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Background: Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome
researchers, because existing taxonomic classification tools for 165 rRNA gene sequences either do not provide species-
level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the
existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic
assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement.

Results: We have developed a method that shows significantly improved species-level classification results over existing
methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise
sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest
common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated
by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic
assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence
similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different
taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method
easily applicable for different regions of the 165 rRNA gene or other phylogenetic marker genes.

Conclusions: Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for

microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we
provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments
based on multiple database matches to query sequences. Despite its higher computational costs, our method is still
suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied
for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at

https://github.com/qunfengdong/BLCA.
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Background

High-throughput 16S rRNA gene sequencing is widely
used in microbiome studies for characterizing bacterial
community compositions. A key computational task is
to perform taxonomic classification for 16S rRNA gene
sequences, with emphasis increasing on species-level
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classification [1]. The published tools dedicated for 16S
rRNA gene classification include the RDP Classifier [2],
16S Classifier [3] and SPINGO [4]. There are also
software packages or websites that provide 16S classifi-
cation options, e.g., QIIME [5] and MG-RAST [6].
Despite the availability of those taxonomic classification
tools, species-level classification for 16S rRNA gene se-
quences still remains a serious challenge for microbiome
researchers. Some of the tools simply do not classify at the
species level. For example, the standard version of the
widely-used software, RDP Classifier, only classifies 16S
rRNA gene sequences from the phylum to genus levels,
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although the RDP Classifier can be re-trained for species
level classification. Another recently published software,
the 16S Classifier, is not capable of classifying sequences
at the species level either. For the other tools that can
classify at the species level, they suffer from at least one of
the two major limitations: i) nucleotide k-mer frequency is
used for measuring similarity between query and database
sequences, a proxy measurement of true sequence similar-
ity; ii) solid probabilistic-based criteria is lacking for evaluat-
ing the confidence of taxonomic assignment results,
particularly to evaluate whether the best-matched database
sequence is significantly better than other database matches
for the taxonomic assignments.

Taxonomic classification of 16S gene sequences typic-
ally requires comparing query sequences to annotated
database sequences. The k-mer based approaches, e.g.,
the RDP Classifier and SPINGO, compare the frequency
of k-mer nucleotides between query and database
sequences. The higher degree of shared k-mer nucleo-
tide frequencies, the more similar the two sequences are.
The advantage of k-mer based approaches is its fast
computational speed. However, k-mer based approaches
rely on two key assumptions: i) the k-mer nucleotides in
DNA sequences used as discriminating features among
different taxa are independent, and ii) the actual nucleo-
tide position of the k-mers in the DNA sequences is not
important. In reality, nucleotides in different positions of
a gene sequence can be correlated (e.g., to preserve the
secondary or higher-dimensional structure of rRNA
folding), and gene sequences with the same set of k-mer
in different orders are clearly not the same sequences.
Therefore, these two assumptions are the theoretical
sources of taxonomic misclassification by k-mer based
approaches. There is also a nontrivial practical limitation
for a k-mer based approach: it is extremely difficult to
determine an optimal size of k-mer for discriminating
among different species at different regions of 16S se-
quences. For example, the accuracy of the RDP Classi-
fier, which uses a k-mer size of eight, varies significantly
with different types of bacterial taxa at different 16S
gene regions [7]. Therefore, k-mer based approaches rely
on a proxy measurement of the sequence similarity
between the query and database sequences, which is
inherently less accurate than the gold standard
sequence-alignment-based method.

As mentioned above, another major limitation for most
existing methods is that they lack solid probabilistic-based
criteria to evaluate the confidence of their taxonomic as-
signments. Although all existing methods infer taxonomic
classification based on matched database sequences, most
of the existing methods do not provide any indication on
whether the best-matched database hit sequence is signifi-
cantly better than other database hits. Since the 16S rRNA
gene is highly conserved among different bacterial taxa
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and the query sequences in microbiome studies are often
only a short fragment of the full-length 16S rRNA gene
with sequencing errors, it is common to have several
database hits from different taxa that may have compar-
able sequence similarities to the query sequence. There-
fore, it is not reliable to simply transfer the taxonomic
annotation associated with the best database hit for the
query sequence [8]. Instead, a better method for 16S
classification may consider multiple database hits together
and evaluate whether the best database hit is significantly
better than other database hits.

The Lowest Common Ancestor (LCA) algorithm,
implemented in the MEGAN package [9], provides a
natural biological framework to integrate taxonomic
annotations associated with multiple database hits when
classifying query sequences. In MEGAN, all taxa corre-
sponding to the BLAST [10] hits are first mapped to
NCBI taxonomic trees and the lowest common ancestor
of all mapped taxa is then assigned to the query
sequence. For example, if a query sequence has two
BLAST hits belonging to two different species, e.g., one
from Lactobacillus acidophilus and the other one from
L. casei, the LCA algorithm assigns the query sequence
to the genus Lactobacillus, which is the lowest common
taxonomic level of these two species. However, the LCA
algorithm fails to consider the differing degrees of simi-
larity between the query and the database hit sequences.
In other words, when inferring the LCA for the query,
the algorithm acts as if all the hit sequences, affected by
an arbitrary sequence similarity threshold, were equally
similar to the query sequence, even though in practice
they are often not. Biologically speaking, the greater the
degree of sequence similarity between the query and the
hit sequences, the more likely they may belong to the
same taxon, but the current LCA algorithm lacks a
quantitative way to incorporate this important informa-
tion on sequence similarity in its taxonomic assignment.

To overcome the above limitations of the existing soft-
ware, we have developed a Bayesian-based LCA method,
named BLCA. BLCA can perform species and even
sub-species level taxonomic classification. It relies on
sequence alignment instead of k-mer frequency for se-
quence similarity measurement; it considers multiple
database hits instead of only the best database hit for
taxonomic assignment; it provides a probabilistic-based
confidence score for evaluating taxonomic assignments.
The novelty of our method is that the contribution of
each database hit to the taxonomic assignment of the
query sequence is weighted by a Bayesian posterior
probability based upon the sequence similarity of the
database hit to the query. The calculated Bayesian
posterior probability implicitly penalizes dissimilar data-
base hit sequences in a quantitative way, which makes
our method insensitive to arbitrary sequence similarity
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thresholds for selecting candidate database hits for each
query sequence. We show that BLCA provides signifi-
cantly more accurate classification results at the species
level when compared to all other existing tools.

Implementation

The BLCA method is implemented as a Python package,
which is freely available at https://github.com/qunfeng-
dong/BLCA under the GNU General Public License. An
overview of the BLCA method is illustrated in Fig. 1.
Users start by comparing the query 16S sequences
against entries in an annotated 16S database using
BLASTN. The taxonomic lineage of each 16S database
sequence is extracted from the NCBI taxonomic
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database (ftp://ftp.ncbi.nih.gov/pub/taxonomy/). As with
MEGAN, we chose the 16S rRNA gene collection from
NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/16SMicrobial.-
tar.gz) as the default database, although users can also
use the Greengenes database [11] or adopt any custom
collection of 16S sequences provided that the sequence
IDs can be mapped to the NCBI or Greengenes
taxonomy. Next, the BLAST hits are extracted; by
default, BLCA only extracts the BLAST hits from
BLAST pairwise alignments with at least 95% identity
and 95% coverage with respect to the query, but users
can easily change these parameters using the command-
line at execution as well as setting an additional criterion
to retain only the BLAST hits whose bit scores are
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Fig. 1 The overview of the BLCA algorithm. See main text for details
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within a certain percentage of difference from the top
hits (the same criterion used by MEGAN). Each query
sequence and its corresponding BLAST hits are passed
as an input to the MUSCLE program [12] for multiple
sequence alignment. Because most 16S query sequences
are not full-length gene sequences in practice, BLCA
only extracts the relevant subsequences of the hits —
those that actually align to the query sequences in the
BLAST pairwise sequence alignments. An extra 10
nucleotides upstream and downstream relative to the
aligned regions from the hit sequences are also included
to avoid potential overhangs at the 5" or 3" end of the
query sequences in the multiple sequence alignment.

We define Pr(T; | Q) as the Bayesian posterior probability
for a taxon 7; being assigned to a given query sequence Q.
Based on Bayes’ rule, we obtain

Pr(T;|Q) = Pr(Q|T:)Pr(T;)/Pr(Q) (1)

wherein Pr(Q | T;) is the likelihood of observing the se-
quence Q if it were derived from the taxon T;. The likeli-
hood can be calculated as the pairwise alignment score
between the query sequence Q and the database hit se-
quence annotated as 7Tj, divided by the pairwise align-
ment score between the hit sequence T; to itself. In
other words, the likelihood is defined as the similarity
score between the query and the database hit normalized
by the maximum possible similarity score between any
sequences to the hit sequence. The likelihood Pr(Q | T))
is a real number between 0 (i.e., no match between the
query Q and the database hit T;) and 1 (i.e., a perfect
match between the query and the database hit). Our
definition of Pr(Q | T;) as a likelihood simply reflects the
degree of support by the evidence (i.e., similarity
between query and the database hit) for the hypothesis
(i.e. the query belongs to the taxon of the database hit).
In our current implementation, the pairwise alignment
score between the query sequence and BLAST hit
sequence is computed from the multiple sequence align-
ment, which tends to be more accurate than the original
BLAST pairwise alignment because BLAST alignment
performs local alignment, whereas MUSCLE is a global
alignment program. Since the alignment is between
DNA sequences, the pairwise alignment score can be
simply computed with the following criteria: match = +1,
mismatch = -2, and gap = -2.5 (these are the exact de-
fault scoring criteria used for BLASTN). Pr(T;) is the
prior probability of a particular taxon T; for the query
sequence, which is set to a uniform distribution in our
implementation. The uniform prior is a suitable choice
for taxonomic classification, since, without knowing the
data, we can treat every taxon as equally probable (the
same uniform prior is used in the RDP Classifier). If
necessary, non-uniform priors can be easily adopted for
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specific situations where certain taxa are more likely
than others in the same Bayesian framework described
in this work. Pr(Q) is the marginal distribution of the
query sequence Q, which can be calculated as the sum-
mation of the product of likelihoods and priors of all the
BLAST hits, ie., X/21Pr(Q|T;)Pr(T;) for m total BLAST
hits, based on the law of total probability. Note that the
term Pr(T;), assumed to be a uniform prior, can be
cancelled from the denominator and numerator when
calculating Pr(T; | Q). In addition, sequence similarity
estimations might be improved by specifying sequencing
error models for both query and database sequences
(e.g., a Poisson probability distribution of an observed
nucleotide in a DNA sequence being incorrect); these
can be incorporated in our Bayesian framework by
adjusting the likelihood calculation in Eq. (1).

Since T; corresponds to the taxonomic annotation for
an individual BLAST hit sequence, it represents the leaf
node in the NCBI taxonomic tree (e.g., at the species or
sub-species level). We also need to compute the poster-
ior probability at higher taxonomic levels, ie., the
internal nodes in the taxonomic tree that correspond to
the antecedents of T; (i.e., the common ancestors of all
the T;). Using the addition rule for probability, the
posterior probability of any internal node I, Pr(T; | Q),
in the taxonomic tree can be computed by a simple
summation of those of all the descendant leaf T;:

PrTIIQ) = > Pr(Ti|Q) )

wherein the internal node I has k total descendant leaf
nodes. The Eq. (2) allows us to easily compute the
posterior probability of any higher taxonomic level, e.g.,
from genus to phylum, by simply summing the posterior
probabilities associated with all the descendant leaf
nodes in the taxonomic trees under any internal nodes.
Using the previous example in which a query sequence
has one BLAST hit from L. acidophilus and the other
from L. casei, the posterior probability for the genus
level of Lactobacillus for the query is the sum of the
posterior probabilities for L. acidophilus and L. casei,
respectively.

Based on the posterior probabilities calculated for all
the nodes in the taxonomic tree, a bootstrap confidence
score is derived to evaluate the reliability of the taxo-
nomic assignment for each node. Specifically, aligned
nucleotide positions in the multiple sequence alignment
between query and BLAST hits are randomly sampled
with replacement; the total number of sampled nucleo-
tide positions is the same as the length of the query
sequence (i.e., a pseudo multiple-sequence alignment is
bootstrapped from the original multiple-sequence align-
ment). Using the pseudo multiple-sequence alignment,
the posterior probability of each leaf node in the
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taxonomic tree is re-computed by the same procedure
as described above and the leaf node with the highest
posterior probability is identified and tallied as the “win-
ning” node. The process is repeated 100 times, and the
number of times that a leaf node emerged as the winner
becomes the confidence score for the taxonomic assign-
ment of the particular node. Similar to the posterior
probability calculation, the confidence score for internal
nodes can also be obtained by summing up the confi-
dence scores of all their descendent leaf nodes. The RDP
Classifier uses a similar bootstrapping strategy to assign
confidence scores for its taxonomic classifications.
However, unlike the RDP Classifier, which is based on
bootstrapping k-mers from query and database se-
quences, our strategy randomly samples from aligned
nucleotides in multiple sequence alignment, a method
that is commonly used for evaluating the confidence of
branches in molecular phylogenic trees [13].

To assess the accuracy of a classification tool, we must
have a benchmark dataset with known taxonomic anno-
tations for each 16S sequence. Therefore, we extracted
the V2, V4, V1-V3, V3-V5, and V6-V9 regions of 16S
sequences from 1000 randomly selected bacterial species
with known taxonomic annotations in the NCBI data-
base as the benchmark dataset. These variable regions
were chosen for testing because they represent typical
16S sequences in real-world microbial studies. Instead of
using the exact sequences from those regions for testing,
we introduced sequencing errors to each sequence, using
a customized Python script to generate an average of 1%
random mutation based on a Poisson distribution. The
1% mutation rate is based on the reported upper range
of the Illumina MiSeq sequencing platform [14]. The
test sequences, with sequencing errors, were searched
against the 16S sequences from NCBI (downloaded on
August 5th, 2016) using BLASTN version 2.5.0. For
MEGAN parameters, we set the same default settings
(e.g., minimum BLAST bit scores, maximum BLAST ex-
pected values, and the percent of BLAST hits) for both
BLCA and MEGAN. For BLCA, SPINGO, and the RDP
Classifier, two sets of confidence score thresholds were
used: (i) 0.8—RDP Classifier’s default confidence score
and (ii) 0.5—RDP Classifier’s confidence score threshold
recommended for short-read sequences, as written in
the RDP Classifier's documentation. Neither MEGAN
nor Kraken [15] have a probabilistic-based parameter for
evaluating the assigned taxa, thus we used their default
taxonomic assignments for comparison.

For each of the taxa in the benchmark dataset (e.g., a
known E. coli sequence), we were able to identify
whether the classification results from each software
represent a true positive (TP, e.g, the predicted
taxonomy is also E. coli), false negative (EN, e.g., the pre-
dicted taxonomy is not E. coli), false positive (FP, e.g.,
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other non-E. coli sequences were incorrectly predicted
to be E. coli), and true negative (TN, e.g., other non-E.
coli sequences were correctly predicted to be non-E.
coli). The total amount of TP, FN, FP, and TN are tallied
from the 1000 test sequences from the species to the
phylum levels. The rates of TP, EN, FP, and TN were
used for computing the F-score, which is a standard
measure of a classifier’s accuracy by combining both the
precision and the recall of the classifier [16]. The
procedure above was repeated three times to measure
the variability of the classification accuracy.

Besides the above-simulated dataset, we also evaluated
the performance of BLCA with a real-world 16S dataset,
which was suggested by one of the reviewers of our
manuscript. The dataset was originally produced by Pop
et al. [17] and is available in the Bioconductor package
(referred as the msdl6s dataset) [18]. The misdl6s
dataset contains 26,044 species-level operational taxo-
nomic unit (OTU) sequences from the V1V2 rRNA gene
region. The original authors used the top BLAST hit
against the RDP 16S database [19] as the taxonomic an-
notation for each OTU sequence. Since MEGAN and
SPINGO can only use NCBI taxonomy nomenclature,
we re-annotated the msdl6s dataset by using the top
BLAST hit against NCBI 16S database (i.e., the same
BLAST strategy as in the original study of Pop et al.
[17]) in order to ensure that MEGAN and SPINGO can
be compared against BLCA and other programs using
the same reference taxonomic annotation.

Results

To compare BLCA against other software, we reviewed
all recently published 16S taxonomic classification tools.
Since BLCA aims to improve species-level classification
accuracy compared to existing tools, we excluded the
16S Classifier program since it cannot classify at the
species level.

To obtain a fair comparison with MEGAN (version
6.7.1), we used the same default criteria as MEGAN for
retaining the BLAST hits. The most important MEGAN
parameter for extracting BLAST hits for downstream
analysis is the parameter topPercent, used to keep only
the BLAST hits whose bit scores are within a given per-
centage of the best BLAST hit. The default value in
MEGAN for this parameter is 10%. For example, if the
top BLAST hit has a bit score of 1000, we only retain
BLAST hits for downstream analysis if their BLAST bit
scores are at least 900 (i.e., 1000—1000*10%). As shown
in Table 1, BLCA consistently outperforms MEGAN
with all the tested 16S variable regions from the species
to the family levels of taxonomic classification. From the
order to the phylum levels, the accuracies of BLCA,
MEGAN and other software are similar and above 98%
(data not shown). More importantly, the accuracy of
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Table 1 Comparison of the classification accuracies using the simulated dataset

CST=08 V2 \Z V1V3 V3V5 V6V9

Species BLCA 0.7594 + 0.0164* 0.5331+0.0208 0.9323 + 0.0054* 0.8335+0.0072* 0.8690 + 0.0012*
Kraken 0.7275 £ 0.0054 0.5326+0.0181 0.8672 +0.0072 0.7542 +0.0087 0.7572 +0.0056
MEGAN 0.7290+0.0114 0.5238+0.0161 0.7071 £0.0053 05206 +0.0108 05227 +0.0140
RDP 06102 +0.0042 0.3928 £ 0.0292 0.8549 + 0.0199 0.7307 £ 0.0203 0.7823+0.0124
SPINGO 0.5700+0.0187 03910+ 0.0106 0.7907 +0.0061 0.6900 + 0.0071 0.7318+0.0116

Genus BLCA 0.9498 + 0.0019* 0.8982 + 0.0107* 0.9965 + 0.0012* 0.9863 +0.0011* 0.9925+0.0012*
Kraken 0.9072 £+ 0.0066 0.8612+0.0189 0.9691 + 0.0051 0.9463 + 0.0006 0.9437 +0.0034
MEGAN 0.9334+0.0079 0.8830+0.0115 0.9528 + 0.0040 0.9002 +0.0027 0.8939 + 0.0041
RDP 0.8768 + 0.0065 0.8067 +0.0139 0.9629 +0.0072 0.9562 +0.0065 0.9657 +0.0042
SPINGO 0.8481 + 0.0002 0.7726 £ 0.0077 0.9333 +0.0057 09192 +0.0034 0.9238 + 0.0067

Family BLCA 0.9791 + 0.0009* 0.9787 £ 0.0018* 0.9984 + 0.0019* 0.9975+0.0019* 0.9970+0.0014*
Kraken 0.9594 +0.0038 0.9480 + 0.0028 0.9882 +0.0021 0.9850 +0.0033 0.9799 +0.0032
MEGAN 0.9495 + 0.0089 0.9413+£0.0015 0.9517 +0.0032 0.9397 + 0.0044 0.9447 +0.0034
RDP 0.9461 + 0.0093 0.9295 + 0.0062 0.9818 + 0.0007 0.9806 + 0.0054 0.9855+0.0013
SPINGO NA NA NA NA NA

CST=05 V2 V4 V1V3 V3V5 V6V9

Species BLCA 0.8485 + 0.0128* 06813+ 0.0115*% 0.9629 + 0.0077* 0.9050 + 0.0034* 0.9315 +0.0045*
Kraken 0.7275 + 0.0054 0.5326+0.0181 0.8672 +0.0072 0.7542 +0.0087 0.7572 +0.0056
MEGAN 0.7290+0.0114 0.5238+0.0161 0.7071 +£0.0053 0.5206 +0.0108 05227 +0.0140
RDP 0.7526 £ 0.0107 05692 +0.0194 0.8997 £0.0144 0.8221+£0.0105 0.8621 +0.0094
SPINGO 0.6570+0.0124 0.5008+0.0114 0.8256 +0.0038 0.7497 +0.0041 0.7805 +0.0021

Genus BLCA 0.9722 + 0.0028* 0.9467 £ 0.0031* 0.9985 + 0.0019* 0.9947 +0.0013* 0.9972 + 0.0002*
Kraken 0.9072 + 0.0066 0.8612+0.0189 0.9691 +0.0051 0.9463 + 0.0006 0.9437 +0.0034
MEGAN 0.9334+0.0079 0.8830+0.0115 0.9528 +0.0040 0.9002 +0.0027 0.8939 + 0.0041
RDP 0.9319+ 0.0044 0.8960 + 0.0086 09710+ 0.0049 0.9693 + 0.0046 0.9729 + 0.0003
SPINGO 0.8807 + 0.0034 0.8354 £ 0.0041 0.9400 + 0.0030 0.9287 +0.0024 0.9317 +£0.0083

Family BLCA 0.9870+ 0.0013* 0.9856 + 0.0035* 0.9987 +0.0021* 0.9991 +0.0012* 0.9984 +0.0019*
Kraken 0.9594 + 0.0038 0.9480 + 0.0028 0.9882 + 0.0021 0.9850 +0.0033 0.9799 + 0.0032
MEGAN 0.9495 + 0.0089 09413 +£0.0015 09517 +0.0032 0.9397 +0.0044 0.9447 +0.0034
RDP 0.9696 + 0.0040 09674 +0.0015 0.9836 +0.0017 0.9830+0.0033 0.9868 + 0.0004
SPINGO NA NA NA NA NA

Each entry in the table shows the average and standard deviation of the F-scores for a particular classifier (i.e., rows) at a specific 16S region (i.e., columns) based
on three random sets of 1000 test sequences. Two confidence score thresholds (CST), 0.8 and 0.5, were applied for BLCA, RDP Classifier, and SPINGO as described
in the main text. The *indicates that the F-scores of BLCA are significantly higher than those of other software, based on a one-tailed paired t-test with a p-value
less than 0.05. Similar statistical significance was also obtained using the one-tailed Wilcoxon signed-rank test. Note that the SPINGO program does not produce
family-level classification. In addition, Kraken and MEGAN do not provide any probabilistic-based parameters for evaluating the assigned taxa, thus we used their
default taxonomic assignments for comparison

MEGAN drops significantly when the topPercent filter
was relaxed from 5 to 10% and further to 20% (the rec-
ommended range by the original MEGAN publication)
at both the species and genus levels (Table 2). For
example, using V1-V3 sequences, the species-level ac-
curacy of MEGAN, measured by the F-scores, drops
from 0.8394 (with fopPercent set to 5%) to 0.7071 (with
topPercent set to 10%), and further down to 0.4673 (with
topPercent set to 20%). Besides V1-V3, these same
trends are observed for all other tested 16S regions

(Table 2). These results are expected because, by relax-
ing this parameter, more dissimilar BLAST hits (i.e., po-
tentially “bad” BLAST hits) are included in the analysis
and the inclusion of bad BLAST hits leads to erroneous
taxonomic assignments. This reveals a fundamental
limitation of the MEGAN method: its results are sensi-
tive to which BLAST hits are included for analysis and it
lacks a probabilistic method to penalize bad BLAST hits.
Conversely, the results from BLCA, which showed
higher accuracy than MEGAN, remained robust to the
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Table 2 BLCA accuracy is insenesitve to the inclusion of dissimilar BLAST hits
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Taxonomic levels Genus Species

165 region topPercent Filter BLCA MEGAN BLCA MEGAN

V2 5% 0.9539 +0.0038 0.9531 £ 0.0044 0.7747 £0.0150 0.8091 +£0.0153
10% 0.9498 +0.0019 0.9334 +0.0079 0.7594 +£0.0164 0.7290+0.0114
20% 0.9487 £0.0018 0.8966 + 0.0080 0.7580+0.0176 0.5983 +£0.0075

V4 5% 0.9078 +£0.0078 0.9230 £ 0.0082 0.5597 £0.0175 0.6497 £ 0.0058
10% 0.8982 +0.0107 0.8830+0.0115 0.5331+0.0208 05238 +0.0161
20% 0.8965 +0.0092 0.8016 £ 0.0041 0.5317+£0.0189 03915+ 00119

V1V3 5% 0.9960 + 0.0009 0.9778 £ 0.0006 0.9314 +0.0058 0.8394 + 0.0069
10% 0.9965 +0.0012 0.9528 + 0.004 0.9323 + 0.0054 0.7071 £ 0.0053
20% 0.9959 + 0.0009 0.8609 + 0.0087 0.9321£0.0053 04673 £0.0150

V3V5 5% 0.9865 + 0.0020 0.9550 + 0.0041 0.8380 + 0.0064 0.7025+0.0112
10% 0.9863 +0.0011 0.9002 + 0.0027 0.8335+0.0072 0.5206 £ 0.0108
20% 0.9863 £0.0011 0.7369 £ 0.0094 0.8361 £ 0.0039 0.2880 £ 0.0061

V6V9 5% 0.9933 +£0.0011 0.9532 +0.0050 0.8722 + 0.0066 0.7258 £0.0129
10% 0.9925+0.0012 0.8939 + 0.0041 0.8690 + 0.0012 05227 £0.0140
20% 0.9931+0.0017 0.7138 +£0.0083 0.8701 = 0.0050 0.2691 +0.0255

The parameter topPercent is for keeping only the BLAST hits whose bit scores are within a given percentage of the best BLAST hit. The larger the parameter is, the more
dissimilar database hits are included for taxonomic classification for the query sequence. The default value in MEGAN for this parameter is 10%. In our comparisons, we
set the value of topPercent to be 5, 10 and 20% for both BLCA and MEGAN, the recommended range by the original MEGAN publication, to compare the performance
of BLCA and MEGAN under different stringencies of retaining BLAST hits. Each table entry shows the average and standard deviation of the F-scores, based on the
confidence score threshold of 0.8, for each tested software at the corresponding 16S region. The F-scores of BLCA are much less sensitive to the value of topPercent

when compared to MEGAN

number of included BLAST hits (Table 2) since bad
BLAST hits are penalized using posterior probability
scores assigned by the BLCA algorithm. It is worth noting
that it is unrealistic to prevent the inclusion of bad BLAST
hits in a typical large-scale data analysis since there is no
universal cutoff to exclude bad BLAST hits. Any such
cutoffs are heuristic in nature, as such, they are inevitably
either too stringent or not stringent enough.

The SPINGO program is specifically designed for
species-level classification. The authors of SPINGO even
showed that SPINGO has superior classification accur-
acy compared to a customized RDP Classifier and best-
matched BLAST hits at species level [4]. Like BLCA and
MEGAN, SPINGO uses the NCBI taxonomic database
for taxonomic assignments. Unlike those tools, however,
SPINGO wuses a k-mer based approach instead of
sequence alignment to measure the similarity between
query and database sequences. The only threshold for
SPINGO is its confidence score for taxonomic assign-
ments, which is compatible with the BLCA confidence
score. Table 1 shows that the accuracy of BLCA is statis-
tically significantly higher than that of SPINGO in all
tested 16S regions at the confidence score thresholds of
0.8 and 0.5, respectively. In addition, SPINGO cannot do
subspecies classification, nor can it do family or higher
level classification, whereas BLCA can classify reads
from any level ranging from subspecies to phylum
(though there are not enough annotated subspecies

datasets at NCBI for evaluating BLCA subspecies-level
classification accuracy).

Even though the standard release of the RDP Classifier
cannot classify 16S sequences at the species level, we
obtained the training script from the RDP Classifier’s
development team (personal communications) and
re-trained the RDP Classifier for species-level classifica-
tion with the same NCBI 16S database that BLCA uses.
The NCBI 16S database is used because MEGAN and
SPINGO must use NCBI taxonomic database. Therefore,
the NCBI database provides a common ground for
evaluating the results of all of these tools on the basis of
their computational algorithms without being influenced
by different taxonomic standards. Similar to SPINGO,
the RDP Classifier’s confidence score is also compatible
with the BLCA confidence score. Although the default
threshold for the RDP Classifier’s confidence score is
0.8, the developers of the RDP Classifier also recom-
mend a threshold of 0.5 for short read classification. Our
results show that BLCA has higher accuracy than the
RDP Classifier at the thresholds of 0.8 and 0.5 (Table 1).

Besides these 16S-specific classification tools, there are
also metagenomic classification tools that are designed
for identifying microbial taxa from whole metagenome
shotgun (WMS) sequences. We have chosen Kraken
[15] as a representative WMS classification tool to
compare with BLCA. Kraken is chosen because of two
reasons: i) it has superior or comparable classification
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accuracy to other existing WMS tools [20] and ii) to our
best knowledge, it is the only WMS tool that has been
successfully applied in a published 16S study [21].
Kraken’s default database incorporates reference genome
sequences. To have a fair comparison with BLCA, we
have replaced Kraken’s default database with the same
NCBI 16S database used for BLCA, thus increasing its
sensitivity to classify a broader range of bacterial taxa.
Kraken, a k-mer based program seeking best database
matches, does not provide any confidence score to
evaluate the confidence of assigned taxonomies,
although Kraken’s output can be filtered based on the
percent of k-mers matched to each taxa (no guidance is
provided by its developer on how to set the filtering
threshold). As shown in Table 1, even allowing the max-
imum sensitivity for Kraken (i.e., without any filtering of
Kraken’s output), which is the default setting for Kraken,
BLCA still significantly outperforms Kraken with all
tested 16S regions from the species to the family level.
In addition to using simulated datasets to evaluate
BLCA and other software, Table 3 shows that BLCA had
either higher or comparable classification accuracies
when tested with a real-world 16S dataset. For example,
with a confidence score threshold of 0.5 (the recom-
mended threshold for the RDP Classifier for short se-
quence reads), the species-level classification accuracy of

Table 3 Comparison of the classification accuracies using a
real-world dataset

Taxonomy Method V1V2 Region

Level CST=08 CST=05

Species BLCA 0.570 0.716
Kraken 0.589 0.589
MEGAN 0.544 0.544
RDP 0.490 0613
SPINGO 0486 0.562

Genus BLCA 0.729 0.79
Kraken 0.694 0.694
MEGAN 0.745 0.745
RDP 0.643 0.708
SPINGO 0.605 0.650

Family BLCA 0814 0.832
Kraken 0.777 0.777
MEGAN 0.869 0.869
RDP 0.775 0.805
SPINGO NA NA

Each entry in the table shows the F-scores for a classifier (i.e,, rows) based on all the
OTU sequences in the msd16s dataset, as described in the main text. Two confidence
score thresholds (CST), 0.8 and 0.5, were applied for BLCA, RDP Classifier, and SPINGO,
the thresholds as in Table 1. Note that the SPINGO program does not
produce family-level classification. In addition, Kraken and MEGAN do not
provide any probabilistic-based parameters for evaluating the assigned
taxa, thus we used their default taxonomic assignments for comparison
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BLCA, measured using an F-score, is 0.716, much higher
than the classification accuracy of MEGAN (0.544), the
RDP Classifier (0.613), and SPINGO (0.562). The same
trends were observed when the default confidence score
threshold of 0.8 was applied (Table 3). It is worth noting
that, as this is a real-world dataset, the true taxonomic
classification is unknown. We had to rely on the top
BLAST hit as the reference taxonomic classification
when we evaluated the classification accuracies of each
software. Nonetheless, the results from the real-world
dataset were consistent with those from the simulated
datasets, showing that BLCA tends to produce higher
taxonomic classification accuracies than currently exist-
ing software.

Discussion

Despite the importance of species-level classification, the
existing tools either do not classify 16S sequences at the
species level or their taxonomic assignments are not
reliable. As discussed above, k-mer based methods are
intrinsically less accurate than an alignment-based
sequence similarity measurement. The k-mer based
approaches may be sufficient for high level taxonomic
classification, since sequences from different higher
taxonomic levels tend to be very divergent. For lower
level taxonomic classification, however, particularly
species-level classification, we have shown that BLCA
significantly outperforms k-mer based methods (e.g.,
SPINGO, the RDP Classifier, and Kraken) in classifica-
tion accuracy.

In addition, the Bayesian posterior probability of BLCA
quantitatively measures the difference between the best
database hit and other database hits, and the bootstrap-
ping principle, adopted by BLCA for providing confidence
score, has solid statistical foundation for measuring
prediction errors [22]. In this study, we have applied 0.5
and 0.8 as thresholds for the BLCA confidence scores for
comparison with other software. The confidence score of
BLCA is comparable to that of the RDP Classifier and
SPINGO. There is no perfect universal threshold that is
suitable for all datasets. We recommend that users
consider exploring several different thresholds (e.g., 0.6
and 0.8) to examine if their results are consistent under
different thresholds. If not, the users need to be wary that
their results may be too sensitive based on the particular
threshold they have chosen.

It is worth mentioning that BLCA does not require a
training process for classification, which can be more
convenient for some users when compared to some
other software. For example, the 16S Classifier trains a
standard machine-learning model, a Random Forest,
with k-mer nucleotides from different regions of 16S
rRNA genes. We could not even test our V1-V3, V3—
V5, and V6-V9 datasets with the 16S Classifier because
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the published software has not been trained for this
region, even though these regions are widely used in
microbiome studies. In contrast, our BLCA program re-
quires no training process at all since our algorithm is
based on the alignment between query and reference
database sequences. Therefore, users only need to down-
load reference 16S database sequences for BLCA and
this allows our method to be easily applied to any other
DNA marker gene families for taxonomic classification
(e.g., rpoB or 18S rRNA gene sequences). The accom-
panying BLCA package includes instructions on how to
replace the default 16S sequences with the user’s own
customized gene family sequences. For example, to
demonstrate the flexibility of alternative database
sequences, BLCA provides an option to use the Green-
genes 16S database and its associated taxonomy [11]
instead of the default NCBI 16S database since many
researchers may prefer the Greengenes taxonomy.

We have shown that BLCA has significantly higher
accuracy than existing taxonomic classification methods
at the species level. This higher accuracy comes with the
cost of longer computation time. BLCA is not designed
for performing taxonomic classification for raw 16S
sequences. Instead, raw 16S sequences should be first
clustered into OTUs to eliminate redundant or highly
similar sequences before performing taxonomic classifi-
cation, which is a standard procedure for 16S sequence
processing by widely used software packages, e.g.,
QIIME. With 100,000 OTUs, BLCA can have a run-time
of approximately 4 days, which is not unusual for
modern-day bioinformatics tasks with large datasets.
Considering the significant gains in accuracy with our
method, we believe that many researchers will find the
time tradeoff to be reasonable. In addition, users can
divide the input sequences into multiple files and exe-
cute BLCA in parallel on computer clusters to hasten
the classification process, if necessary. In addition, not
all OTUs require species-level classification in practice.
Typically, researchers are only interested in a small
subset of OTUs, e.g., a list of OTUs that are differen-
tially abundant in different ecosystems (similar to how
molecular biologists are often only interested in detailed
gene annotations for a small list of differentially expressed
genes instead of all of the genes in an organism). In these
cases, BLCA may take only a few minutes to classify a
subset of several hundreds of OTUs of interest.

Conclusion

In summary, we have developed a novel computational
method that significantly outperforms previously pub-
lished software for species-level classification accuracy.
Its probabilistic-based confidence score helps users
evaluate the confidence of the resulting taxonomic
assignments based on multiple database hits. In addition,
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our methods do not require any training, which makes it
easily applicable for different regions of 16S rRNA gene
or even different phylogenetic marker genes. Despite its
higher computational costs, our method is still suitable
for large-scale microbiome datasets, providing a valuable
alternative option for microbiome researchers who pre-
fer higher classification accuracy.
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