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Abstract

Background: Protein-protein interactions (PPIs) are critical for many biological processes. It is therefore important
to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease
occurrence, and therapy design. Though various computational methods for predicting PPI have been developed,
their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful
results in diverse areas, but their effectiveness for PPI prediction has not been tested.

Results: We used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI
prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction
accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with
previous methods.

Conclusions: To our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI
prediction, and the results demonstrate its potential in this field.
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Background
Protein-protein interactions (PPI) play critical roles in
many cellular biological processes, such as signal trans-
duction, immune response, and cellular organization.
Analysis of PPI is therefore of great importance and may
shed light on drug target detection and aid in therapy
design [1]. Biochemical assays, chromatography, and
similar small-scale experimental methods have long been
used to identify novel PPIs, but these only contribute to
a low coverage of the whole PPI database due to their
poor efficacies [2]. High-throughput technologies, such
as yeast two-hybrid screens (Y2H) [3] and mass spec-
trometric protein complex identification (MS-PCI) [4],
have generated copious data, however, they are expen-
sive and time consuming. In addition, these methods
may not be applicable to proteins from all organisms
and often produce false-positive results [5]. Therefore,

high-throughput computational methods are needed to
identify PPIs with high quality and accuracy.
Recently, many computational methods have been gen-

erated to solve this problem. Of these, some have
attempted to mine new protein information, whereas
others involved the development of new machine-learning
algorithms. For protein information mining, Shen et.al
regarded any three continuous amino acids as a unit and
calculated the frequencies of those conjoint triads in the
protein sequences. They demonstrated that PPIs could be
predicted by sequences alone [6]. Several other methods,
such as autocovariance (AC) [7] and amino acid index dis-
tribution [8] were developed to extract features such as
physical chemical properties, frequencies, and locations of
amino acids to represent a protein sequence. Considering
the high dimensions of the features, dimension reduction
techniques have been used. For machine-learning algo-
rithms, support vector machine (SVM) and its derivatives
[9, 10], random forest [11] and neural networks [12], have
been applied. However, most studies provided only the
results of cross-validation, and did not test prediction
results using external datasets [6, 10, 13, 14].
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Deep-learning algorithms, which mimic the deep
neural connections and learning processes of the human
brain, have received considerable attention due to their
successful applications in speech and image recognition
[15, 16], natural language understanding [17] and deci-
sion making [18]. Compared to traditional machine
learning methods, deep-learning algorithms can handle
large-scale raw and complex data and automatically
learn useful and more abstract features [19]. In recent
years, these algorithms have been applied to bioinfor-
matics to manage increasing amounts and dimensions of
data generated by high throughput technique [20–24].
For genome regulation function prediction, for example,
Xiong et al. applied a deep neural network model to
predict DNA variants causing aberrant splicing. Their
method was more accurate than traditional models [25].
The DeepBind model constructed by Alipanahi and col-
leagues using convolutional networks could predict
sequence specificities of DNA- and RNA-binding proteins,
and identify binding motifs [26]. Identifying functional
effects of noncoding variants is a major challenge in hu-
man genetics. DeepSEA developed by Zhou et al. could
directly learn a regulatory sequence code from large-scale
chromatin-profiling data, enabling prediction of chromatin
effects of sequence alterations with single-nucleotide sensi-
tivity [27]. After that, the DnaQ model constructed by
Quang and coworkers achieved more than a 50% relative
improvement compared to other models for predicting the
function of non-coding DNA [28]. For protein function
prediction, Spencer et al. used a deep belief network
(DBN) to predict protein secondary structures and they
achieved an accuracy of 80.7% [29]. Sheng and colleagues
improved the prediction accuracy to 84% using deep con-
volutional neural fields [30]. Heffernan et al.’s algorithm
can not only predict secondary structures, but also can
predict backbone angles and solvent accessible surface
areas [31]. A more detailed summary of the application of
the deep learning algorithm in computational biology can
be found in a recent review [32].
In this study, we applied Stacked autoencoder (SAE)

to study sequence-based human PPI predictions. Models
based on protein sequence autocovariance coding
achieved the best results on 10-fold cross-validation (10-
CV) and on predicting hold-out test sets. The best
model had an average accuracy of 97.19% for the whole
training benchmark dataset. Various external test sets
were constructed and predicted using our model and
the prediction accuracies for these ranged from 87.99
to 99.21%. In addition, we trained and tested PPI
models on other species, and the results were also
promising. To our knowledge, our research is the first
to use a deep-learning algorithm for sequence-based
PPI prediction, and we achieved prediction perform-
ance that surpassed previous methods.

Datasets
Benchmark dataset
We obtained the Pan’s PPI dataset from http://www.csbio.
sjtu.edu.cn/bioinf/LR_PPI/Data.htm [14]. In this dataset,
the positive samples (PPIs) are from the human protein
references database (HPRD, 2007 version), with removal
of duplicated interactions (36,630 pairs remained).
Negative samples (non-interaction pairs) were generated
by pairing proteins found in different subcellular locations.
The protein subcellular location information was from the
Swiss-Prot database, version 57.3, according to the fol-
lowing criteria. (1) Only human proteins were collected.
(2) Sequences annotated with ambiguous or uncertain
subcellular location terms, such as “potential”, “probable”,
“probably”, “maybe”, or “by similarity”, were excluded. (3)
Sequences annotated with two or more locations were
excluded for lack of uniqueness. (4) Sequences annotated
with “fragment” were excluded, and sequences with fewer
than 50 amino acid residues were removed due to the pos-
sibility that they may represent fragments.
In total, 2,184 unique proteins from six subcellular

locations (cytoplasm, nucleus, endoplasmic reticulum,
Golgi apparatus, lysosome, and mitochondrion) were
obtained. By randomly pairing those proteins with others
found in different subcellular locations, along with the
addition of negative pairs from [33], a total of 36,480
negative pairs were generated. We removed protein pairs
with unusual amino acids, such as U and X to yield
36,545 positive samples and 36,323 negative samples to
form the benchmark dataset. The interaction networks
and the degree distributions of the positive and nega-
tive sample sets of the benchmark dataset are shown in
Additional file 1 Figure S1 and S2.
We mixed the positive and negative samples in the

benchmark dataset and randomly selected 7,000 pairs
(3,493 positive samples and 3,507 negative samples) as a
hold-out test set for model validation, the remainder of
which formed the pre-training set (33,052 positive sam-
ples and 32,816 negative samples). The pre-training set
was trained and tested using 10-CV, and the best models
were selected to predict the hold-out test set. To test the
robustness of the model, a non-redundant test set (‘NR-
test set’) was formed by removing pairs in the hold-out
test set with a pairwise identity ≥25% to those in the
pre-training set. After the network architecture and
parameters were selected, we trained with the whole
benchmark dataset to construct our final PPI prediction
model and used it to predict the external test sets.

External test sets
We used the following datasets as the external test sets.

(1) 2010 HPRD dataset: the 2010 version of the
HPRD dataset was downloaded and after removal
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of pairs common to the benchmark dataset, 9,214
pairs were obtained.

(2) 2010 HPRD NR dataset: we removed all pairs in the
2010 HPRD dataset with a pairwise identity ≥25% to
those in the benchmark dataset, after which, a total
of 1,482 pairs remained.

(3) DIP dataset: the 20160430 version released
Database of Interacting Proteins (DIP, human) was
downloaded. After removal of pairs shared with the
benchmark dataset, 2,908 pairs were obtained.

(4) HIPPIE dataset: The newly released HIPPIE v2.0
was downloaded. It contains the human PPIs from 7
large databases. The scores of PPIs which were equal
or larger than 0.73 was regarded as ‘high quality’
(HQ) data by the authors, while the scores of PPIs
which were lower than 0.73 was regarded as ‘low
quality’ (LQ) data. After removal of pairs shared
with the benchmark dataset, 30074 of ‘high quality
(HQ)’ PPIs dataset and 220442 of ‘low quality (LQ)’
PPIs dataset were obtained.

(5) inWeb_inbiomap: The newly released
inWeb_inbiomap was downloaded. It contains the
human PPIs from 8 large databases. We screened
out the PPIs with ‘confidence score’ equal 1 as the
‘high quality’ (HQ) data and treated the rest as the
‘low quality’(LQ) data. After removal of pairs shared
with the benchmark dataset, 155465 of ‘high quality’
PPIs dataset and 459231 of ‘low quality’ PPIs dataset
were obtained.

(6) 2005 Martin dataset: this dataset was provided by
Pan et al.[14].

Note that the samples in datasets 1–5 were all positive
and dataset 6 contained both positive and negative sam-
ples. Detailed information on the benchmark dataset and
the external test sets appear in Additional file 2: Table S1.

Datasets from other species
We also trained and tested our models using PPI
samples from other species, such as Escherichia coli,
Drosophila, and Caenorhabditis elegans. The datasets,
all obtained from DIP, were provided by Guo et al. (http://
cic.scu.edu.cn/bioinformatics/predict_ppi/default.html)
and include:

(1) E. coli-positive dataset containing 6,954 samples.
(2) Drosophila-positive dataset containing: 22,975

samples.
(3) C. elegans positive dataset containing 4,030 samples.

The negative samples from each species were also cre-
ated by pairing proteins from different subcellular loca-
tions, and, in all cases, the number of negative samples
was equal to the number of positive samples.

Methods
Stacked autoencoder
An autoencoder is an artificial neural network that
applies an unsupervised learning algorithm which infers
a function to construct hidden structures from unlabeled
data. Specifically, it attempts to make output x̂ similar to
input x, which is an encoding-decoding process. An SAE
consists of multiple layers of autoencoders, which are
layer-wise trained in turn, and the output of the former
layer is wired to inputs of the successive layer.
Consider a stacked autoencoder with n layers; the

encoding process of each layer is represented by:

a 1ð Þ ¼ f z 1ð Þ
� �

ð1Þ

Z lþ1ð Þ ¼ W l;1ð Þa lð Þ þ b l;1ð Þ ð2Þ
And the decoding process is its reverse order:

a nþ1ð Þ ¼ f z nþ1ð Þ
� �

ð3Þ

z nþlþ1ð Þ ¼ W n−l;2ð Þa bþlð Þ þ b n−l;2ð Þ ð4Þ
Where W(k,1), W(k,2), b(k,2), b(k,2) represent the weights

(W(1),W(2)) and Biases (b(1), b(2)), respectively, for the kth
layer autoencoder, and the useful information is stored
in a(n). This process may learn a good representation of
the raw input after several layers, and we can then link
the output to a softmax classifier to fine-tune all the pre-
vious parameters using a back-propagation algorithm
with classification errors. The structure of a stacked
autoencoder is shown in Fig. 1.
Here, we used the SAE DeepLearning Toolbox down-

loaded from (https://github.com/rasmusbergpalm/Dee
pLearnToolbox, 20111023). The learning rate and the
momentum of the model were the same for both human
and other species, while the neurons and layers were

Fig. 1 The structure of a stacked autoencoder (SAE)
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tuned and adjusted according to the training set of different
species. The detailed information of the training model can
be found in Additional file 3.

Protein sequence coding
We used two methods to code the protein sequences,
one is called the autocovariance method (AC) and the
other is called the conjoint triad method (CT).

Autocovariance method
The AC method, which describes how variables at different
positions are correlated and interact, has been widely used
for coding proteins [12, 34]. The protein sequence is trans-
formed by the following equation:

AClag;j ¼ 1
n−lag

Xn−lag

i¼1
Xi;j−

Xn

i¼1
Xi;j

� �

� X iþlagð Þ;j−
Xn

i¼1
Xi;j

� �

ð5Þ

Where j refers to the j-th descriptor, i is the position
of the protein sequence X, ⋅Xi,j is the normalized j-th
descriptor value for i-th amino acid, n is the length of
the protein sequence X, and lag is the value of the lag.
In this way, proteins with variable lengths can be coded
into vectors of equal length (j × lag).
In this study, j is seven (seven physicochemical proper-

ties); the names and exact values of these properties are
shown in Additional file 4: Table S3. Guo and colleagues
[7] selected a value of 30 for the lag and we also used
this value. Consequently, the vector contains 210 num-
bers (7 × 30). The codes of two proteins in a pair were
normalized and concatenated as the input to the models.

Conjoint triad method
The CT method was first proposed by Shen et al. to rep-
resent a protein using only its sequence information [6].
First, all 20 amino acids are clustered into seven groups
according to their dipole and side chain volumes
(Additional file 4: Table S2). Next, each amino acid
from a protein sequence is replaced by its cluster number.
For example, the protein sequence:

P ¼ MREIVHIQAG

is replaced by:

P ¼ 3562142411

Then, a 3-amino acid window is used to slide
across the whole sequence one step at a time from
the N-terminus to the C-terminus.
By calculating the frequency of the combination of

each three numbers:

111 ¼ f 1 121 ¼ f 8⋯177 ¼ f 337
211 ¼ f 2 221 ¼ f 9⋯277 ¼ f 338

⋯
711 ¼ f 7 721 ¼ f 14⋯777 ¼ f 343

8><
>:

9>=
>;

ð6Þ

The protein P is represented by a vector of 343 num-
bers, all of which are zero except for f276 (356), f89
(562), f13 (621), f149 (214), f71 (142), f158 (424), f23
(241), and f4 (411).

Evaluation criteria
The performance of the models was evaluated by means
of the classification accuracy, specificity, sensitivity, and
precision, as defined respectively by:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð7Þ

Specificity ¼ TN
TN þ FP

ð8Þ

Senisitivity ¼ TP
TP þ FN

ð9Þ

Precision ¼ TP
TP þ FP

ð10Þ

Where TP, TN, FP, and FN represents true positive, true
negative, false positive, and false negative, respectively.

Results
Training
The pre-training dataset was trained with 10-CV, and
models with the best performance were selected to pre-
dict the hold-out test set. Because the hidden layer and
the neuron numbers for each layer of SAE are both
critical parameters, we tried different combinations;
Details of these combinations are shown in Additional file 5
Figures S3, S4 and Table S4.
Interestingly, for both the AC and CT models (protein

sequences coded by AC or CT), one hidden layer was
adequate for this task. More specifically, a one-hidden-
layer model with 400 neuron numbers using the AC
model achieved the best results (average accuracy
96.95%). The overall accuracies of the CT models ranged
from 94.2% to 94.5%, with the best average accuracy,
94.52%, achieved at 700 neuron numbers (Table 1). It is
worth noting that a one-hidden-layer with a medium
neuron numbers was sufficient to train the dataset with
relatively high accuracy; more layers and neuron numbers
did not improve the predictive power. This phenomenon
was also observed by Zeng et al. on predicting the pro-
tein binding motif on DNA using a convolutional
neural network (CNN) method [23]. This might be due
to the specificity of individual task and the nature of
the individual dataset.
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Then AC and CT models with the best performance
with 10-CV were recruited to predict the hold-out test
set. The AC model achieved an accuracy of 96.82%,
whereas the CT model 94.47%. We removed all pairs in
the hold-out test set with ≥25% pairwise identity with
those in training set (NR-test set) and used these to con-
firm the models. The predictive abilities of both models
did not decrease appreciably with the NR-test set
(Table 1). So, we obtained robust performance on 10-CV
training, and for predicting the hold-out and the NR-test
sets. Because the AC coding method was superior to the
CT coding method for this task, we used AC in the sub-
sequent model construction.
We built our final model with the architecture and

parameters of the best trained AC model trained on pre-
training dataset. This time the whole benchmark dataset
was used for training with 10-CV. We achieved a 10-CV
training accuracy as depicted in Table 2, which is one of
the best training results compared to the previous
methods using the same dataset (Table 3). The Dirichlet
allocation (LDA)-random forest (RF) model from Pan et
al. yielded the best training accuracy. Regrettably, how-
ever, most previous research did not use external test
sets to further confirm predictive abilities of their
methods, including Pan’s.

Prediction of external test sets
Our final model was used to predict the external test
sets. We used the newest version of HPRD dataset (2010
HPRD dataset) as one of the external test sets for our
model. After excluding the protein pairs that are same in
the benchmark dataset, a total of 9,214 PPI were
obtained. Our model yielded a prediction accuracy of
99.21%. After the removal of the protein pairs with a
≥25% pairwise sequence identity to those in the bench-
mark dataset (the 2010 HPRD NR dataset), the predic-
tion accuracy was still high (97.14%) (See more details
about the redundancy removal in Additional File 6). We

compared our results with Guo’s work. Using the 2009
version of HPRD to test their model, which was based
on AC coding and SVM algorithm, Guo et al. achieved a
prediction accuracy of 93.59% [35]. Redundancy removal
of their test sets resulted in a prediction accuracy of
93.09%. This demonstrated a better prediction capacity
of our model.
The 20160430 version of the DIP human dataset

(DIP dataset. All PPI pairs in DIP dataset are listed
in Additional File 7) was also tested, and this yielded a
prediction accuracy of 93.77% (Table 4) for our model. As
the training accuracy of the model of Pan et al. was
slightly higher than ours, we compared prediction abilities
of the two models on external test sets. We submitted the
2010 HPRD, the 2010 HPRD NR, and the DIP datasets to
Pan’s online server (http://www.csbio.sjtu.edu.cn/bioinf/
LR_PPI), and the returned prediction accuracies on these
datasets were 89.15%, 86.70%, and 90.04%, respectively.
These values were lower than those obtained with our
model (99.21, 97.14 and 93.77%, respectively).
Recently, a large number of human PPIs have been veri-

fied due to the continually development of the high-
throughput technologies. We selected two comprehensive
databases that integrated most of the newly-updated PPIs
databases (see the Database section) to test our model.
The prediction accuracy of the HIPPIE HQ was 92.24%
while the prediction accuracy of the HIPPIE LQ was
89.72%. The prediction accuracy of the inWeb_inbiomap

Table 1 The 10-CV training performance of the pre-training
models and their prediction performances on test sets

Code Sen. Spe. Pre. Acc. Test set acc. NR-test set acc.

AC 0.9806 0.9588 0.9581 0.9695 0.9682 0.9591

CT 0.9542 0.9367 0.9357 0.9452 0.9447 0.9312

Column 2–5 represent the results of 10-cv with standard deviations ranged
from 0.001 to 0.003
Test set acc.: prediction accuracy for the hold-out test set
NR-test set acc.: prediction accuracy for the NR-test set

Table 2 The 10-CV training performance of the final model

Code Sen. Spe. Pre. Acc.

AC 0.9806 0.9634 0.9627 0.9719

Column 2–5 represent the training results of 10-cv with standard deviations
ranged from 0.001 to 0.003

Table 3 Comparison of the 10-CV training accuracy to those of
previous methods using the same dataset

References Algorithm Training
Accuracy

[6] SVM 0.83

[35] SVM 0.9037

[14] LDA-ROF 0.9790

[39] CS-SVM 0.9400

[13] ELM 0.8480

[10] SVM 0.9200–0.9740

Our Model SAE 0.9719

Table 4 Prediction performance of the final model on external
datasets

Dataset name Samples Acc. Pan et al.’s acc.

2010 HPRD 9214 0.9921 0.8915

2010 HPRD NR 1482 0.9714 0.8670

DIP 2908 0.9377 0.9004

HIPPIE HQ 30074 0.9224 0.8501

HIPPIE LQ 220442 0.8704 –

inWeb_inbiomap HQ 155465 0.9114 –

inWeb_inbiomap LQ 459231 0.8799 –

HQ High quality, LQ Low quality
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HQ was 91.14% while the prediction accuracy of the
inWeb_inbiomap LQ was 87.99%. We noticed that our
model had better prediction on the HQ dataset than the
LQ dataset. We also submitted the HIPPIE HQ dataset to
Pan’s server, and the returned prediction accuracy was
85.01%, which was lower than that of our model (92.24%).
Overall, these data suggest that our model, based on

SAE, is a powerful and promising tool for the prediction
of PPI, especially for the newly released PPIs from the
two comprehensive datasets.
A previously generated dataset with 938 positive and

936 negative samples (2005 Martin dataset) [36] has been
utilized in a number of previous studies [14, 37–39]. We
noticed, however, that most of the previous models used
this dataset for training and did not use it for testing. As
this dataset is small and has a low coverage on PPI space,
the training performance of the previous research using it
seems unsatisfying. Notably, Zhang, et al. only used posi-
tive samples of the 2005 Martin dataset to test their model
and achieved an accuracy of 87.28% [39]. We also tested
the 2005 Martin dataset with our model, and we achieved
an accuracy of only about 50%, suggesting that the model
nearly lost predictive ability (Additional file 8: Table S5).
We then tested the positive and negative samples separ-
ately and found the prediction accuracy for the positive
samples was as high as 94.34% (higher than that of Zhang
et al.), whereas for the negative samples, the prediction
accuracy was only 6.7%. We also used Pan’s web server to
test positive and negative samples from the 2005 Martin
dataset, and found that the prediction accuracies were
nearly the same as ours (93.52% for positive samples and
5.32% for negative samples). Thus, the model regarded
most of the negative samples as positive. We compared
the sequence similarities of the positive and negative sam-
ples of the 2005 Martin dataset between the positive and
negative samples of the benchmark dataset, respectively,
and found the unsatisfied result might be due to that the
negative samples of 2005 Martin dataset was much similar
to the positive samples of the benchmark dataset rather
than similar to the negative samples of benchmark dataset
(Additional file 8: Table S7).

Performance on prediction PPI from other species
We also tested the performance of our algorithm with
regard to PPIs from E. coli, Drosophila, and C. elegans,
with the same training and test data provided by Guo et
al. They built their models using SVM with protein
coded by AC [35]. Here, we used 5-CV in training which
could directly compare with Guo’s result. For E. coli, the
model was 3 layers and for each layer 420, 500, and 2
neurons were used ([420,500,2]), and this achieved an
average training accuracy of 96.05%. For Drosophila, the
model structure had three layers [420, 300, and 2], and it
achieved an average training accuracy of 97.84%. For C.

elegans, the model structure [420,500,2] achieved an
average training accuracy of 97.23%. The detailed train-
ing results of our models with Guo et al. ’s training
accuracies as comparison are listed in Table 5. It can be
seen that for C. elegans, we achieved comparable accuracy
to Guo et al.’s model, while for E. coli and Drosophila, our
accuracies were higher. Overall, these results demonstrate
the power of our algorithm for different species.

Discussion
Deep-learning algorithms have been used in many fields
and their applications in bioinformatics are increasing.
However, these powerful methods have not yet been
extended to the study of PPI. Thus, in this study, we
used a deep-learning algorithm-SAE, in combination
with two widely-used protein sequence coding methods
AC and CT, to study human PPIs. The performance of
our model suggests that the SAE algorithm is robust,
and that the AC coding method is superior to CT coding
for this task. The training accuracy of our model on the
benchmark dataset was comparable to, or higher than,
previous models. Our model also had good predictive
ability for other external test sets, which were not tested
in most previous studies. It is noteworthy that our
model gave a satisfying prediction accuracy for a large
number of newly verified PPIs. Although Pan et al.’s
model achieved the highest training accuracy (97.9%),
our prediction accuracies for the three external test sets
were significantly better. In addition, we applied our
algorithm to train and test PPIs from other species, and
performance was promising. Proteins interact with one
another through a group of amino acids or domains, so
the success of our SAE algorithm may be due to its
powerful generalization capacity on protein sequence
input codons to learn hidden interaction features.
Although many previous models performed consider-

ably worse on the 2005 Martin dataset, sufficient evi-
dence was not available to explain why this happened.
By testing positive and negative samples separately and
analyzing sequence similarities between the test and
training sets, we found less sequence similarity between
the Martin 2005 negative samples and the training nega-
tive samples, and we believed that this contributed to
unsatisfying prediction accuracy. Because the data were
based on unbalanced positive and negative samples, likely
the algorithm did not learn many more features than

Table 5 Training performance on PPIs from other species

Species Sen. Spe. Pre. Acc. Guo et al.’s acc.

E. coli 0.9689 0.9528 0.9518 0.9605 0.9273

Drosophila 0.9951 0.9628 0.9616 0.9784 0.9009

C. elegans 0.9935 0.9528 0.9508 0.9723 0.9751

Colum 2–5 are the training results of 5-CV with standard deviations ranged
from 0.001 to 0.003
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sequence similarity to discriminate between positive and
negative datasets (Additional file 9: Table S6, Figure S5).
Considering that only ~2,000 proteins with verified

subcellular location were available to construct the nega-
tive samples (there were ~9,000 proteins for positive
samples), the combined number of protein pairs was
insufficient to cover the negative PPI space, prohibiting
construction of a reliable PPI prediction model, some-
thing also mentioned in Pan et al.’s paper [14]. Our
analysis re-emphasizes the need to construct a solid
negative dataset with wide coverage of proteins for PPI
prediction, in addition to expanding the absolute num-
ber of PPI samples for training. This idea agrees with
the concept of big data, which emphasizes data com-
plexity besides of data volume. Some consideration has
been made for selection of negative samples. For
instance, Yu and co-workers proposed that the negative
and positive training sets should be balanced to achieve
a high-confidence result [40], but Park et al. disagreed,
arguing that Yu et al. confused different purposes for
PPI analysis [41]. Other groups have tried different
methods to build negative data, but did not achieve
promising results [6]. We suggest that future work
should focus on the construction of a solid and reason-
able negative training set, covering negative PPI space
as much as possible, to improve the overall prediction
accuracy for external datasets.
For protein sequence coding, we used the pre-defined

feature extraction methods of AC and CT and the
model performed well for predicting PPIs. Either AC or
CT has undergone predefined feature selection. With
AC coding, physical chemical properties were selected
by human knowledge, whereas with CT coding, amino
acid classification was made manually. Using pre-defined
features for protein function prediction with deep learning
algorithm has been common in previous work [29–31].
This deviated somewhat from the essence of deep learn-
ing: automatic feature extraction. Future work may focus
on developing novel methods for best representing raw
protein sequence information.

Conclusions
In this study, we applied the deep-learning algorithm,
SAE, for sequence-based PPI prediction. The best
model achieved an average training accuracy of
97.19% on 10-CV training. Its predictive accuracies
for diverse external datasets ranged from 87.99% to
99.21%. Furthermore, we trained the datasets from
other species, such as E. coli, Drosophila, and C. ele-
gans, and results were also promising. To our know-
ledge, this research is the first to apply a deep-
learning algorithm to sequence-based PPI prediction,
and the results demonstrate its potential in this field.
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