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Abstract

Background: Several recent studies showed that next-generation sequencing (NGS)-based human leukocyte
antigen (HLA) typing is a feasible and promising technique for variant calling of highly polymorphic regions. To
date, however, no method with sufficient read depth has completely solved the allele phasing issue. In this study,
we developed a new method (HLAscan) for HLA genotyping using NGS data.

Results: HLAscan performs alignment of reads to HLA sequences from the international ImMunoGeneTics project/
human leukocyte antigen (IMGT/HLA) database. The distribution of aligned reads was used to calculate a score
function to determine correctly phased alleles by progressively removing false-positive alleles. Comparative HLA
typing tests using public datasets from the 1000 Genomes Project and the International HapMap Project
demonstrated that HLAscan could perform HLA typing more accurately than previously reported NGS-based
methods such as HLAreporter and PHLAT. In addition, the results of HLA-A, −B, and -DRB1 typing by HLAscan using
data generated by NextGen were identical to those obtained using a Sanger sequencing–based method. We also
applied HLAscan to a family dataset with various coverage depths generated on the Illumina HiSeq X-TEN platform.
HLAscan identified allele types of HLA-A, −B, −C, −DQB1, and -DRB1 with 100% accuracy for sequences at ≥ 90×
depth, and the overall accuracy was 96.9%.

Conclusions: HLAscan, an alignment-based program that takes read distribution into account to determine true
allele types, outperformed previously developed HLA typing tools. Therefore, HLAscan can be reliably applied for
determination of HLA type across the whole-genome, exome, and target sequences.
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Background
The major histocompatibility complex (MHC) proteins
play critical roles in regulating the adaptive immune sys-
tem in vertebrates. Specifically, the MHC proteins par-
ticipate in suppression and removal of pathogens by
binding to foreign self-peptides and presenting antigens
to receptors on other immune cells [1, 2]. Human MHC
proteins are encoded by the human leukocyte antigen
(HLA) locus, which maps to a 3.6 Mbp stretch on hu-
man chromosome 6p21.3. The HLA locus is one of the

most complex regions of the human genome: although it
constitutes only 0.3% of the genome, it makes up 1.5%
of genes in OMIM, and 6.4% of genome-wide significant
SNPs are located in this region [3]. Multiple genome-
wide association studies have identified statistically sig-
nificant associations between SNPs within HLA genes
and disease phenotypes [3, 4], and shown that this re-
gion is associated with more diseases (mainly auto-
immune and infectious) than any other region of the
genome [1, 5]. In the clinic, acceptance or rejection of
the graft after tissue transplantation is primarily deter-
mined by compatibility of HLA gene sequences between
donor and recipient. Therefore, precise HLA typing is of
great clinical importance, and a great deal of research ef-
fort has been devoted to the identification of HLA sub-
types and development of typing methods [6–8].
Nonetheless, precise HLA typing remains very challenging
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due to the high degree of polymorphism among HLA
genes [7], sequence similarity among these genes, and ex-
treme linkage disequilibrium of the locus [9]. For example,
according to the ImMunoGeneTics project (IMGT)/HLA
database, over 3000 allele variants have been reported in
the MHC class I HLA-B gene [7], and the alleles of HLA-
A, B, and C exhibit high similarities.
For clinical purposes, HLA typing at the amino-acid

level (four-digit) is necessary, because amino-acid differ-
ences among HLA proteins with the same antigenic pep-
tide (two-digit) can lead to allogeneic responses.
Established methods for HLA typing at this high reso-
lution include polymerase chain reaction (PCR) using
sequence-specific oligonucleotide (SSO) or Sanger se-
quencing–based typing (SBT). Although useful in rou-
tine clinical practice, these methods are low-throughput,
labor-intensive, and expensive [8, 10]. As an alternative,
targeted amplicon sequencing (also known as the PCR-
NGS approach) was recently developed. This technology
uses standard PCR to capture regions of interest, and
the resultant amplicons are then subjected to next-
generation sequencing (NGS). The method is relatively
high-throughput and inexpensive compared with PCR-
SSO and PCR-SBT, and enables highly accurate HLA
typing by producing hundreds of base pairs of long se-
quence reads at high coverage depth [11–13]. Further-
more, over the past few years, genome-wide sequencing
data such as whole-genome sequence (WGS) or whole-
exome sequence (WES) became widely available as a re-
sult of various genome sequencing projects, e.g., the 1000
Genomes Project [14], NHLBI GO Exome Sequencing
Project (https://esp.gs.washington.edu/), and UK10K pro-
ject (http://www.uk10k.org/). Although most of the re-
cently generated genome-wide datasets consist of short
sequence reads (~101 bp), for reasons related to efficiency
and cost, HLA typing from WGS or WES datasets is a
feasible and efficient strategy for achieving accurate typing
with existing resources [6, 15].
Several groups have developed methods for HLA typ-

ing using short sequence reads as input, and their ap-
proaches can be classified into two groups: the assembly
approach, in which short reads are assembled into lon-
ger contigs, and the alignment approach, in which short
reads are aligned to known reference allele sequences.
Both methods have an elevated risk of detecting false-
positive alleles resulting from phase ambiguity. In
addition, the former method is time-consuming because
it requires complex computational procedures. Despite
these difficulties, advances in NGS have been accompan-
ied by the development of multiple software packages
capable of performing HLA typing using short reads,
e.g., the assembly approach has introduced software
such as HLAminer [16], HLAreporter [17], and ATH-
LATES [18], whereas the alignment approach has

yielded programs such as PHLAT [15] and Omixon
Target HLA [19]. Although recently published programs
such as HLAreporter and PHLAT are able to predict
HLA types quite accurately, their precision could still be
improved. In this study, we developed an enhanced
method, HLAscan, and compared its HLA typing per-
formance with those of HLAreporter and PHLAT using
multiple NGS datasets that were either publically avail-
able or newly generated in this study.

Methods
WES data from public genome datasets
Public WES datasets were utilized to verify HLAscan
performance: specifically, FASTQ data for 10 samples
from the 1000 Genomes Project (http://www.internatio
nalgenome.org/) and 51 samples from the International
HapMap Project (ftp://ftp.ncbi.nlm.nih.gov/hapmap/)
were downloaded from the respective websites. For the
10 samples from the 1000 Genomes Project, HLA types
were determined by a Sanger sequencing–based method
reported elsewhere [18]. These data were used to evalu-
ate the accuracy of the typing results generated by
PHLAT and HLAreporter [15, 17]. Verified HLA types
for the 51 HapMap samples were also reported previ-
ously [12, 20]. Previously, the HLAreporter algorithm
was evaluated using HapMap data (18, 18, 11, 45, and 46
cases for HLA-A, HLA-B, HLA-C, HLA-DRB1, and
HLA-DQB1, respectively) [17]. Analysis using these sam-
ples enabled comparison of the performance of HLAs-
can with typing results obtained by other methods. To
avoid biasing the analysis in a manner that would have
favored HLAscan, typing accuracy was evaluated using
the values suggested in the original publications describ-
ing HLAreporter and PHLAT.

Sequencing-based genotyping of HLA-A, −B, and -DRB1
Genomic DNA of five Korean subjects was extracted
from white blood cells using the Blood DNA Extraction
kit (Qiagen, Palo Alto, CA, USA). PCR-SBT was per-
formed on HLA-A, −B (exons 2–4), and -DRB1 (exon 2)
using the SeCore A, B and DRB1 Locus Sequencing Kit
(Invitrogen, Brown Deer, WI, USA). Data analysis was
performed using the uTYPE HLA SBT software v3.0
(Invitrogen) and Sequencher (Gene Codes Corp., Ann
Arbor, MI, USA). Detailed information on the subjects
and the SBT-based HLA typing method were reported
previously [21].

NGS-based sequencing of HLA genes in samples from
Korean subjects
To generate targeted sequencing data, all samples of
total DNA were extracted from white blood cells using
the Blood DNA Extraction kit. Five samples were se-
quenced using the NextGen sequencing system (MGH,
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Boston, MA, USA). For family data, nine families con-
sisting of a total of 52 individuals participated in this
study. Four families included two generations, including
both parents and one or two offspring (three quads and
one trio), and were sequenced at approximately 30× read
depth. The other five families included three genera-
tions, and the members of each family were sequenced
at three different coverage depths: 30×, 60×, and 90×.
Genome sequence was determined using the HiSeq X-
TEN system with the TruSeq DNA PCR-free library
(Illumina, San Diego, CA, USA). Genomic DNA
(500 μg) was sheared into 150–200 bp fragments on a
Covaris sonicator (Covaris, Woburn, MA, USA), which
generates dsDNA fragments with 3’ or 5’ overhangs. Fol-
lowing AMPureXP purification using magnetic beads
(Beckman Coulter, Boulevard Brea, CA, USA), the
double-stranded DNA fragments with overhangs were
repaired using exonuclease and polymerase mix, and
clones of appropriate sizes were selected using various
ratios of sample purification beads in the AMPureXP
system. Multiple indexing adaptors were ligated to the
ends of the DNA fragments to prepare them for
hybridization onto a flow cell. Prior to sequencing, the
enriched DNA library with adaptor-modified ends was
further amplified by PCR (six cycles, Herculase II fusion
DNA polymerase) with pre-capture reverse PCR
primers. The targeted genes were captured by
hybridization of the amplified library with capture
probes for 24 hrs at 65 °C. The hybridization mix was
washed in the presence of magnetic beads (Streptavidin
T1, Life Technologies). The eluted fraction was PCR
amplified (16 cycles), and 30 index-tagged libraries were
combined. The final library was sequenced on an Illu-
mina HiSeq X-TEN platform with a paired-end run of
2 × 151 bp. The quality of each read was initially verified
using the software embedded in the HiSeq X-TEN se-
quencer. A FASTQ file was generated for each tester
sample for sequence alignment and converted to a BAM
file for further analysis. (All FASTQ files are available on
request.)

Preprocessing for HLAscan: Alignment of sequence reads
to HLA genes
HLAscan starts with sequence reads in FASTQ format
for mapping to IMGT/HLA data. For targeted sequen-
cing data, sequence reads can be used as direct input for
HLAscan, whereas for WGS and WES data, it is neces-
sary to select reads for HLA genes prior to running
HLAscan. In comparison with targeted sequencing data,
alignment of whole-genome/exome data directly to the
IMGT/HLA database may miss some HLA reads. None-
theless, this algorithm was adopted because alignment of
HLA reads to the IMGT/HLA database is advantageous
in regard to both time and computational processing

without loss of predictive accuracy. Initial alignment was
performed using bwa-mem v0.7.10-r789 with default op-
tions [22]. BWA-MEM is an accurate standard tool for
aligning next-generation sequencing data to a reference
sequence. In addition, it is a fast alignment tool; there-
fore, in our application, which involved many allele se-
quences in IMGT/HLA, BWA-MEM was the best fit for
HLAscan. Sequence reads in the BAM file were sorted
by reference coordinates using the FixMateInformation
function, followed by removal of duplicate reads using
MarkDuplicates in the Picard software package (version
1.68) (http://picard.sourceforge.net). Subsequently, iden-
tification of indels and re-alignment around these fea-
tures were performed with the RealignerTargetCreator
and IndelRealigner tools, respectively, and base-pair
quality scores were recalibrated with BaseRecalibrator
and PrintReads using the GATK software (version 3.3.0)
([23], http://www.broadinstitute.org). Throughout this
processes, sequence reads corresponding to the exonic
regions of HLA genes were selected based on an initial
alignment generated using GATK with a whole-genome
reference (GRCh37.p13). This filtering step does not
classify the sequence reads into specific HLA genes.
Analysis by HLAscan consisted of two steps. First,

the selected reads were aligned with reference HLA
alleles obtained from the IMGT/HLA database
(http://www.ebi.ac.uk/ipd/imgt/hla/). This process ex-
tracted sequence reads exhibiting 100% identity with
alleles in the database, and discarded the rest. Second,
allele types were determined based on the numbers
and distribution patterns of the reads on each refer-
ence target. A score function was optimized as de-
scribed in the following section, and used to select
candidate alleles prior to pinpointing correct alleles
by resolving phasing issues (Fig. 1). Alignments were
performed against exons 2, 3, 4, and 5 of class I HLA
genes, and exons 2, 3, and 4 of class II genes. Typing
was primarily performed with exons 2 and 3 for class
I, and exon 2 for class II, HLA genes because, for
many of the IMGT/HLA target alleles, sequence in-
formation is registered in the database only for these
exons. When these exons did not provide enough
specificity, the other exonic regions were taken into
account for HLA inference. It takes nearly one hour
for HLA typing of HLA-A, B, C, DR, and DQ when
starting from BAM files of whole-genome and exome
sequencing data, using a computer system (Intel Xeon
CPU E5-2630 v2, 6 Cores).

Score function for selecting candidate alleles by HLAscan
High polymorphism and the existence of numerous al-
lele types for each gene make it difficult to handle the
phasing issue, ultimately degrading the performance of
HLAscan. Because the predictive accuracy of the
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HLAscan algorithm is higher when the number of candi-
date alleles is smaller, it is necessary to minimize the
number of candidate alleles by eliminating as many false
alleles as possible prior to handling the phasing issue.
To filter false alleles out of the initial candidate allele
group, HLAscan uses a score function that evaluates the
distribution of aligned reads on the target region. ‘Readi’
was defined as the coordinate on a target sequence that
matches the center of the i-th read when there are n
reads (1 ≤ i ≤ n). ‘Readi’ can be calculated by [(start
coordinate of i-th read + end coordinate of i-th read)/2]
when a sequence is aligned from the position of the start
coordinate of i-th read to the end coordinate of i-th read
in the target sequence. The number of consecutive posi-
tions in the target sequence with no readi is the distance
between the centers of two adjacent reads, defined as Dj

(1 ≤ j ≤m).
Then, the score function is calculated as:

Score ¼
Xm

j¼1

Dj
c

� �3

, where c is a constant.

The constant can be defined based on the sequence
depth and length of the reads. When sequencing depth
in the target region was 30× with evenly distributed
reads of 150 ntd, the distance between the centers of
two adjacent reads would be 5 under ideal circum-
stances. With real NGS data (60× obtained by targeted
sequencing or 30× obtained by WGS), the constant was
typically set to 30 with the assumption that each pos-
ition was covered an average of five times (5×). If the
distance between the centers of two adjacent reads (Dj)
is longer than 30, Dj/c will be higher than 1. Therefore,
longer distance will reach to the penalty cutoff more eas-
ily by the third power of the distance. The exponent
value was tested from 2 to 4, and it was found that the
third power provided the best resolution between score
function values. For this study, it was assumed that the
average length of sequence reads was approximately
150 bp, and the constant c was set to 30. When an allele
contains a 150 bp region (i.e., the length of one read) be-
tween the centers of two adjacent reads, Dj would be

Fig. 1 HLAscan workflow. The algorithm of HLAscan is explained schematically in five main steps. Step 1 depicts collection of read sequences of HLA
genes produced from a sample. Step 2 demonstrates alignment of HLA-A gene read sequence to the human reference genome sequence. In step 3, HLA-
A read sequences are aligned to specific allele types. From the candidate alleles, true allele types are determined by applying a score function (step 3 to
step 4) and resolving phasing issues (step 4 to step 5). Gray vertical lines under reference sequences represent positions with sequence variance. Black
arrows in alleles A*02, A*03, and A*05 of step 3 indicate genetic positions with no sequence reads aligned. Circled bases in step 4, A and T in A*01, and
T in A*04 represent unique sequences that are not redundant with base sequences in any other ranked alleles
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150 and the score function would be 125. HLAscan dis-
carded alleles with scores above 125 for all analyses in
this study. Examples of read alignment are shown in step
3 in Fig. 1. Alleles A*01 and A*04 are true alleles derived
from actual sample DNA sequences, whereas the rest
are false alleles generated from parts of true alleles. Con-
sidering the number of the aligned reads, and depth
coverage, the score function in HLAscan evaluates
whether aligned reads are distributed evenly, and among
these candidates would select alleles A*01, A*04, and
A*06. The other alleles were eliminated because posi-
tions without perfectly matching reads would have sig-
nificantly increased their scores.

Removal of duplicated alleles
The remaining alleles that passed the score function test
were considered as candidate alleles. Although many false
alleles would be eliminated by the score function, HLAscan
further minimizes the number of candidates by defining du-
plicated alleles and removing them in the next step. Dupli-
cated alleles can arise for two different reasons. First, when
the sequence information of reads that map to two distinct
alleles is perfectly identical, HLAscan groups these reads
and generates a representative allele. All alleles that belong
to this representative allele are then designated as duplicated
alleles. Mapping of identical reads to different alleles occurs
because some IMGT/HLA alleles possess exons that are in-
distinguishable from each other. For example, HLA-A alleles
*02:01:01:01, *02:01:01:02 L, *02:01:01:03, and *02:01:01:04
share eight exons from exons 1 to 8. If *02:01:01:01 is the
true allele, the other three alleles will have the same scores
and pass the score function test. HLAscan virtually set allele
*02:01:01 as a representative allele and discarded the four 8-
digit alleles from the candidate list. Second, it is possible for
all of the sequencing reads that map to one allele to consti-
tute a subset of sequence reads that map to another allele.
In this case, the former allele will be called a duplicated al-
lele. Because the two alleles share high similarity, if one of
them is the true allele, then the other would pass the score
function test too. An additional algorithm was designed to
select true alleles among these similar candidates, based on
the assumption that true alleles are more likely to carry
unique reads than false alleles. At this step, each candidate
allele was evaluated to determine whether any sequence

reads around the variant sequences were unique in the can-
didate. The unique sequence were counted, and candidates
with unique sequence blocks were selected as candidate true
alleles, whereas alleles without unique sequence blocks were
discarded.

Handling phase issues by HLAscan
Removal of duplicated alleles usually leaves several or
fewer candidate alleles. The number of unique sequence
reads on each of the candidate alleles is counted again,
because the number of unique sequences in the candi-
date alleles may be miscounted due to the presence of
false alleles that were removed at the previous step.
Then, the first and second candidate alleles are deter-
mined based on which has a higher unique read count.
Eventually, the system yields a heterozygote call if the
two final candidate alleles possess uniquely aligned
reads, or a homozygote call if only one allele possesses
unique aligned reads. An example is provided in step 4
of Figure 1. Alleles A*01, A*04, and A*06 represent
alignment with good depth coverage and relatively even
read distribution. Although allele A*06 has reads that
are common to allele A*01 or A*04, allele A*01 and
A*04 both possess their own unique reads. In this case,
HLAscan will select alleles A*01 and A*04 as the final
HLA types.

Results
Predictions of 11 samples from the 1000 Genomes
Project
We evaluated the performance of HLAscan by compar-
ing the HLA types predicted by this algorithm with pub-
lished data [18] for 10 individuals whose genome
sequences are publically available from the 1000 Ge-
nomes Project (http://www.internationalgenome.org/).
The score function cutoff was set to 125, and a higher
cutoff did not improve prediction accuracy. We also
compared the HLA types predicted by HLAscan with
those obtained from two other algorithms, PHLAT [15]
and HLAreporter [17]. This analysis encompassed 100
alleles, representing two alleles for each of five genes
from 10 individuals (2 alleles × 5 genes × 10 individuals).
PHLAT predicted HLA types for 100 alleles with an ac-
curacy of 97% at the two-digit level and 95% at the four-
digit level (Table 1 and Additional file 1: Table S1).

Table 1 Comparison of the performance of three methods using 1000 Genomes Project data

Methods No. of examined alleles Phase* Wrong
(2-digit)

Wrong
(4-digit)

Accuracy
(2-digit)

Accuracy
(4-digit)

HLAreporter1 110 13 2 2 98% 98%

PHLAT2 100 - 3 5 97% 95%

HLAscan3 110 - 0 0 100% 100%

(1 Published [17]; 2 Published [15]; 3 In this study). * Multiple alleles were predicted due to ambiguous localization of sequence variants or unsolved phasing issues
of various sequences
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HLAreporter predicted gene types with 98% accuracy at
the two-digit level, but did not completely resolve phas-
ing issues for 13 alleles; consequently, the software pre-
dicted multiple alleles including the correct one in each
of these cases (Additional file 1: Table S1). HLAscan cor-
rectly predicted HLA alleles with 100% accuracy at both
the two- and four-digit levels without ambiguity.

Predictions of 51 HapMap samples
Next, we predicted HLA types for 51 individuals
whose sequences were downloaded from the Inter-
national HapMap Project (ftp://ftp.ncbi.nlm.nih.gov/
hapmap/). Using previously published data as a refer-
ence for the correct typing results [12], we compared
the results obtained with HLAscan with those gener-
ated by HLAreporter [17]. The score function cutoff
was set to 125, and a higher cutoff did not improve
prediction accuracy. Both HLAscan and HLAreporter
predicted HLA-A, HLA-B, and HLA-C gene types
with 100% accuracy at the two-digit level. At the
four-digit level, HLAscan mistyped a HLA gene in
two cases, whereas HLAreporter had accuracies of
80.5%, 83.3%, and 95.5% for HLA-A, HLA-B, and
HLA-C, respectively (Table 2 and Additional file 2:
Table S2). For class II genes, the differences in the results
obtained by the two methods were marginal. The predic-
tions of HLAscan agreed with the established results in
100% (two-digit) and 91.3% (four-digit) of cases for HLA-
DQB1, and 96.7% (two-digit) and 95.6% (four-digit) for
HLA-DRB1 (Table 2). By comparison, HLAreporter had
accuracies of 98.9% and 89.1% for HLA-DQB1, and 97.8%
and 95.6% for HLA-DRB1.
Further analysis of 12 cases of mistyping relative to

the established results for HLA class II typing identi-
fied a particular subset of alleles: DQB1*02:01
(DQB1*02:02 in HLAscan) in six cases, DQB1*06:05
(DQB1*06:09 in HLAscan) in two cases, DRB1*15:01
(16:01 in HLAscan) in three cases, and DRB1*14:01

(DRB1*14:10 in HLAscan) in one case (Table 3). To
understand the basis for the difference between the
results, we scrutinized the actual alignments of se-
quence reads to the HLA genes, and found that
HLAscan reported allele types with more uniform
depth coverage throughout all sequence positions. For
instance, DRB1*02:01:01:01 and DRB1*02:02:01:01 ex-
hibit only one sequence difference at position 161 of
exome 3 (Fig. 2). Many sequence reads supported ‘C’
at this position, whereas none supported ‘T’, disrupt-
ing the uniform distribution of the sequence reads.
HLAscan predicted that DRB1*02:02:01:01 with uni-
form read distribution was correct. This type of read
distribution difference explained 11 out of the 12
cases; the exception was DRB1*14:01. Thus, HLAscan
precisely recognized even a one-base difference be-
tween HLA alleles and exhibited improved HLA typ-
ing accuracy in these datasets.

Predictions of HLA allele types for five Korean subjects
For validation of HLAscan performance, we obtained
samples from five Korean subjects whose HLA types
were previously tested by SBT methods [21]. DNA
samples were sequenced using the NextGen sequen-
cing system at average coverage depth of 124× (Add-
itional file 3: Table S3). HLAscan was performed to
type HLA-A, HLA-B, and HLA-DRB1, and the results
were compared with those generated by PCR-SBT.
The results of HLAscan and PCR-SBT were perfectly
concordant (Table 4), whereas HLAreporter mistyped
four cases.

Prediction of HLA types using family data with low
sequence depth
Finally, to evaluate the utility of our software using data
produced by widely used sequencing systems, we defined
the HLA genotypes of nine families consisting of 52 indi-
viduals. Four families (#1, #2, #3, and #4), including three

Table 2 Comparison of HLA typing accuracies using HapMap data

Gene A B C DQB1 DRB1

# alleles 36 36 22 92 90

Methods HLA reporter HLA scan HLA reporter HLA scan HLA reporter HLA scan HLA reporter HLA scan HLA reporter HLA scan

Phase 5 - 6 - 4 - 0 - 2 -

Inaccurate
(2-digit)

0 0 0 0 0 0 1 0 2 3

Inaccurate*
(4-digit)

7 0 6 0 1 2 10 8 4 4

Accuracy
(2-digit)

100% 100% 100% 100% 100% 100% 98.9% 100% 97.8% 96.7%

Accuracy
(4-digit)

80.5% 100% 83.3% 100% 95.5% 90.9% 89.1% 91.3% 95.6% 95.6%

Comparison of typing results obtained using HLAreporter and HLAscan for HLA-A, −B, and -C (class I) and HLA-DRB1 and -DQB1 (class II). Verified HLA typing
results were reported elsewhere [12]. * Inaccurate typing includes both mistyped and ambiguous cases
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quartets and one trio, were sequenced at 30× read depth
for all family members, whereas the other five families (#5,
#6, #7, #8, and #9) were sequenced at three different
coverage depths within each family (Additional file 7: Fig-
ures S1 and S2). This enabled us to test the effect of cover-
age depth on the accuracy of HLA typing by HLAscan.
All samples were subjected to WGS on an Illumina HiSeq
X-TEN sequencing system. Subsequent genotyping for
HLA-A, −B, −C, −DQB1, and -DRB1 was performed with
HLAscan, generating the best results at the six-digit level
under a functional score of 125 (Table 5 and Additional
file 4: Table S4). Based on the typing results and family
structure, we could infer the haplotype structure of HLA
genes (Additional file 7: Figures S1 and S2). Families #5
and #6 included identical twins. Although the HLAscan
algorithm can yield a final result of either two alleles (het-
erozygote) or one allele (homozygote), predictions of
homozygote loci were sometimes inaccurate in light of the

haplotype structure. Homozygosity without clear evidence
of typing error was accepted. Ultimately, 504 (96.9%) out
of 520 alleles were correctly identified, five (0.96%) alleles
were non-identified, and 11 (2.1%) were mis-identified.
Out of 52 individuals examined, samples from 10 individ-
uals were sequenced at 90× depth, 17 at 60×, and 25 at
30×, with typing accuracies at the four-digit level of 100%,
96.5%, and 96%, respectively. The test of HLA typing at
different average depths revealed that a certain level of
depth may be necessary to minimize the typing error rate.
For clinical use, utilization of sequencing data with good
depth coverage, e.g., ≥ 90×, will be required.

Relationship between read depth, score function, and
HLAscan performance
Next, we created a receiver operating characteristic curve
(ROC curve) to assess the accuracy of HLA typing as a
function of depth coverage. For this purpose, we used a
dataset consisting of 10 samples from the 1000 Genomes
Project. For each sample, the HLA-A, B, C, DRB1, and
DQB1 genes were analyzed. The original file consisted of
50 cases (10 samples × 5 genes), including 49 cases with ≥
100× coverage depth, of which 33 had ≥ 150× coverage.
To test the performance of HLAscan at various

depths, we randomly selected 5%, 20%, 40%, 60%, 80%
and 100% of all sequence reads in the original FASTQ
file to test the performance of HLAscan at various
depths for each gene and each sample. We then pre-
dicted the HLA types of the same individuals and

Fig. 2 An example of mistyping DQB1*02:02:01:01 as DQB1*02:01:01:01. Sequence view showing actual alignment of sequence reads at exon 3 of
DQB1*02:02:01:01 a and DQB1*02:02:01:01 (b). Consecutive dots under base calls represent sequence reads, and spaces without dots indicate that
no sequence reads are aligned to the corresponding sequences. Pink spaces at position 161 show the status of sequence alignment over the
SNP position that differs between DQB1*02:02:01:01 and DQB1*02:01:01:01. Actual mapping view of the sequence reads from NA11830 sample
was generated in SAMtools tview

Table 3 Differences in typing results of HapMap data. Known
HLA typing results were reported elsewhere [12]

Genes Known HLA type Predictions of HLAscan # of the
caseAllele1 Allele2 Allele1

(correct)
Allele2
(mistyped)

DQB1 xx:yy* 02:01 xx:yy* 02:02 6

pp:qq* 06:05 pp:qq* 06:09 2

DRB1 15:01 15:01 15:01 16:01 3

11:04 14:01 11:04 14:10 1

Asterisks (*) indicate alleles with multiple types
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calculated the specificity and sensitivity on data at each
depth (Additional file 5: Table S5). The HLA prediction
results at all depth coverages were combined and used to
generate 4 new datasets, each of which were consisted of
sequence reads over 5×, 30×, 60×, and 90× of coverage
depth, respectively. For each dataset, sensitivity and speci-
ficity with regard to depth coverage changes were dis-
played by a ROC curve (Fig. 3). Our data indicated that
the HLAscan algorithm provided sensitivity and specificity
of 100% when the read depth was over 90× (red line in
Fig. 3). The curve for reads with over 60× depth coverage
exhibited a pattern similar to those obtained at higher
depth, but with slightly lower sensitivity (blue line in
Fig. 3). HLA prediction with reads at over 30× or 5× depth
coverage (green and yellow line in Fig. 3, respectively)
showed even lower sensitivity and specificity.
Then we examined HLA prediction accuracy by

HLAscan along with sensitivity and specificity at various

score function cutoffs, from 10 to 1000, to provide a
guideline for setting the score cutoff (Additional file 6:
Table S6). For sequences with higher depths (over 60%
selection), the HLA inferences were perfectly correct. At
20% of read selection, prediction accuracy, sensitivity
and specificity were 94% at all of the score cutoffs except
for the cutoff 10, and these values did not dramatically
changed dependent on the score cutoffs. At the cutoff
10, 91% of accuracy and sensitivity were observed. Five
percent of read selection exhibited approximately 60% of
accuracy and sensitivity, and 85% of specificity at most
of score cutoffs, but 16% of accuracy and sensitivity, and
100% specificity were observed at the cutoff 10. These
findings demonstrated that data with high read depth may
not undergo filtration by the score function, and that
HLA inference could still be carried out effectively via
subsequent steps (i.e., removal of duplicated alleles and
handling of the phasing issue). When sequencing depth

Table 5 Accuracy of HLA typing using data from nine families. Results obtained at the four-digit level are summarized in this table.
A total of 520 alleles were examined with 94% accuracy (489 correct), 2.3% (12 cases) missed, and 3.7% (19 cases) mistyped

9 families 90× (10 individuals) 60× (17 individuals) 30× (25 individuals)

# alleles correct missing wrong # alleles correct missing wrong # alleles correct missing wrong

HLA-A 20 20 0 0 34 32 0 2 50 47 2 1

HLA-B 20 20 0 0 34 33 0 1 50 45 1 4

HLA-C 20 20 0 0 34 33 0 1 50 49 1 0

HLA-DQB1 20 20 0 0 34 33 0 1 50 50 0 0

HLA-DRB1 20 20 0 0 34 33 0 1 50 49 1 0

All 100 100 0 0 170 164 0 6 250 240 5 5

Percentage 100 0 0 96.5 0 3.5 96 2 2

Table 4 Accuracy prediction of PCR-SBT, HLAreporter, and HLAscan using samples from five Korean subjects

Samples Method HLA-A HLA-B HLA-DRB1

77072421 NS1512240004 PCR-SBT 02:06 02:10 40:02 55:02 04:05 11:01

HLAreporter 02:10 02:10 40:02:01 55:02:01 04:05:01 11:01:01

HLAscan 02:06:01 02:10 40:02:01 55:02:01 04:05:01 11:01:01

77072412 NS1512240008 PCR-SBT 24:02 31:01 35:01 51:02 09:01 09:01

HLAreporter 24:82 31:01:02 35:42:02 51:02:02 09:01:02 09:01:02

HLAscan 24:02:01 31:01:13 35:01:01 51:02:01 09:01:02 09:01:02

77072374 NS1512240012 PCR-SBT 02:01 33:03 15:01 44:03 09:01 13:02

HLAreporter 02:01:01 33:03:01 15:01:01 44:03:11 09:01:02 13:02:01

HLAscan 02:01:01 33:03:23 15:01:01 44:03:01 09:01:02 13:02:01

77072406 NS1512240016 PCR-SBT 11:01 26:01 44:02 46:01 09:01 13:01

HLAreporter 11:01:01 26:01:01 44:02:01 46:01:01 09:01:02 13:01:01

HLAscan 11:01:01:01 26:01:01:01 44:02:01 46:01:01 09:01:02 13:01:01

77072287 NS1512240020 PCR-SBT 02:01 02:06 13:01 40:02 08:02 12:02

HLAreporter 02:01:01 02:01:01 13:01:01 40:02:01 08:02:01 12:02:01

HLAscan 02:01:01 02:06:01 13:01:01 40:02:01 08:02:01 12:02:01

Typing results different from those obtained by SBT methods are marked in red
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was lower, sensitivity and specificity were slightly altered
by low score cutoffs, but this effect was marginal. There-
fore, we concluded that the score cutoff can be fixed for
most of dataset, but read depth coverage would be a more
critical factor for successful HLA inference by HLAscan.

Discussion
High-resolution HLA typing is of critical importance in
many applications. In particular, variant calling in highly
polymorphic HLA regions is difficult when using short
sequence reads at low sequencing depth. HLAscan per-
forms alignment of HLA gene sequences with the
IMGT/HLA database and takes into account a read dis-
tribution–based score function; in addition, the novel
feature for elimination of false-positive alleles caused by
phasing ambiguity was key to phasing of the two alleles.
Consideration of read distribution by adopting the score
function increased the accuracy of HLA typing compared
with results obtained with previously reported software. In
addition, the phasing issue was significantly improved by
predicting final alleles with uniquely aligned sequence
reads and discarding those that had reads in common with
other candidates (Table 1 and Table 2).
Several parameters can influence performance of

HLAscan. The major factors are coverage depth and
length of sequence reads. The length of sequence reads
is certainly important because the constant c is deter-
mined based on both sequence depth and read length.
However, read length is fixed depending on the instru-
ment used for sequencing. Our setting of the score func-
tion is based on 150 bp sequence reads, which is
applicable to most short read sequences. Accordingly,
we investigated effect of depth coverage in greater detail
as a parameter that should be taken into account. The
ROC curve enabled us to address the impact of coverage

depth on HLA typing accuracy. Calculating sensitivity
and specificity of HLA prediction with 4 datasets of dif-
ferent coverage depths, HLAscan predictions were
nearly perfect at over 60× depth coverage. For clinical
use it is recommended to utilize datasets with coverage
depth over 90× to ensure 100% predictive accuracy. In
addition, we examined whether score function would
affect on HLA inference. Our result demonstrated that
HLA prediction was not sensitive to alteration of the
score cutoff value although higher score cutoff produced
slightly better results at low depth coverage (Additional
file 6: Table S6). To obtain best prediction results, it was
more effective to run HLAscan with dataset at good
depth coverage than to adjust the score cutoff on dataset
with low depth coverage.

Conclusion
HLAscan is an alignment-based multi-step HLA typing
method considering read distribution. In this study we
demonstrated that this new method not only outper-
formed the established NGS-based methods but also
may complement sequencing-based typing methods
when dealing with high-depth (~90×) short sequence
reads. World-wide efforts in development of NGS tech-
nology have dramatically increased the availability of
WGS and WES data. Accordingly, along with many
existing germ line and somatic variant calling algo-
rithms, HLAscan could be generally applied for variant
calling in highly polymorphic regions.

Additional files

Additional file 1: Table S1. HLA types for 10 1000G samples.
(XLSX 15 kb)

Fig. 3 Analysis of typing accuracy as a function of coverage depth. ROC curve depicting sensitivity and specificity of HLA gene prediction by
HLAscan depending on depth coverage. Sensitivity and (1-specificity) were calculated by the ROC Analysis software [24], and curves in different
colors were plotted for accumulated datasets at different coverage depth cutoffs
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Additional file 2: Table S2. HLA types for 51 HapMap samples.
(XLSX 31 kb)

Additional file 3: Table S3. Sequencing depth for five samples from
Korean subjects. (XLSX 11 kb)

Additional file 4: Table S4. Typing results from family data.
(XLSX 31 kb)

Additional file 5: Table S5. Prediction of HLA types and calculation of
specificity and sensitivity at different depths in 10 samples from 1000G
datasets. (XLSX 40 kb)

Additional file 6: Table S6. Prediction of HLA types and calculation of
specificity and sensitivity at different score cutoffs in 10 samples from
1000G datasets. (XLSX 63 kb)

Additional file 7: Figures S1. and S2. (DOC 785 kb)
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