms built with hand-engineered biochem-
ical features, we created two datasets from the same train
and test protein structure sets described in T4-lysozyme
Free, Protein-Family-Based Training and Test Protein
Structure Sets section.
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(A) Atom-Channel Dataset
Local box extraction and labeling
For each structure in the training and test structure
sets, we placed a 3D grid with 10 Å spacing to sample
positions in the protein for local box extraction. Specif-
ically, we first identify the minimum Cartesian x, y and
z coordinates of the structure, and define the (xmin,
ymin, zmin) position as the origin of our 3D grid. We
then construct a 3D grid with 10 Å spacing that covers
the whole structure (Fig. 1a.) For each sampled pos-
ition, a local box is extracted using the following pro-
cedure: The nearest atom to the sampled position is
first identified (Fig. 1b) and the amino acid which this
atom belongs to is assigned as the central amino acid
(Fig. 1c). To achieve consistent orientation, each box is
aligned within the box in a standard manner using the
backbone geometry of the center amino acid (Fig. 1d).
Specifically, each box is oriented such that the plane
formed by the N-CA and the C-CA bonds forms the x-
y plane and the orthogonal orientation with which the
CA- Cβ bond has a positive dot product serves as the
positive z-axis (Fig. 1e). A 20 Å box is then extracted
around the Cβ atom of the central amino acid using the
defined orientation (Fig. 1f ). We chose the Cβ atom of
each amino acid as center to maximize the observable
effects of the side chain while still maintaining a com-
parable site across all 20 amino acids. The Cβ atom
position of Glycine was estimated based on the average
position of the superimposed Cβ atoms from all other
amino acids. Side-chain atoms of the center amino acid

are removed. The extracted box is then labeled with the
removed amino acid side-chain type (Fig. 1g).

Local box Featurization
Each local 20 Å box is further divided into 1-Å 3D
voxels, within which the presence of carbon, oxygen,
sulfur, and nitrogen atoms are recorded in a correspond-
ing atom type channel (Fig. 2.) Although including the
hydrogen atoms would provide more information, we
did not include them because their positions are almost
always deterministically set by the position of the other
heavy atoms, and so they are implicitly represented in
our networks (and many other computational represen-
tations). We believe that our model is able to infer the
impact of these implicit hydrogens. The 1-Å voxel size
ensures that each voxel can only accommodate a single
atom, which could allow our network to achieve better
spatial resolution. Given an atom within a voxel, one of
the four atom channel types will have a value of 1 in the
corresponding voxel position, and the other three chan-
nels will have the value 0.
We then apply Gaussian filters to the discrete

counts to approximate atom connectivity and electron
delocalization. Standard deviation of the Gaussian fil-
ters is calibrated to the average Van der Waals radii
of the four atom types. The local box extraction and
featurization steps are performed on both the training
and test protein structure sets to form the training
and test dataset.

Fig. 1 Local box sampling and extraction. a For each structure in the training and test structure sets, we placed a 3D grid with 10 Å spacing to
sample positions in the protein for local box extraction. The teal spheres represent the sampled grid positions. (For illustration purpose, a grid size
of 25 Å instead of 10 Å is shown here). b For each sampled position, the nearest atom (pink sphere) to the sampled position (teal sphere) is first
identified. c The amino acid which this atom belongs to is then assigned as the central amino acid. The selected amino acids are highlighted in
red and the atoms are shown as dotted spheres. d A local box of 20 Å is then defined around the central amino acid, centering on the Cβ. For
each amino acid microenvironment, a local box is extracted around the amino acid using the following procedure: e Backbone atoms of the
center amino acid is first used to calculate the orthogonal axes for box extraction. f A 20 Å box is extracted around the Cβ atom of the center
amino acid using the defined orientation. g Side-chain atoms of the center amino acid are removed. The extracted box is then labeled with the
removed amino acid side-chain type
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Dataset balancing
Different amino acids have strikingly different fre-
quencies of occurrence within natural proteins. To
ensure useful features can be extracted from all the
20 amino acid microenvironment types, we construct
balanced training and test datasets by applying the
following procedure to the training and test dataset:
(1) The least abundant amino acid microenvironment
in the original dataset is first identified. (2) All exam-
ples of the identified amino acid microenvironment
type are included in the balanced dataset. (3) The
number of examples for the least abundant amino
acid microenvironment is used to randomly sample
an equal amount of examples from all the other 19
amino acid microenvironment types. Validation exam-
ples are randomly drawn from the balanced training
set using a 1:19 ratio. This ensures an approximately
equal number of examples from all the 20 amino acid
microenvironment types for the balanced training,
validation and test datasets.

Data normalization
Prior to being fed into the deep learning network, input
examples are zero-mean normalized. Specifically, mean

values of each channel at each position across the training
dataset are calculated and subtracted from the training,
validation, and test examples.

(B) FEATURE Dataset
FEATURE microenvironments
FEATURE, a software program previously developed in
our lab, is used as a baseline method to demonstrate the
performance of conventional hand-engineered structure-
based features [6]. The FEATURE program captures the
physicochemical information around a point of interest in
protein structure by segmenting the local environment into
six concentric shells, each of 1.25 Å in thickness (Fig. 3).
Within each shell, FEATURE evaluates 80 physicochemical
properties including atom type, residue class, hydrophobi-
city, and secondary structure (See Table 1 for a full list of
the properties). This enables conversion of a local structural
environment into a numeric vector of length 480.

Dataset construction
Following a similar sampling procedure described in
(A) Atom-Channel Dataset section, we placed a 3D grid
with 10 Å spacing to sample positions for featurization
in each structure in the training and test structure sets

Fig. 2 Local box featurization. a Local structure in each 20 Å box is first decomposed into Oxygen, Carbon, Nitrogen, and Sulfur channels. b Each
atom type channel structure is divided into 3D 1-Å voxels, within which the presence of atom of the corresponding atom type is recorded. Within
each channel, Gaussian filters are applied to the discrete counts to approximate the atom connectivity and electron delocalization. c The resulting
numerical 3D matrices of each atom type channel are then stacked together as different input channels, resulting in a (4, 20, 20, 20) 4D–tensor, which
will serve as an input example to our 3DCNN
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(Fig. 1a), where the 3D grid is constructed using the
same procedure as in (A) Atom-Channel Dataset section.
For each sampled position within a structure, the center
residue is determined by identifying the nearest residue
(Fig. 1b and c). A modified structure with the center resi-
due removed from the original structure is subsequently
generated. The FEATURE software is then applied to the
modified structure, using the Cβ atom position of the cen-
tral residue, and generates a feature vector of length 480
to characterize the microenvironment. The generated
training and test datasets are similarly balanced and zero-
mean normalized, as described in (A) Atom-Channel
Dataset section. Validation examples were randomly
drawn from the balanced training set using a 1:19 ratio.

Network architecture
To perform head-to-head comparisons between end-to-
end trained deep learning framework that takes in raw
input representations and machine learning models that
are built on top of conventional hand-engineered fea-
tures, we design the following two models: (A) Deep 3D
Convolutional Neural Network (B) FEATURE Softmax
Classifier. Both models comprise three component mod-
ules: (1) Feature Extraction Stage (2) Information Inte-
gration Stage (3) Classification Stage, as shown in Fig. 4.
To evaluate the advantages of using a Deep Convolu-
tional Architecture versus a simple flat neural network,
we also built a third model (C) Multi-Layer Perceptron
with 2 hidden layers.

(A) Deep 3D Convolutional neural network
Our deep 3D convolutional neural network is composed
of the following modules: (1) 3D Convolutional Layer (2)
3D Max Pooling Layer [34] (3) Fully Connected Layer (4)
Softmax Classifier [35]. In brief, our network begins with
three sequential alternating 3D convolutional layers and
3D max pooling layers, which extract 3D biochemical
features at different spatial scales, followed by two fully-
connected layers which integrate information from the

pooled response across the whole input box, and ends
with a Softmax classifier layer, which calculates class
scores and class probability of each of the 20 amino acid
classes. Schematic diagram of the network architecture is
shown in Fig. 4. The operation and function of each
module are briefly described below. All modules in the
network were implemented in Theano [36].

� 3D Convolutional Layer
The 3D Convolution layer consists of a set of
learnable 3D filters, each of which has small local
receptive field that extends across all input
channels. During the forward pass, each filter
moves across the width, height and depth of the
input space with a fixed stride, convolves with its
local receptive field at each position and generate
filter responses. The rectified linear (ReLU) [37]
activation function consecutively performs a non-
linear transformation on the filter responses to
generate the activation values. More formally, the
activation value aLi;j;k at output position (i,j,k) of
the Lth filter when convolving with the input X
can be calculated by Eqs. (1) and (2).

aLi;j;k ¼ ReLU

�Xiþ F−1ð Þ
m¼i

Xjþ F−1ð Þ
n¼j

Xkþ F−1ð Þ
d¼kXC−1

c¼0
Wc;m;n;d

L
Xc;m;n;d þ bL

� ð1Þ

ReLU ¼ x; if x ≥0
0; if x < 0

�
ð2Þ

Where F is the filter size, assuming the filter has equal
width, height and depth, C is the number of input chan-
nels, W is a weight matrix with size (C,F,F,F), X is the

Fig. 3 The FEATURE program. FEATURE captures the physicochemical information around a point of interest in protein structure by segmenting
the local environment into six concentric shells, each of 1.25 Å in thickness. Within each shell, FEATURE evaluates 80 physicochemical properties
including atom type, residue class, hydrophobicity, and secondary structure. This enables conversion of a local structural environment into a numeric
vector of length 480
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input, i, j, k are the indices of the output position, and m,
n, d are the indices of the input position.
Our 3D Convolution module takes in a 5D–tensor of

shape [batch size, number of input channels, input width,

input height, input depth], convolves the 5D–tensor with
3D filters of shape [number of input channels, filter width,
filter height, filter depth] with stride 1, and outputs a 5D-
tensor of shape [batch size, number of 3D filters, (input

Table 1 Full list of the 80 biochemical properties used in the FEATURE program

1 ATOM_TYPE_IS_C 41 RESIDUE_NAME_IS_GLU

2 ATOM_TYPE_IS_CT 42 RESIDUE_NAME_IS_GLY

3 ATOM_TYPE_IS_CA 43 RESIDUE_NAME_IS_HIS

4 ATOM_TYPE_IS_N 44 RESIDUE_NAME_IS_ILE

5 ATOM_TYPE_IS_N2 45 RESIDUE_NAME_IS_LEU

6 ATOM_TYPE_IS_N3 46 RESIDUE_NAME_IS_LYS

7 ATOM_TYPE_IS_NA 47 RESIDUE_NAME_IS_MET

8 ATOM_TYPE_IS_O 48 RESIDUE_NAME_IS_PHE

9 ATOM_TYPE_IS_O2 49 RESIDUE_NAME_IS_PRO

10 ATOM_TYPE_IS_OH 50 RESIDUE_NAME_IS_SER

11 ATOM_TYPE_IS_S 51 RESIDUE_NAME_IS_THR

12 ATOM_TYPE_IS_SH 52 RESIDUE_NAME_IS_TRP

13 ATOM_TYPE_IS_OTHER 53 RESIDUE_NAME_IS_TYR

14 PARTIAL_CHARGE 54 RESIDUE_NAME_IS_VAL

15 ELEMENT_IS_ANY 55 RESIDUE_NAME_IS_HOH

16 ELEMENT_IS_C 56 RESIDUE_NAME_IS_OTHER

17 ELEMENT_IS_N 57 RESIDUE_CLASS1_IS_HYDROPHOBIC

18 ELEMENT_IS_O 58 RESIDUE_CLASS1_IS_CHARGED

19 ELEMENT_IS_S 59 RESIDUE_CLASS1_IS_POLAR

20 ELEMENT_IS_OTHER 60 RESIDUE_CLASS1_IS_UNKNOWN

21 HYDROXYL 61 RESIDUE_CLASS2_IS_NONPOLAR

22 AMIDE 62 RESIDUE_CLASS2_IS_POLAR

23 AMINE 63 RESIDUE_CLASS2_IS_BASIC

24 CARBONYL 64 RESIDUE_CLASS2_IS_ACIDIC

25 RING_SYSTEM 65 RESIDUE_CLASS2_IS_UNKNOWN

26 PEPTIDE 66 SECONDARY_STRUCTURE1_IS_3HELIX

27 VDW_VOLUME 67 SECONDARY_STRUCTURE1_IS_4HELIX

28 CHARGE 68 SECONDARY_STRUCTURE1_IS_5HELIX

29 NEG_CHARGE 69 SECONDARY_STRUCTURE1_IS_BRIDGE

30 POS_CHARGE 70 SECONDARY_STRUCTURE1_IS_STRAND

31 CHARGE_WITH_HIS 71 SECONDARY_STRUCTURE1_IS_TURN

32 HYDROPHOBICITY 72 SECONDARY_STRUCTURE1_IS_BEND

33 MOBILITY 73 SECONDARY_STRUCTURE1_IS_COIL

34 SOLVENT_ACCESSIBILITY 74 SECONDARY_STRUCTURE1_IS_HET

35 RESIDUE_NAME_IS_ALA 75 SECONDARY_STRUCTURE1_IS_UNKNOWN

36 RESIDUE_NAME_IS_ARG 76 SECONDARY_STRUCTURE2_IS_HELIX

37 RESIDUE_NAME_IS_ASN 77 SECONDARY_STRUCTURE2_IS_BETA

38 RESIDUE_NAME_IS_ASP 78 SECONDARY_STRUCTURE2_IS_COIL

39 RESIDUE_NAME_IS_CYS 79 SECONDARY_STRUCTURE2_IS_HET

40 RESIDUE_NAME_IS_GLN 80 SECONDARY_STRUCTURE2_IS_UNKNOWN

Description of each property can be found in [63]
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width- filter width) +1, (input height- filter height) +1,
(input depth - filter depth) +1]. During the training process,
the weights of each of the 3D convolutional filters are opti-
mized to detect local spatial patterns that best capture the
local biochemical features to separate the 20 amino acid
microenvironments. After the training process, filters in the
3D convolution layer will be activated when the desired fea-
tures are present at some spatial position in the input.

� 3D Max Pooling Layer

The 3D max pooling module takes in an input 5D–tensor
of shape [batch size, number of input channels, input width,
input height, input depth], performs down-sampling of the
input tensor with stride of 2, and output a 5D- tensor of
shape [batch size, number of input channels, input width/2,

input height/2, input depth/2]. For each channel, the max
pooling operation identifies the maximum response value
for each 2*2*2 subregion and reduce the 2*2*2 cube region
into a single 1*1*1 cube with the representative maximum
value. The operation can be described by Eq. (3).

MPc;l;m;n ¼ max
��

Xc;i;j;k;Xc;iþ1;j;k;Xc;i;jþ1;k;Xc;i;j;kþ1;

Xc;iþ1;jþ1;k;Xc;i;jþ1;kþ1;Xc;iþ1;j;kþ1;

Xc;iþ1;jþ1;kþ1gÞ
ð3Þ

Where
i ¼ l�2
j ¼ m�2
k ¼ n�2

(

*MP denotes the output of the Max-Pooling operation
of X

Fig. 4 Schematic diagram of the Deep 3D Convolutional Neural Network and FEATURE-Softmax Classifier models. a Deep 3D Convolutional
Neural Network. The feature extraction stage includes 3D convolutional and max-pooling layers. 3D filters in the 3D convolutional layers search
for recurrent spatial patterns that best capture the local biochemical features to separate the 20 amino acid microenvironments. Max Pooling
layers perform down-sampling to the input to increase translational invariances of the network. By following the 3DCNN and 3D Max-Pooling
layers with fully connected layers, the pooled filter responses of all filters across all positions in the protein box can be integrated. The integrated
information is then fed to the Softmax classifier layer to calculate class probabilities and to make the final predictions. Prediction error drives
parameter updates of the trainable parameters in the classifier, fully connected layers, and convolutional filters to learn the best feature for the
optimal performances. b The FEATURE Softmax Classifier. The FEATURE Softmax model begins with an input layer, which takes in FEATURE
vectors, followed by two fully-connected layers, and ends with a Softmax classifier layer. In this case, the input layer is equivalent to the feature
extraction stage. In contrast to 3DCNN, the prediction error only drives parameter learning of the fully connected layers and classifier. The input
feature is fixed during the whole training process
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*l, m, n are the indices of the output position, c
denotes the input channel, and i, j, k are the indices of
the input position

� Fully Connected Layer and the Softmax
Classifier

The fully-connected layer integrates information of neu-
rons across all positions within a layer using a weight
matrix that connect all neurons in the layer to all neurons
in the subsequent layer. A ReLU function follows to
perform a non-linear transformation. The operation is
described by Eq. (4). By following the 3DCNN and 3D
Max-Pooling layers with fully connected layers, the pooled
filter responses of all filters across all positions in the pro-
tein box can be integrated. The integrated information is
then fed to the Softmax classifier layer to calculate class
probabilities and to make the final predictions.

hn ¼ ReLU
X

m ¼ 0

M−1
Wm;n Xm þ bn

 !
ð4Þ

Where hn denotes the activation value of the nth

neuron in the output layer, M denotes the number of
neurons in the input layer, N denotes the number of
neurons in the output layer, and W is a weight matrix
with size [M, N].

(B) FEATURE Softmax classifier
The FEATURE Softmax Classifier model comprises the
same three feature extraction, information integration
and classification stages. The model begins with an in-
put layer, which takes in FEATURE vectors generated
in (B) FEATURE Dataset section. In this case, the input
layer is equivalent to the feature extraction stage since
the biochemical features are extracted from the protein
structures by the FEATURE program prior to being fed
into the model. The input layer is then followed by two
fully-connected layers, which integrate information
from the input features. Finally, the model ends with a
Softmax classifier layer, which performs the classification.

(C) Multi-Layer Perceptron
Our Multi-Layer Perceptron model takes in the same
local boxes input as the 3DCNN model, flattens the
5D–tensor of shape (batch size, number of input chan-
nels, input width, input height, input depth) into a 2D
matrix of shape (batch size, number of input channels*
input width*input height*input depth), and has just two
fully-connected layers which integrate information
across the whole input box, ending with a Softmax
classifier layer.
We trained our 3DCNN, MLP, and the FEATURE

Softmax Classifier using stochastic gradient descent [38]

with the back-propagation algorithm [39]. Gradients were
computed by the automatic differentiation function imple-
mented in Theano. A batch size of 20 examples was used.
To avoid over-fitting, we used L2 regularization for all the
models, and employed dropout [40] (p = 0.3) when train-
ing the 3DCNN, FEATURE Softmax Classifier and MLP.
We tested different L2 regularization constants and drop-
out rates. We selected the appropriate L2 regularization
constant and dropout rate based on validation set per-
formance; we did not attempt to optimize the other meta-
parameters. We trained the 3DCNN network for 6 days
for 9 epochs using GPUs on the Stanford Xstream cluster.
The MLP model was trained for 20 epochs using GPUs
on the Stanford Xstream cluster until convergence. The
FEATURE Softmax classifier took 3 days on the Stanford
Sherlock cluster to reach convergence. The Stanford
XStream GPU cluster is made of 65 compute nodes for a
total of 520 Nvidia K80 GPU cards (or 1040 logical graph-
ical processing units). The Stanford Sherlock cluster in-
cludes 6 GPU nodes with dual socket Intel(R) Xeon(R)
CPU E5–2640 v2 @ 2.00GHz; 256 GB RAM; 200 GB local
storage.

Classification accuracies and confusion matrix
Individual and knowledge-based amino acid group accuracy
Prediction accuracies of the models are evaluated using
two different metrics: individual class accuracy and
knowledge-based group accuracy. Individual class accur-
acy measures the probability of the network to predict
the exact amino acid as the correct class. Since it is known
that chemically similar amino acids tend to substitute each
other in naturally occurring proteins, to further evaluate
the ability of the network to capture known amino acid
biochemical similarity, we also calculate a knowledge-
based group accuracy metric based on predefined amino
acid groupings [41]. For group accuracy, a prediction is
considered correct if it is within the knowledge-based
amino acid group as the true class.

Confusion matrix
Upon the completion of model training, the model
weights can then be used to perform prediction for any
input local protein box. For a given set of input exam-
ples, the number of examples that have true labels i and
are predicted as label j is recorded in the position [i, j] of
the raw count confusion matrix M. To obtain the prob-
ability of examples of true label i being predicted as label
j, each row i of the raw count confusion matrix M is
then normalized by the total number of examples having
the true label i to generate the row-normalized confu-
sion matrix Nrow, where each number in Nrow has a value
between 0 ~ 1 and the sum of each row equals 1.
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Nrow i; j½ � ¼ M i; j½ �=
X

j
M i; j½ � ð5Þ

The above described process is applied to the training
and test dataset to generate 2 separate row-normalized
confusion matrices. The matrices are then plot as heat
maps using the Matplotlib package.

Clustering
To identify amino acid environment groups discovered
by the network, we performed hierarchical clustering
[42] on the row-normalized confusion matrices of both
the train and test dataset. Hierarchical clustering with
the Ward linkage method was performed using the sci-
py.cluster.hierarchy package [43].

Structure-based substitution matrix
Conventional sequence-based substitution matrices such
as BLOSUM62 and PAM250 are calculated from the log
odd ratio of substitution frequencies among multiple se-
quence alignments within defined sequence databases.
Using an analogous concept, we construct a frequency-
based, structure-based substitution matrix from our raw
count confusion matrix M. We generated a second matrix
considering the score matrix as a measure of similarity
between any two amino acid types. This matrix is derived
based on dot product similarities between entries of
amino acid microenvironment pairs in the raw count
confusion matrix. The two score matrices are denoted as
Sfreq and Sdot respectively, and are calculated using the
following equations.

Score matrix I: Frequency-based score
The frequency-based substitution scores were calculated
using the following equations:

p i; jð Þ ¼ M i; j½ �=Pi

P
jM i; j½ �

qrow ið Þ ¼PjM i; j½ �=Pi

P
jM i; j½ �

qcol jð Þ ¼
P

iM i; j½ �=Pi

P
jM i; j½ �

Sfreq0 ¼ log p i; jð Þ=qrow ið Þ � qcol jð Þf g

To enable straight-forward comparison to other substi-
tution matrices, we create a symmetric substitution matrix
by averaging over the original and transposed Sfreq as
below.

Sfreq ¼ Sfreq′ þ Sfreq′
T

� �
=2

Score matrix II: Dot-product-based score
The dot-product based scores were calculated using the
following equations

Nrow i; j½ � ¼ M i; j½ �=PjM i; j½ �
Ncol i; j½ � ¼ M i; j½ �=PiM i; j½ �
Rowi ¼ Nrow i; :½ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k Nrow i; k½ �ð Þ2

q
Rowj ¼ Nrow j; :½ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k Nrow j; k½ �ð Þ2

q

Coli ¼ Ncol :; i½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k Ncol k; i½ �ð Þ2
q

Colj ¼ Ncol :; j½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k Ncol k; j½ �ð Þ2
q

Sdot i; j½ � ¼ log dot Rowi; ;Rowj
� �þ dot Coli; ;Colj

� �� 	
The two score matrices are calculated for both the

training and test predictions and are denoted as Sfreq − train,
Sfreq − test, Sdot − train, Sdot − test, respectively. Because similar
scores were obtained between the training and the test
predictions, Sfreq − train and Sdot − trainare used are represen-
tative matrices and are denoted as Sfreq and Sdot. Compari-
son between the matrices to BLOSUM62, and PAM250,
and WAC were performed using linear least-square re-
gressions using the scipy.stats.linregress module.

T4 mutant classification
T4 lysozyme mutant and wild type structures
The PDB IDs of 40 T4 lysozyme mutant structures were
obtained from the SCOPe2.6 database [44] and the corre-
sponding 3D structures are downloaded from the PDB.
We categorize the effects of the mutants based on their
associated literature, where a stabilizing mutation is cate-
gorized as “neutral” and a destabilizing mutation is catego-
rized as “destabilizing”. Table 2 summarizes the 40 mutant
structures employed in this study. To compare between
the microenvironments surrounding the wild type and
mutated amino acids, the wild type T4 lysozyme structure
(PDB ID: 2lzm [45]) is also employed.

T4 wild type and mutant structure microenvironment
prediction
For each of the selected 40 T4 lysozyme mutant struc-
tures, we extract a local box centered on the Cβ atom of
the mutated residue, removing side chain atoms of the
mutated residue. The same labeling and featurization
procedures described in (A) Atom-Channel Dataset sec-
tion is applied to the extracted box. Wild type counter-
parts of these 40 mutated residues can be found by
mapping the mutated residue number to the wild type
structure. Local boxes surrounding the wild type amino
acids can then be similarly extracted and featurized.
Each pair of wild type and mutant boxes are then fed
into the trained 3DCNN for prediction. The predicted
labels for wild type and mutant boxes are denoted as
WP (wild type predicted) and MP (mutant predicted),
respectively.
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T4 mutation classifier
We built Lasso [46] and SVM [47] classifiers with 4-fold
cross validation using the following three sets of features
for five different scoring matrices (BLOSUM62, PAM250,
WAC, Sfreq and Sdot), resulting in fifteen different models.

Input Features for the T4 mutation classifiers

6‐Feature ¼ 
S WT;WPð Þ; S WT;MTð Þ; S WT;MPð Þ;
S WP;MTð Þ; S WP;MPð Þ; S MT;MPð Þ�

3‐Feature ¼ S WT;WPð Þ; S WT;MTð Þ; S WP;MTð Þ½ �
1‐Feature ¼ S WT;MTð Þ½ �

*S(i,j) is the similarity score taken from the (i,j) elem-
ent of a score matrix
*WT, WP, MT and MP denote the wild type true label,

wild type predicted label, mutant true label, and mutant
predicted label, respectively.
The SVM models were constructed using the sklearn.svm

package using the Radial Basis Function (RBF) kernel, and
the Lasso models were built using the sklearn.linear_
model.Lasso package.

Network visualization: Atom importance map
Our input importance map shows the contribution of
each atom to the final classification decision by display-
ing the importance score of each atom in heat map
colors. Importance scores are calculated by first deriving
the saliency map described in [48]. Briefly, the saliency
map calculates the derivative of the true class score of
the example with respect to the input variable I at the
point I0, where I0 denotes the input value. The saliency
map is then multiplied by I0 to obtain the importance
scores for each input voxel for each atom channel. By
first order Taylor approximation, the importance score
of each atom approximates the effect on the true class
score when removing the corresponding atom from the
input. Absolute values of the importance scores are
recorded, normalized to range (0,100) for each input
example across all positions and all channels, and
assigned to the corresponding atoms in the local protein
box. We visualized results using Pymol [49] by setting the
b-factor field of the atoms to the normalized-absolute-
valued importance scores. Gradients of the score function
with respect to the input variables are calculated by the
Theano auto differentiation function.

Results
Datasets
Following the procedure described in section T4-lysozyme
Free, Protein-Family-Based Training and Test Protein
Structure Sets section, we generate a protein structure set
that contains 3696 training and 194 test protein families.
This results in 32,760 and 1601 training and test

Table 2 Summary of the 40 T4 mutant structure

Variant Mutant PDB ID Effect Source

G77A 1 L23 Neutral [64]

A82P 1 L24 Neutral [64]

A93T 129 L Neutral [65]

T151S 130 L Neutral [65]

T26S 131 L Neutral [65]

V149 M 1CV6 Neutral [66]

V87 M 1CU3 Destabilizing [66]

S38 N 1 L61 Neutral [67]

T109 N 1 L59 Neutral [67]

T109D 1 L62 Neutral [67]

N116D 1 L57 Neutral [67]

D92N 1 L55 Destabilizing [67]

S38D 1 L19 Neutral [68]

N144D 1 L20 Neutral [68]

M106I 1P46 Neutral [69]

M120Y 1P6Y Neutral [69]

V149I 1G0Q Neutral [70]

T152 V 1G0L Neutral [70]

V149S 1G06 Destabilizing [70]

V149C 1G07 Destabilizing [70]

V149G 1G0P Destabilizing [70]

E108V 1QUG Neutral [71]

L99G 1QUD Destabilizing [71]

S117F 1TLA Neutral [72]

M106 L 234 L Neutral [73]

M120 L 233 L Neutral [73]

M106 K 231 L Destabilizing [73]

M120 K 232 L Destabilizing [73]

I3V 1 L17 Neutral [74]

I3Y 1 L18 Destabilizing [74]

M102 K 1 L54 Destabilizing [75]

T157I 1 L10 Destabilizing [76]

G156D 1 L16 Destabilizing [77]

R96H 1 L34 Destabilizing [78]

I3P 1 L97 Destabilizing [79]

R96N 3CDT Destabilizing [80]

R96D 3C8Q Destabilizing [80]

R96W 3FI5 Destabilizing [80]

R96Y 3C80 Destabilizing [80]

M102 L 1 L77 Destabilizing [81]

Forty available T4 lysozyme mutant structures were collected and categorized for
their effects. Each mutant is classified based on the literature, where a stabilizing
mutation is categorized as “neutral” and a destabilizing mutation is categorized
as “destabilizing”
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structures. Atom-Channel Dataset and FEATURE Dataset
are built from the protein structure set to enable compari-
sons between deep learning based features and conven-
tional hand-engineered features. Atom-Channel Dataset is
constructed as described in (A) Atom-Channel Dataset
section. The final dataset contains 722,000 training,
38,000 validation and 36,000 test examples, each com-
prises an approximately equal number of examples from
all the 20 amino acid microenvironment types. FEATURE
Dataset is constructed as described in (B) FEATURE Data-
set section. The resulting datasets are similarly balanced
and zero-mean normalized and the final dataset contains
718,200 training, 37,800 validation and 36,000 test
examples.

Network architecture
Our resulting networks are summarized in Table 3. The
deep 3D convolutional neural network begins with a
3D convolutional layer, followed by two sequential al-
ternating 3D convolutional and 3D max pooling layers,
continued with two fully-connected layers, and ends
with a Softmax classifier layer. In this framework, the

3D convolution/max pooling layers, the fully connected
layers and the Softmax classifier correspond to the feature
extraction, information integration, and classification stage
respectively. In the FEATURE Softmax classifier, the fea-
ture extraction stage is completed by the FEATURE pro-
gram in advance. The FEATURE Softmax model similarly
continues with two fully-connected layers, and ends with
a Softmax classifier layer. To verify that using a Deep
Convolutional Architecture provides advantage over using
a simple flat neural network with the same input, we also
built a Multi-Layer Perceptron with 2 hidden layers.
The resulting network architecture is summarized in
Additional file 1: Table S1.

20 amino acid classification accuracies and confusion
matrix
To classify the 20 amino acid microenvironment, we
trained the deep 3DCNN and the MLP on the Atom-
Channel dataset and the FEATURE Softmax classifier on
the FEATURE Dataset, respectively. Results of the individ-
ual and knowledge-based group classification accuracies

Table 3 3DCNN and FEATURE Softmax Classifier Network Architecture

3DCNN FEATURE + SOFTMAX

Stage Layer Size Output Volume Layer Size Output
Volume

Feature Extraction Stage Input 4*20*20*20 Input
FEATURE program

480 features

3D–Conv 3*3*3, 100 Filters 100*18*18*18

Dropout
(p = 0.3)

3D–Conv 3*3*3, 200 Filters 200*16*16*16

Dropout
(p = 0.3)

3D–Max Pooling Stride of 2 200*8*8*8

3D–Conv 3*3*3, 400 Filters 400*6*6*6

Dropout
(p = 0.3)

3D–Max Pooling Stride of 2 400*3*3*3

Information Integration Stage FC Layer 10800*1000 neurons 1000 neurons FC Layer 480*100 neurons 100 neurons

Dropout
(p = 0.3)

Dropout
(p = 0.3)

FC Layer 1000*100 neurons 100 neurons FC Layer 100*20 neurons 20 neurons

Dropout
(p = 0.3)

Dropout
(p = 0.3)

Classification Stage Softmax Classifier 100 neurons*20 classes 20 scores Softmax Classifier 20 neurons* 20 classes 20 scores

The Stage column describes the component stages for the deep 3DCNN and FEATURE Softmax models. In our 3DCNN, the 3D convolution and max pooling
layers, the fully connected layers, and the Softmax classifier correspond to the feature extraction, information integration, and classification stage respectively. In
the FEATURE Softmax classifier, the feature extraction stage is completed by the FEATURE program in advance. The Layer column describes the type of layer
employed in each stage for each model, where 3D–Conv represents 3D convolutional layer, 3D Max-Pooling represents 3D max pooling operation with stride of 2,
Dropout represents dropout operation with p = 0.3, and FC Layer stands for fully-connected layer. The Size column further describes the parameters used in each
layer. For 3D–Conv layers, the number of filters in each layer and the size of the receptive fields of the filters are specified. For 3D Max-Pooling layers, a stride of 2
is used. For FC Layers, M*N neurons specifies the number of input and output neurons, respectively. The Output volume column describes the size of output of
each layer. For 3D–conv and 3D–Max Pool layers, the output is a 4D tensor, where the numbers describe the number of channels, output height, output width,
and output depth, respectively. For FC Layer, the output is a vector, and the number describes the number of output neurons
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of 3DCNN and the FEATURE Softmax classifier are re-
ported in Table 4. Comparisons between the performances
of 3DCNN and MLP are reported in Additional file 2:
Table S2. To inspect the propensity of each microenviron-
ment type to be predicted as the other 19 microenviron-
ment types, Fig. 5 shows heat maps for the confusion
matrices generated from predictions on the training and
test datasets using the 3DCNN and the FEATURE Soft-
max classifier, where the ith, jth element of the matrices
contains the probability of examples of true label i being
predicted as label j.

Amino acid clustering
In 20 Amino Acid Classification Accuracies and Confu-
sion Matrix section, we inspected the group prediction
accuracy based on knowledge based amino acid groups.
To identify amino acid microenvironment groups auto-
matically discovered by the network, hierarchical cluster-
ing was performed on the row-normalized confusion
matrices. The results are shown in Fig. 6.

Structure-based substitution matrix
We derived the 3DCNN-frequency-based (Sfreq) and the
3DCNN-dot-product-based (Sdot) substitution matrices
from our raw count confusion matrix following the
procedure described in Structure-based Substitution
Matrix section. Comparison between the two matrices
to BLOSUM62, and PAM250, and WAC were performed
using linear least-square regressions. We also calculate
correlations between BLOSUM62, and PAM250, and
WAC for benchmarking purpose. The least square coeffi-
cients are summarized in Table 5 and the scatter plots are
shown in Fig. 7.

T4 mutant classification
Forty available T4 lysozyme mutant structures were
collected and categorized for their effects. Each mu-
tant is categorized as either destabilizing or neutral.
We use our network to predict the optimal residue

type for both the wild type and mutant structures at
the corresponding variant sites. Each site can be sum-
marized using their true labels and prediction results
in the following form: [wild type true (WT), wild type
prediction (WP), mutant true (MT), mutant predic-
tion (MP)]. The results for the 40 sites are summa-
rized in Table 6.
We subsequently built classifiers to predict whether a

mutation has a destabilizing or neutral effect. Specific-
ally, we first used the Sfreq, Sdot, BLOSUM62, PAM250,
and the WAC similarity matrices to generate the 6-
Feature, 3-Feature, and 1-Feature sets, as described in
T4 mutation classifier section. Lasso and SVM classi-
fiers using the 15 sets of features was trained with 4-
fold cross validation. The results are summarized in
Table 7.

Network visualization
To gain insights into what the network has learned, we
calculate an importance map to inspect the contribution
of each atom to the final classification decision. The im-
portance scores are calculated as described in Network
Visualization: Atom Importance Map section. Atoms
within the local box are shown as sticks. Visualizations
of importance scores of each input atom are displayed as
heat maps. Example visualizations are shown in Fig. 8.
The color demonstrates how each atom within the local
box contributes to the decision. Atoms with the lowest
important scores (<20) are shown in white, and the red
to blue heat map spectrum highlights the most import-
ant to the least important atoms. Transparent light pink
spheres are drawn to show the space previously occu-
pied by the removed residue.

Discussion
Classification accuracies
The deep 3DCNN achieves superior prediction perform-
ance compared to models that employ conventional
structure-based hand-engineered biochemical features.
As can be seen in Table 4, we achieve a two-fold in-
crease in prediction accuracies using the 3DCNN com-
pared to the FEATURE Softmax Classifier. Importantly,
the 3DCNN can correctly predict amino acid types for
structures in proteins families that are different from
the ones in the training dataset; features learned by the
3DCNN describe fundamental bio-physiochemical prop-
erties and are generalizable to all proteins. The significant
gap between prediction performances of our 3DCNN with
the MLP model reported in Additional file 2: Table S2
shows that with the same training data, the deep 3D con-
volutional architecture offers advantages over simple flat
neural networks.
Among the 20 amino acid microenvironments, our

3DCNN network has the highest prediction accuracies

Table 4 Individual and knowledge-based group classification
accuracies of 3DCNN and the FEATURE Softmax classifier

Method – Dataset Single Class
accuracy

Knowledge-Based
Group Accuracy

3DCNN- train 0.55 0.6732

3DCNN- test 0.425 0.573

FEATURE vectors -train 0.245 0.416

FEATUR vectors -test 0.237 0.405

The deep 3DCNN achieves superior prediction performance compared to models
that employ conventional structure-based hand-engineered biochemical features.
A two-fold increase in prediction accuracies is achieved by the 3DCNN compared
to the FEATURE Softmax Classifier. 3DCNN correctly predict amino acid types for
structures in the test dataset, which are in proteins families different from the
ones in the training dataset
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for the C, P and G microenvironments. This is likely
due to their distinct and conserved structural proper-
ties. Non-polar amino acids tend to have higher predic-
tion accuracies than the polar amino acids by our
3DCNN. Hydrophobic interactions, such as pi-stacking,
are often formed within shorter spatial distances than
electrostatic interactions between polar amino acids
[50, 51]. The bottom-up nature of convolutional layers
makes 3DCNNs better at extracting features describing
local interactions than the longer-range ones. In this
study, we employ a network that uses 3 convolution layers
using 3*3*3 Å filters with alternating pooling layers. This
creates receptive fields of 12*12*12 Å for each neuron at
the final pooling layer. Our predictions therefore depend
on combinations of the local features that are at most
12 Å in spatial range within the 20 Å input boxes.

Confusion matrices and amino acid groupings
Our network captures the similarities and differences be-
tween amino acid microenvironments. Figure 5 arranges
the 20 amino acids according to knowledge-based amino
acid groups, where amino acids known to be

biochemically similar are adjacent. Local block structure
in the confusion matrices in Fig. 5a and b demonstrates
amino acid environment similarities captured by the net-
work. For example, phenylalanine (F), tryptophan (W),
and tyrosine (Y) form a hydrophobic and aromatic
block. Similar block structures are less evident in the
confusion matrices for the FEATURE Softmax classifier
although confusion between neighboring amino acids
can still be observed.
Hierarchical clustering further demonstrates the extent

of similarity captured by our networks. Clustering on
the row-normalized confusion matrix reveals similarities
between amino acid microenvironments in terms of their
propensities to be assigned to the 20 amino acid micro-
environment types. Figure 6 shows that the training and
test performances are consistent.
Amino acid groupings “discovered” by our 3DCNN gen-

erally agree with known amino acid similarities. Hierarch-
ical clustering divides the amino acids into six distinct
clusters, as shown in Fig. 6. It is visible in Fig. 6a and b
that the polar amino acids histidine (H), lysine (K), argin-
ine (R), aspartic acid (D), glutamic acid (E), serine (S),

Fig. 5 Confusion matrices for predictions of the 20 amino acid microenvironments. Predictions on the training and test datasets using 3DCNN
and FEATURE Softmax Classifier are summarized into confusion matrices to inspect the propensity of each microenvironment type to be
predicted as one another. The 20 amino acids are arranged according to knowledge-based amino acid groups, where amino acids known to be
biochemically similar are adjacent. The ith, jth element of the matrices shows the probability of examples of true label i being predicted as label j.
The probability is represented in heat map colors. a 3DCNN-Train. b 3DCNN-Test. Local block structures in the confusion matrices for 3DCNN
demonstrate similarities and differences between amino acid microenvironments. For example, phenylalanine (F), tryptophan (W), and tyrosine (Y)
form a hydrophobic and aromatic block. Similar block structure is observed for test predictions. The captured features are robust across protein
families. c FEATURE-Train. d FEATURE-Test. Block structures are less evident in the confusion matrices for the FEATURE Softmax classifier
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threonine (T), asparagine (N), glutamine (Q) and a non-
polar aliphatic amino acid alanine (A) form a large and
weak block, within which K and R; D and N; S and T; and
E and Q, form smaller and distinct blocks. Similarly, the
non-polar amino acids, F, W, Y, V, I, L, M together form a
large weak block, within which the three clusters separate.
Amino acids with known distinct properties, glycine (G)
and cysteine (C) do not form local blocks with the other

amino acids. Clustering on the FEATURE Softmax classi-
fier generates much coarser amino acid groupings. The
two major groups, hydrophobic and polar amino acids are
separated. However, finer grouping within the two groups
are less evident.
Results from clustering also reveal interesting aspects

of amino acid similarity learned de novo from structural
data. Interestingly, alanine is not grouped with valine,
isoleucine, leucine, and methionine, as in many classifi-
cations based on hydrophobicity. Instead, serine, threo-
nine, and alanine are substituted for one another
frequently by our 3DCNN, likely due to their small sizes
[52]. However, size and molecular volume do not seem
to dominate the biochemical similarities; cysteine and
glycine are well separated from serine, threonine, and
alanine despite of their similar sizes. Glutamine, methio-
nine, and lysine are of close molecular weight but do not
cluster together while lysine and arginine are different
size but are grouped together. Isoleucine, valine and
threonine are all Cβ branched and are substantially bulk-
ier near the protein backbone. It is likely that isoleucine
is grouped together with valine instead of leucine for this
reason. As expected, threonine is considered much more
similar to serine than to isoleucine and valine. Thus,

Table 5 Correlation between deep learning derived substitution
matrices and benchmarking matrices

Matrix 1 Matrix 2 R-value

3DCNN- Sfreq BLOSUM62 0.702

3DCNN- Sfreq PAM250 0.609

3DCNN- Sfreq WAC 0.613

3DCNN- Sdot BLOSUM62 0.82

3DCNN- Sdot PAM250 0.788

3DCNN- Sdot WAC 0.6183

WAC BLOSUM62 0.811

WAC PAM250 0.681

PAM250 BLOSUM62 0.872

We show pairwise comparison of multiple matrices, and report the R-value of
the correlation

Fig. 6 Hierarchical Clustering of normalized confusion matrices. The ith, jth element of the row-normalized matrices shows the probability of
examples of true label i being predicted as label j. The probability is represented in heat map colors. Hierarchical clustering reveals similarities
between amino acid microenvironments in terms of their propensities to be assigned to the 20 amino acid types. a 3DCNN-Training. Amino
acid groupings discovered by our 3DCNN generally agree with known amino acid similarities. Six clusters were discovered by our network. The
first cluster includes phenylalanine, tryptophan, and tyrosine. These are the three amino acids known to be hydrophobic and aromatic. The
second and third clusters comprises valine, isoleucine and leucine, methionine respectively, which are all non-polar and aliphatic. The polar amino
acids form the fourth cluster. Amino acids with known distinct properties, glycine and cysteine do not form local blocks with the other amino
acids. b 3DCNN-Test Groupings generated for the test examples are consistent with the training counterparts. c FEATURE-Softmax-Training.
d FEATURE-Softmax-Test Clustering on the FEATURE Softmax classifier generates much coarser amino acid groupings than the ones discovered
by 3DCNN. The two major groups, hydrophobic and polar amino acids are separated
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size, molecular weight, geometry and biochemical prop-
erties all contribute to the groupings.

Structure-based substitution matrix
The prediction statistics over our millions of training
and test examples provide information about the general
propensity of an amino acid to be substituted for an-
other. We used our prediction statistics to construct two
amino acid substitution matrices Sfreq and Sdot, and com-
pared them to BLOSUM62 and PAM250 as benchmarks.
BLOSUM62 and PAM250 are calculated from the log odd
ratio of substitution frequencies among multiple sequence
alignments within defined sequence databases and are

symmetric. We derived Sfreq using an analogous frequency-
based concept. However, our matrix is not symmetric:
substitutability from amino acid microenvironment i to j is
different from substitutability from amino acid microenvir-
onment j to i. The expected frequency of confusion from i
to j depends on the fraction of examples with true labels i
and the propensity of the network to make predictions of j,
instead of the fraction of examples with true labels i and
true labels j. As a result, the i, j notation in both the numer-
ator and denominator in our odd-ratio equation is not ex-
changeable, and the resulting matrix is non-symmetric.
To enable straightforward comparison to the bench-
mark matrices, we created a symmetric substitution

Fig. 7 Scatter plots of similarity scores between Sfreq, Sdot and benchmarking matrices BLOSUM62, PAM250, WAC. a Sfreq- BLOSUM62. b Sfreq- PAM250.
c Sfreq- WAC. d Sdot- BLOSUM62. e Sdot- PAM250. f Sdot-WAC. g WAC- BLOSUM62. h WAC- PAM250. i PAM250- BLOSUM62. Sfreq shows generally good
correlations with BLOSUM62 and PAM250; Sdot shows strong correlation with BLOSUM62 and PAM250; Sfreq and Sdot show no significant correlations
with WAC
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Table 6 Predicted and true residue type for the wild type and mutant structures at the variant sites

Distinct prediction patterns can be observed between the destabilizing and neutral variants. For the destabilizing variants, our network makes correct predictions
with very high confidence on the wild type microenvironments and the predictions on the mutant microenvironments often resemble the true wild type residues,
as highlighted in orange. On the other hand, predictions on wild type environment vary significantly. Predictions on mutant microenvironment do not resemble
the wild type amino acid, but are rather more similar to the mutant amino acid type, as highlighted in blue. For some cases, predictions of the wild type environment
even match exactly to the mutant residues, as highlighted in yellow. These findings suggest that destabilizing mutations happens in microenvironments where the wild
type amino acid are strongly preferred while the neutral ones tend to be observed when amino acids other than the wild type are tolerated or even preferred
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matrix by averaging over the original and transposed
Sfreq′. As shown in Table 5 and Fig. 7, Sfreq have gener-
ally good correlations with BLOSUM62 and PAM250.
We also compare our matrices to WAC, a substitution

matrix derived using the FEATURE program [29]. The
matrix is similarly constructed from the biochemical,
biophysical, and structural features around the 20 amino
acids, but from a human-engineered-features perspec-
tive. The more statistically similar the FEATURE profiles
for two amino acids, the higher the similarity score. We
built our Sdot matrix similarly from similarities in predic-
tion profiles between amino acid pairs. Sdot shows strong
correlation with BLOSUM62 and PAM250. Interestingly,
Sdot show no significant correlation with WAC. This sug-
gests 3DCNN and WAC capture different information.

T4 mutant classification
The tolerance of proteins to mutation depends on the
critical interactions between the lost amino acid and its

environment and the ability of the new amino acid to
re-establish these interactions. We reasoned that the
higher the prediction probability the network assigned
to the original amino acid class, the less probable any
mutation would be tolerated at the position. Conversely,
the higher the similarity score is between the wild type
and the mutant amino acid pairs, the more likely the
mutation will be accepted. A destabilizing mutation may
have very strong preference of the wild type amino acid
for the wild type microenvironment and low similarity
score between the wild type and mutant amino acid
pairs. On the other hand, the microenvironment of a
neutral variant site may not have a strong preference to
the wild type amino acid and might not show a prefer-
ence between the wild type and mutant amino acids. We
tested these ideas by predicting the effects of mutations
on T4 lysozyme. T4 lysozyme was chosen because muta-
tions in T4 lysozyme have been deeply investigated [53,
54], and many mutant structures are available in publicly
available databases.
We first used 3DCNN to predict the optimal residue

type for both the wild type and mutant structures at the
variant sites. Table 6 shows distinct prediction patterns be-
tween the destabilizing and neutral variants. For the desta-
bilizing variants, our network makes correct predictions
with very high confidence on the wild type microenviron-
ments. Strikingly, instead of predicting amino acid classes
similar to the mutated amino acid type, predictions on the
mutant microenvironments often resemble the true wild
type residues. These variant sites microenvironment likely
have special structural features uniquely satisfied by the
wild type amino acids, as reflected by the high confidence
predictions. After the mutation, even with local structural
perturbation to accommodate the mutant amino acid, the
network is still able to recognize the microenvironment
and predict the original amino acid. On the other hand,
for the neutral variants, the reverse to wild type is less
strong. Predictions on wild type environment vary signifi-
cantly. In some cases, our network even predicts the
amino acid to be mutated to as the optimal amino acid
choice for the wild type microenvironment. Also, predic-
tions on mutant microenvironment do not resemble the
wild type amino acid, but are rather more similar to the
mutant amino acid type.
These findings are consistent with the idea that desta-

bilizing mutations happen in microenvironments where
the wild type amino acid are strongly preferred while the
neutral ones tend to be observed when amino acids
other than the wild type are tolerated or even preferred.
We constructed Lasso and SVM classifiers to quantita-
tively evaluate the ability of our predictions to separate
the destabilizing variants from the neutral ones. The in-
put features were created using similarity scores from
the substitution matrices, indexed by the wild type and

Table 7 Prediction accuracies of T4 mutant classifiers

Features 4 fold cross-validation

Lasso Train Lasso Test SVM Train SVM Test

6-Feature- Sfreq 0.90 0.825 0.967 0.825

6-Feature- Sdot 0.875 0.85 0.933 0.825

6-Feature- SBLOSUM 0.883 0.85 0.967 0.775

6-Feature- SPAM 0.883 0.875 0.958 0.775

6-Feature- SWAC 0.85 0.825 0.925 0.775

3-Feature- Sfreq 0.808 0.775 0.833 0.825

3-Feature- Sdot 0.800 0.825 0.858 0.775

3-Feature- SBLOSUM 0.817 0.800 0.858 0.825

3-Feature- SPAM 0.867 0.850 0.917 0.80

3-Feature- SWAC 0.825 0.825 0.858 0.825

1-Feature- Sfreq 0.725 0.675 0.724 0.7

1-Feature- Sdot 0.708 0.675 0.742 0.725

1-Feature- SBLOSUM 0.633 0.575 0.667 0.475

1-Feature- SPAM 0.525 0.525 0.708 0.4

1-Feature- SWAC 0.525 0.525 0.633 0.5

Performances of Lasso and SVM models built with 1-Feature, 3-Feature, and 6-
Feature set from 5 different matrices are compared. The 6-Feature set com-
prises the substitution scores indexed by the six pairs of true and predicted
class for the wild type and mutant variant microenvironment. Specifically, 6-
Feature set = [S(WT,WP), S(WT,MT), S(WT,MP), S(WP,MT), S(WP,MP),S(MT,MP)],
where S(i,j) is the similarity score taken from the (i,j) element of a score matrix,
WT, WP, MT and MP denote the wild type true label, wild type predicted label,
mutant true label, and mutant predicted label, respectively. The 3-Feature set
is composed of [S(WT,WP), S(WT,MT), S(WP,MT)] and the 1-Feature set only
contains [S(WT,MT)]
Sfreq and Sdot matrices show significant advantage with the 1-Feature set
(highlighted in boldface), when only the wild type true label and the mutant
true labels are known. Models using the 3-Feature and 6- Feature sets
achieved better prediction accuracies than using the 1- Feature set alone.
Significant boosts of performance using the 3-Feature set over the 1-Feature
set are observed for models built with BLOSUM and PAM matrices. The
addition information of the predicted label for the wild type structure provides
key information that was not captured by sequence derived matrices
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predicted class labels. Table 7 shows the ability of our
models to predict outcomes of the mutation variants.
Notably, our Sfreq and Sdot matrices show significant ad-
vantage with the 1-Feature set, when only the wild type
true label and the mutant true label are known. Models
built from our substitution matrices on average outper-
form the ones built from BLOSUM62, PAM250 and
WAC by 25.4%. The 1-Feature set only uses the similar-
ity score between the wild type amino acid and the mu-
tant amino acid, and does not rely on the predicted
class labels of the wild type and mutant microenviron-
ments. The significant gap of performances between
our 3DCNN derived matrices and the other matrices
suggests that structural data provide information that
could not be derived from sequence substitution fre-
quencies alone. Although the WAC matrix is also
structure-based and derived from microenvironment
information, the performance was noticeably worse
than the deep learning derived matrices.
As expected, models using the 3-Feature and 6- Feature

sets achieved better prediction accuracies than using the
1- Feature set alone. Importantly, the predicted labels for

the wild type structures provide key information for
models employing the BLOSUM and PAM matrices.
When our class prediction of the wild type microenviron-
ment is available, performances of the BLOSUM62,
PAM250 and WAC models on average increase by 35.8%.
This is not surprising since the predicted label for the wild
type structure provides direct information about the
extent the lost amino acid fits the microenvironments.
The more “similar” the prediction is to the lost amino
acid, the more probable the lost amino acid might have
strong interactions with its environment, and the higher
the chance a substitution can be harmful, where the simi-
larity is evaluated by the substitution score between the
true and predicted amino acids. For the 3-Feature-
Sfreq and the 3-Feature- Sdot models, this additional
information did not provide as large of a boost as the
ones observed for the other matrices. Interestingly,
including features from the mutant structures did not
provide much improvement over the 3-Feature set,
suggesting that the wild type environment may matter
most and our models can provide useful information
without the mutant structures.

Fig. 8 Importance visualization of local amino acid microenvironments. Visualizations of importance scores of each input atom are displayed as
heat maps. The color demonstrates how each atom within the local box contribute to the decision. The importance scores range from 0 to 100.
Atoms with the lowest important scores (<20) are shown in white, and the red to blue heat map spectrum highlights the most important to the
least important atoms. Transparent light pink spheres are drawn to show the space previously occupied by the removed residue. a Microenvironment
surrounding a key ASP residue at the EF_HAND calcium binding site (PDB: 1A2X, ASP 63.) Our importance score map indicates that the correct
prediction relies on the two nitrogen atoms, which are in close proximity to the electronegative oxygen atoms of the removed aspartic acid residue.
b Microenvironment surrounding a PROSITE INSULIN motif, with the key CYS residue removed (PDB:1IZA, CYS 7.) The 3DCNN network made the
correct prediction of CYS primarily based on the SG atom from a nearby cysteine residue. This SG atom originally forms disulfide bond with the
SG atom of the removed cysteine residue. The unique disulfide bond pattern was implicitly captured by our network to facilitate the classification.
c Microenvironment surrounding a phenylalanine residue (PDB: 1ZPL, PHE_52). The three highlighted regions in the heat map are the side-chain
atoms of VAL 54, ILE 48, VAL 2, all of which comprise of non-polar carbon atoms. d Microenvironment surrounding a valine residue (PDB: 1VJ9 [64],
VAL 200). The highlighted atom groups are the side-chains of MET 207, TRP 29 and ILE 121, which are similarly non-polar
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Network visualization
We present four examples of local amino acid micro-
environments, including those of charged, polar, and
non-polar amino acids. Figure 8a depicts the local
microenvironment surrounding a key aspartic acid
residue at the EF_HAND calcium binding site [55, 56]
(PDB: 1A2X [57], ASP 63.) Transparent light pink
spheres show the space previously occupied by the re-
moved key functional aspartic acid residue. Our net-
work correctly predicts the most suited choice of this
microenvironment as aspartic acid. Our importance score
map indicates that the decision relies on the two nitrogen
atoms, which are in close proximity to the electronegative
oxygen atoms of the removed aspartic acid residue. Figure
8b shows a microenvironment surrounding a PROSITE
[58] INSULIN motif [59], with the key CYS residue re-
moved (PDB:1IZA [60], CYS 7.) The 3DCNN network
correctly predicts cysteine as the most suited amino acid
to place in this microenvironment and the decision was
made primarily based on the SG atom from a nearby cyst-
eine residue. This SG atom originally forms disulfide bond
with the SG atom of the removed cysteine residue. Figure
8c shows an example of a microenvironment surrounding
a phenylalanine residue (PDB: 1ZPL [61], PHE 52).
Phenylalanine belongs to the non-polar and aromatic
group and its six-member ring can form favorable interac-
tions with other non-polar groups. Our network correctly
predicts the most suitable residue for the microenviron-
ment as phenylalanine. The three highlighted regions in
the heat map are the side-chain atoms of VAL 54, ILE 48,
VAL 2, all of which comprise of non-polar carbon atoms.
Valine belongs to the non-polar and aliphatic group.
Figure 8d shows an example of a microenvironment
surrounding a valine residue (PDB: 1VJ9 [62], VAL 200).
The highlighted atom groups are the side-chains of MET
207, TRP 29 and ILE 121, which are similarly non-polar.

Network architecture design
Our network architecture consists of three 3D convolu-
tion layers, each using an increasing number of 3*3*3
filters. We did not experiment extensively with different
number of 3D convolutional layers and different filter
sizes. Small 3*3*3 filters are generally preferable given
enough computational power because larger features can
be composed from smaller features trough a hierarchical
manner. More layers can increase model capacity and
the spatial receptive field of each final layer neuron since
3D filters in increasingly higher level layers are looking
at an increasingly larger spatial section of the original
atomic input space. It would be interesting to see if
additional layers or larger filter size can help capitulate
longer range electrostatic interactions, as discussed in
the Classification Accuracies Section. Max-Pooling
layers reduces the dimension of the input and therefore

can help reduce the computational expense. More im-
portantly, it reduces the sensitivity of the network to
the absolute position of each biochemical feature and
therefore increase the translational and rotational in-
variance of the network. To avoid losing important
relative geometry information at the atomic level, the
3D Max Pooling operation was not used immediately
after the first 3D Convolutional Layer. We delay the
employment of the 3D Max-Pooling layers till the sec-
ond 3D Convolutional stage where the features are
more abstract and less dependent on the absolute
spatial orientation.
Comparing our deep 3DCNN to a simple flat neural

network, our results show that the convolution architec-
ture offers advantages. The convolutional architecture
enforces the local filters to share weights across different
locations in the input space, therefore significantly redu-
cing the number of trainable parameters. The local fil-
ters enforce the features to be comprised of local spatial
features that are recurrently observed and are important
for classification instead of allowing the model to
memorize combinations of input. These together reduce
the tendency of over-fitting for our 3DCNN and allow
better performance.

Input Featurization
Two additional considerations for our 3DCNN per-
formance are the dimension of the local box and input
representation. The local box size defines the informa-
tion accessible by the network and therefore is a hyper-
parameter in our framework. Here we extract local
protein boxes of 20 Å based on our previous experience
with the FEATURE program. FEATURE uses a sphere
of diameter of 16 Å to define local microenvironment
around functional atoms of each of the 20 amino acid
because beyond a 16–20 Å cutoff, the atomic details do
not provide significant additional information. We cen-
tered our box on Cβ regardless of the amino acid type
and enlarged our box by 4 Å to include equivalent
surrounding information. For input representation, we
divide boxes into grid voxels in this study. The biggest
limitation of this design choice is that the grid voxel
system is not rotationally invariant. Therefore, we aligned
all local boxes in a standard manner using backbone
atoms of the central residue to ensure similar orientation.
The fine-grain feature extraction procedure enabled our
network to achieve good performance in characterizing
the amino acid environment.

Conclusion
To our knowledge, this is the first paper that performs
head-to-head comparisons between models utilizing
hand-engineered features and end-to-end trained deep
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learning networks in the context of protein engineering.
The consistent success of our deep 3DCNN over methods
using human-engineered features suggests that the free-
dom to discover arbitrary features from raw data provides
advantages over pre-defined features. Our results suggest
that 3DCNN framework is well suited for analysis of pro-
tein microenvironments, and that many of the benefits of
CNNs for 2D image analysis accrue in the context of 3D
protein analysis. The deep learning framework may hold
promise for more advanced protein analyses such as
pocket similarity evaluation or predicting protein-protein
interactions as more structural data become available.
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