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Abstract

Background: Random forests are a popular method in many fields since they can be successfully applied to
complex data, with a small sample size, complex interactions and correlations, mixed type predictors, etc.
Furthermore, they provide variable importance measures that aid qualitative interpretation and also the selection of
relevant predictors. However, most of these measures rely on the choice of a performance measure. But measures of
prediction performance are not unique or there is not even a clear definition, as in the case of multivariate response
random forests.
Methods: A new alternative importance measure, called Intervention in Prediction Measure, is investigated. It
depends on the structure of the trees, without depending on performance measures. It is compared with other
well-known variable importance measures in different contexts, such as a classification problem with variables of
different types, another classification problem with correlated predictor variables, and problems with multivariate
responses and predictors of different types.
Results: Several simulation studies are carried out, showing the new measure to be very competitive. In addition, it is
applied in two well-known bioinformatics applications previously used in other papers. Improvements in
performance are also provided for these applications by the use of this new measure.
Conclusions: This new measure is expressed as a percentage, which makes it attractive in terms of interpretability. It
can be used with new observations. It can be defined globally, for each class (in a classification problem) and
case-wise. It can easily be computed for any kind of response, including multivariate responses. Furthermore, it can be
used with any algorithm employed to grow each individual tree. It can be used in place of (or in addition to) other
variable importance measures.

Keywords: Random forest, Variable importance measure, Multivariate response, Feature selection, Conditional
inference trees

Background
High-dimensional problems, those that involve so-called
p > n data [1], are of great importance in many areas of
computational biology. Predicting problems in which the
number of features or variables p is much larger than the
number of samples or observations n is a statistical chal-
lenge. In addition, many bioinformatics data sets contain
highly correlated variables with complex interactions, and
they may also contain variables that are irrelevant to the
prediction. Furthermore, data sets may contain data of a
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mixed type, i.e. categorical (with a different number of cat-
egories) and numerical, not only as predictors but also as
outputs or responses.
Decision trees are a nonparametric and highly nonlin-

ear method that can be used successfully with that kind of
challenging data. Furthermore, they are robust to outliers
in the input space, invariant to monotone transforma-
tions of numerical predictors, and can also handle missing
values. Thanks to these properties, decision trees have
become a very popular tool in bioinformatics and data
mining problems in general.
However, the predictive power of decision trees is their

Achilles heel. A bagging strategy can be considered to
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improve their individual performance. A random forest
(RF) is an ensemble of a large collection of trees [2]. There
are several types of RFs according to the type of response.
If the response is categorical, we refer to RF classification.
If the response is continuous, we refer to RF regression.
If the responses are right censored survival data, we refer
to Random Survival Forests. Multivariate RFs refer to RFs
with multiple responses [3]. RFs with only one response
are applied to many different problems in bioinformatics
[4, 5]. However, the number of studies with multivariate
RFs is much smaller [6].
Besides good performance, another advantage of RFs is

that they require little tuning. Another property of RFs
that makes them attractive is that they return variable
importance measures (VIMs). These VIMs can be used
to rank variables and identify those which most influence
prediction. This favors interpretability. Predictors are not
usually equally relevant. In fact, often only a few of them
have a substantial influence on the response, i.e. the rest
of them are irrelevant and could have been excluded from
the analysis. It is often useful to learn the contribution or
importance of explanatory variables in the response [1].
The most widely used VIMs for RFs, such as the Gini

VIM (GVIM), permutation VIM (PVIM) and conditional
permutation VIM (CPVIM) [7], rely on the choice of a
performance measure. However, measures of prediction
performance are not unique [8]. Some examples for clas-
sification are misclassification cost, Brier score, sensitivity
and specificity measures (binary problems), etc., while
some examples for regression problems are mean squared
error, mean absolute error, etc. In the case of unbalanced
data, i.e. data where response class sizes differ consider-
ably, the area under the curve (AUC) is suggested by [9]
instead of the common error rate. There is no clear appro-
priate performance measure for survival data [10], less so
in the case of multivariate response and even less so if the
responses are of different types.
To solve this issue, an approach for selecting vari-

ables that depends on the structure of the trees, without
depending on performance measures, was proposed by
[10]. They proposed an algorithm based on the minimal
depth (MD) statistic, i.e. based on the idea that variables
that tend to split close to the root node should have more
importance in prediction. By removing the dependence on
performance measures, the arrangement of the trees gains
strength, as in the case of splitting rules.
Recently, the author has proposed a new alternative

importance measure in RFs called Intervention in Predic-
tion Measure (IPM) [11] in an industrial application. IPM
is also based on the structure of the trees, like MD. There-
fore, it is independent of any prediction performance
measure. IPM only depends on the forest and tree param-
eter settings. However, unlike MD, IPM is a case-based
measure. Note also that IPM is expressed as a percentage,

which makes it attractive in terms of interpretability. IPM
can be used with new observations that were not used
in the RF construction, without needing to know the
response, unlike other VIMs. IPM can be defined glob-
ally, for each class (in a classification problem) and locally.
In addition, IPM can easily be computed for any kind of
response, including multivariate responses. IPM can be
used with any algorithm employed to grow each individ-
ual tree, from the Classification And Regression Trees
(CART) algorithm developed by [12] to Conditional Infer-
ence Trees (CIT) [13].
The objective of this work is to compare the new IPM

with other well-known VIMs in different contexts, such as
a classification problem with variables of different types,
another classification problem with correlated predictor
variables, and problems with multivariate responses and
predictors of different types. Several simulation studies
were carried out to show the competitiveness of IPM. Fur-
thermore, the objective is also to stress the advantages
of using IPM in bioinformatics. Consequently, the use of
IPM is also illustrated in two well-known bioinformatics
applications previously employed in other papers [14–16].
Although the majority of the data used here are not p > n,
they could be relevant to this kind of scenarios, but this is
something to be explored in the future.

Methods
Random forest
As mentioned previously, trees are a nonlinear regression
procedure. Trees are grown by binary recursive partition-
ing. The broad idea behind binary recursive partitioning is
to iteratively choose one of the predictors and the binary
split in this variable in order to ultimately fit a constant
model in each cell of the resulting partition, which con-
stitutes the prediction. Two known problems with such
models are overfitting and a selection bias towards predic-
tors with many possible splits or missing values [15]. To
solve these problems, [13] proposed a conditional infer-
ence framework (CIT) for recursive partitioning, which is
also applicable to multivariate response variables, and it
will be used with IPM.
As outlined above, trees are a low-bias but high-

variance technique, which makes them especially suited
for bagging [1]. Growing an ensemble of trees signifi-
cantly increases the accuracy. The term random forest was
coined by [2] for techniques where random vectors that
control the growth of each tree in the ensemble are gen-
erated. This randomness comes from randomly choosing
a group ofmtry (mtry << p) predictors to split on at each
node and bootstrapping a sample from the training set.
The non-selected cases are called out-of-bag (OOB).
Here, RFs based on CART (CART-RF) and CIT (CIT-

RF) are considered since the VIMs reviewed later are
based on these. Both are implemented in R [17]. Breiman’s
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RF algorithm [2] is implemented in the R package
randomForest [18, 19] and also in the R package ran-
domForestSRC [20–22], while CIT-RF can be found in
the R package party [23–25]. Multivariate RFs can be
computed by the R package randomForestSRC and the R
package party, but not by the R package randomForest. In
the R package randomForestSRC, for multivariate regres-
sion responses, a composite normalized mean-squared
error splitting rule is used; for multivariate classification
responses, a composite normalized Gini index splitting
rule is used; and when both regression and classification
responses are detected, a multivariate normalized com-
posite split rule of mean-squared error and Gini index
splitting is invoked.
Regardless of the specific RF implementation, VIMs can

be computed, which are a helpful tool for data interpretation
and feature selection. VIMs can be used to obtain a rank-
ing of the predictors according to their association with
the response. In the following section, themost used VIMs
are briefly reviewed and our IPM proposal is introduced.

Random forest variable importance measures and variable
selection procedures
The most popular VIMs based on RF include GVIM,
PVIM and CPVIM. GVIM and PVIM are derived from
CART-RF and can be computed with the R package
randomForest [18, 19]. PVIM can also be derived from
CIT-RF and obtained with the R package party [23–25].
CPVIM is based on CIT-RF, and can be calculated using
the R package party. A very popular stepwise procedure
for variable selection using PVIM is the one proposed
by [26] (varSelRF), which is available from the R pack-
age varSelRF [27, 28]. The procedure for variable selection
based on the tree-based concept termed MD proposed by
[10] (varSelMD) is available from the R package random-
ForestSRC [20–22]. The results of the chosen variables for
variable selection methods can be interesting, although
the objective of variable selection methods is not really
returning the importance of variables, but returning a set
of variables that are subject to a certain objective, such as
preserving accuracy in [26]. The underlying rationale is
that the accuracy of prediction will not change if irrelevant
predictors are removed, while it drops if relevant ones are
removed. Table 1 gives an overview of the methods.

GVIM
GVIM is based on the node impurity measure for node
splitting. The node impurity is measured by the Gini index
for classification and by the residual sum of squares for
regression. The importance of a variable is defined as the
total decrease in node impurities from splitting on the
variable, averaged over all trees. It is a global measure
for each variable; it is not defined locally or by class (for
classification problems). When there are different types

of variables, GVIM is strongly biased in favor of contin-
uous variables and variables with many categories (the
statistical reasons for this are well explained by [15]).

PVIM
The importance of variable k is measured by averaging
over all trees the decrease in accuracy between the pre-
diction error for the OOB data of each tree and the same
after permuting that predictor variable.
The PVIM derived from CIT-RF is referred to as PVIM-

CIT-RF. Although CIT-RF can fit multivariate responses,
PVIM cannot be computed (as previously discussed, there
is no clear appropriate performance measure for multi-
variate responses).
The PVIM derived from CART-RF is referred to as

PVIM-CART-RF, which is scaled (normalized by the stan-
dard deviation of the difference) by default in the ran-
domForest function from the R package randomForest
[18, 19]. The problems of this scaled measure are explored
by [29]. According to [30], PVIM is often very consistent
with GVIM. PVIM can be computed for each class, and it
can also be computed casewise. The local or casewise vari-
able importance is the increase in percent of times a case i
is OOB andmisclassified when the variable k is permuted.
This option is available from the R package randomForest
[18, 19], but not from the R package party [23–25].

CPVIM
An alternative version of PVIM to correct bias for cor-
related variables is CPVIM, which uses a conditional
permutation scheme [25]. According to [31], CPVIM
would be more appropriate if the objective is to iden-
tify a set of truly influential predictors without consid-
ering the correlated effects. Otherwise, PVIM would be
preferable, as correlations are an inherent mutual prop-
erty of predictors. In CPVIM, the variable importance of
a predictor is computed conditionally on the values of
other associated/correlated predictor variables, i.e. possi-
ble confounders are taken into account, unlike PVIM. The
concept of confounding is well illustrated with a simple
example considered in [32] (see [32] for a more extensive
explanation): a classification problem for assessing fetal
health during pregnancy. Let Y be the response with two
possible values (Y = 0 if the diagnosis is incorrect and
Y = 1 otherwise). Let us consider the following predic-
tors: X1, which assesses the quality of ultrasound devices
in the hospital, X2, which assesses whether the hospital
staff are trained to use them and interpret the images
and X3, which assesses the cleanliness of hospital floors.
Note that X2 is related to Y and X3, which are linked
to the hospital’s quality standards. If X2 was not taken
into account in the analysis, a strong association between
Y and X3 would probably be found, i.e. X2 would act
as a confounder. In the multiple regression model, if X2
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was included as predictor in the model, the questionable
influence of X3 would disappear. This is the underlying
rationale for CPVIM: conditionally on X2, X3 does not
have any effect on Y .

varSelRF
Díaz-Uriarte and Alvarez de Andrés [26] presented a
backward elimination procedure using RF for selecting
genes from microarray data. This procedure only applies
to RF classification. They examine all forests that result
from iteratively eliminating a fraction (0.2 by default) of
the least important predictors used in the previous iter-
ation. They use the unscaled version of PVIM-CART-RF.
After fitting all forests, they examine the OOB error rates
from all the fitted random forests. The OOB error rate is
an unbiased estimate of the test set error [30]. They select
the solution with the smallest number of genes whose
error rate is within 1 (by default) standard error of the
minimum error rate of all forests.

varSelMD
MD assesses the predictiveness of a variable by its depth
relative to the root node of a tree. A smaller value corre-
sponds to a more predictive variable [33]. Specifically, the
MD of a predictor variable v is the shortest distance from
the root of the tree to the root of the closest maximal sub-
tree of v; and a maximal subtree for v is the largest subtree
whose root node is split using v, i.e. no other parent node
of the subtree is split using v. MD can be computed for any
kind of RF, including multivariate RF.
A high-dimensional variable selection method based on

the MD concept was introduced by [10]. It uses all data
and all variables simultaneously. Variables with an average
MD for the forest that exceeds themeanMD threshold are
classified as noisy and are removed from the final model.

Intervention in prediction measure (IPM)
IPM was proposed in [11], where an RF with two
responses (an ordered factor and a numeric variable) was
used for child garment size matching.
IPM is a case-wise technique, i.e. IPM can be computed

for each case, whether new or used in the training set.
This is a different perspective for addressing the problem
of importance variables.
The IPM of a new case, i.e. one not used to grow the for-

est and whose true response does not need to be known,
is computed as follows. The new case is put down each of
the ntree trees in the forest. For each tree, the case goes
from the root node to a leaf through a series of nodes. The
variable split in these nodes is recorded. The percentage
of times a variable is selected along the case’s way from
the root to the terminal node is calculated for each tree.
Note that we do not count the percentage of times a split
occurred on variable k in tree t, but only the variables that

intervened in the prediction of the case. The IPM for this
new case is obtained by averaging those percentages over
the ntree trees. Therefore, for IPM computation it is only
necessary to know the structure of the trees forming the
forest; the response is not necessary.
The IPM for a case in the training set is calculated by

considering and averaging over only the trees where the
case belongs to the OOB set. Once the casewise IPMs are
estimated, the IPM can be computed for each class (in the
case of RF-classification) and globally, averaging over the
cases in each class or all the cases, respectively. Since it
is a case-wise technique, it is also possible to estimate the
IPM for subsets of data, with no need to regrow the forest
for those subsets.
An anonymous reviewer raised the question of using in-

sample observations in the IPM estimation. In fact, the
complete sample could be used, which would increase the
sample size. This is a matter for future study. Although
IPM is not based on prediction, i.e. it does not need the
responses for its computation once the RF is built, the
responses of in-sample observations were effectively used
in the construction of the trees. So brand new and unused
data (OOB observations) were preferred for IPM estima-
tion, in order to ensure generalization. In Additional file 1,
there is an example using all samples.
The new IPM and all of the code to reproduce the results

are available in Additional file 2.

Comparison studies
The performance of IPM in relation to the other well-
established VIMs is compared in several scenarios, with
simulated and real data. Two different kinds of responses
are analyzed with both simulated and real data, specif-
ically RF-classification and Multivariate RF are consid-
ered in order to cover the broadest possible spectrum of
responses.
The importance of the variables is known a priori with

simulated data, as we know the model which generated
the data. In this way, we can reliably analyze the successes
in the ranking and variable selection for each method,
and also the stability of the results, as different data sets
are generated for each model. For RF-classification, the
simulation models are analogous to those considered in
previous works. For Multivariate RFs, simulation models
are designed starting from scratch in order to analyze their
performance under different situations.
Analyses are also conducted on real data, which have

previously been analyzed in the literature in order to sup-
ply additional evidence based on realistic bioinformatics
data structures that usually incorporate complex interde-
pendencies.
Once importance values are computed, predictors can

be ranked in decreasing order of importance, i.e. the
most important variable appears in first place. For some
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methods there are ties (two variables are equally impor-
tant). In such cases, the average ranking is used for those
variables.
All the computations are made in R [17]. The packages

and parameters used are detailed for each study.

Simulated data
Categorical response: Scenarios 1 and 2
Two classification problems are simulated. In both cases,
a binary response Y has to be predicted from a set of
predictors.
In the first scenario, the simulation design was similar to

that used in [15], where predictors varied in their scale and
number of categories. The first predictor X1 was contin-
uous, the other predictors from X2 to X5 were categorical
with a different number of categories. Only predictor X2
intervened in the generation of the response Y , i.e. only
X2 was important, the other variables were uninforma-
tive, i.e. noise. This should be reflected in the VIM results.
The simulation design of Scenario 1 appears in Table 2.
The number of cases (predictors and response) gener-
ated in each data set was 120. A total of 100 data sets
were generated, so the stability of the results could also be
assessed.
The parameter settings for RFs were as follows. CART-

RF was computed with bootstrap sampling without
replacement, with ntree = 50 as in [15], and two values
for mtry: 2 (sqrt(p) the default value in [18]) and 5 (equal
to p). GVIM, PVIM and IPM were computed for CART-
RF. CIT-RF was computed with the settings suggested for
the construction of an unbiased RF in [15], again with
ntree = 50 andmtry equal to 2 and 5. PVIM, CPVIM, and
IPM were computed for CIT-RF. varSelRF [27] was used
with the default parameters (ntree = 5000). varSelMD
[20] was used with the default parameters (ntree = 1000
andmtry = 2) and also withmtry = 5.
The simulation design for the second scenario was

inspired by the set-up in [25, 31, 34]. The binary response
Y was modeled by means of a logistic model:

P(Y = 1|X = x) = exTβ

1 + exTβ

where the coefficients β were: β = (5, 5, 2, 0,−5,−5,−2,
0, 0, 0, 0, 0)T . The twelve predictors followed a multivari-
ate normal distribution with mean vector μ = 0 and
covariance matrix �, with σj,j = 1 (all variables had unit

variance), σj,j′ = 0.9 for j �= j′ ≤ 4 (the first four vari-
ables were block-correlated) and the other variables were
independent with σj,j′ = 0. The behavior of VIMs under
predictor correlation could be studied with this model. As
before, 120 observations were generated for 100 data sets.
The parameter settings for RFs were as follows. CART-

RF was computed with bootstrap sampling without
replacement, with ntree = 500 as in [25], and two values
formtry: 3 (sqrt(p) the default value in [18]) and 12 (equal
to p). GVIM, PVIM and IPM were computed for CART-
RF. CIT-RF was computed with the settings suggested for
the construction of an unbiased RF in [15], again with
ntree = 500 and mtry equal to 3 and 12. PVIM, CPVIM,
and IPM were computed for CIT. varSelRF was used with
the default parameters (ntree= 5000). varSelMDwas used
with the default parameters (ntree = 1000 and mtry = 3)
and also withmtry = 12.

Multivariate responses: Scenarios 3 and 4
Again two scenarios were simulated. The design of the
simulated data was inspired by the type of variable com-
position of the real problem with multivariate responses
that would be analyzed. In this problem, responses were
continuous and there were continuous and categorical
predictors.
The configuration of the third and fourth scenarios were

quite similar. Table 3 reports the predictor distributions,
which were identical in both scenarios. Table 4 reports
the response distributions, two continuous responses per
scenario. Of the 7 predictors, only two were involved in
the response simulation: the binary X1 and the continuous
X2. However, in the fourth scenario X2 only participated
in the response generation when X1 = 0. This arrange-
ment was laid out in this way to analyze the ability of the
methods to detect this situation. The rest of the predictors
did not take part in the response generation, but X5 was
very highly correlated with X2. In addition, the noise pre-
dictors X6 (continuous) and X7 (categorical) were created
by randomly permuting the values of X2 and X1, respec-
tively, as in [10]. The other irrelevant predictors,X3 andX4
were continuous with different distributions. As before,
120 observations in each scenario were generated for 100
data sets.
With multivariate responses, only two VIMs could be

computed. varSelMD was used with the default parame-
ters (ntree = 1000 and mtry = 3) and also with mtry = 7.
IPMwas computed for CIT-RFwith the settings suggested

Table 2 Simulation design for Scenario 1

Variables X1 X2 X3 X4 X5 Y|X2 = 0 Y|X2 = 1

Distribution N(0,1) B(1,0.5) DU(1/4) DU(1/10) DU(1/20) B(1,0.5 - rel) B(1,0.5 + rel)

The variables are sampled independently from the following distributions. N(0,1) stands for the standard normal distribution. B(1,π ) stands for the Binomial distribution with
n = 1, i.e the Bernoulli distribution, and probability π . DU(1/n) stands for the Discrete Uniform distribution with values 1, . . . , n. The relevance parameter rel indicates the
degree of dependence between Y and X2, and is set at 0.1, which is not very high
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Table 3 Simulation design of predictors for Scenario 3 and 4

Variables X1 X2 X3 X4 X5 X6 X7

Distribution B(1,0.6) N(3,1) Unif(4,6) N(5,1) X2 + N(0,0.15) P(X2) P(X1)

The variables are sampled independently from the following distributions. B(1,π ) stands for the Binomial distribution with n = 1, i.e the Bernoulli distribution, and probability
π . N(μ, σ ) stands for the normal distribution with mean μ and standard deviation σ . Unif(a, b) stands for the continuous uniform distribution on the interval [ a, b]. P(X) stands
for random permutation of the values generated in the variable X

for the construction of an unbiased RF in [15], with
ntree = 1000 andmtry = 7.

Real data: Application to C-to-U conversion data and
application to nutrigenomic study
Two well-known real data sets were analyzed. The first
was a binary classification problem, where the predic-
tors were of different types. In the second, the response
was multivariate and the predictors were continuous and
categorical, as in the first set.
The first data set was the Arabidopsis thaliana, Brassica

napus, and Oryza sativa data from [14, 15], which can be
downloaded from Additional file 2. It applies to C-to-U
conversion data. RNA editing is the process whereby RNA
is modified from the sequence of the corresponding DNA
template [14, 15]. For example, cytidine-to-uridine (C-to-
U) conversion is usual in plant mitochondria. Although
the mechanisms of this conversion are not known, it
seems that the neighboring nucleotides are important.
Therefore, the data set is formed by 876 cases, each of
them with the following recorded variables (one response
and 43 predictors):

• Edit, with two values (edited or not edited at the site
of interest). This is the binary response variable.

• The 40 nucleotides at positions –20 to 20 (named
with those numbers), relative to the edited site, with 4
categories;

• the codon position, cp, which is categorical with 4
categories;

• the estimated folding energy, fe, which is continuous,
and

• the difference in estimated folding energy (dfe)
between pre-edited and edited sequences, which is
continuous.

The second data set derives from a nutrigenomic study
[16] and is available in the R package randomForestSRC
[20] and Additional file 2. The study examines the effects
of 5 dietary treatments on 21 liver lipids and 120 hepatic

gene expressions in wild-type and PPAR-alpha deficient
mice. Therefore, the continuous responses are the lipid
expressions (21 variables), while the predictors are the
continuous gene expressions (120 variables), the diet (cat-
egorical with 5 categories), and the genotype (categorical
with 2 categories). The number of observations is 40.
According to [16], in vivo studies were conducted under
European Union guidelines for the use and care of lab-
oratory animals and were approved by their institutional
ethics committee.

Results and discussion
Scenario 1
Figure 1 shows the ranking distribution of X2 for VIMs
applied to Scenario 1. This information is also displayed
in table form in Additional file 1: Table S1. The results for
other sample sizes are shown in Additional file 1: Figures
S1 and S2. InMD, the ranking according to minimal depth
returned by the variable selection method varSelMD is
shown. In theory, as X2 was the only relevant predictor, X2
should be in first place (the most important). The other
uninformative variables should be in any place from 2nd
to 5th, i.e. on average 3.5. The method which best iden-
tifies X2 as the most important predictor is IPM from
CIT-RF with mtry = 5, for which X2 was detected as the
most important on 69% of occasions. The second best
method is PVIM-CIT-RF with mtry = 5, although it only
identified X2 as the most important predictor on 54% of
occasions. It is not surprising that the methods based on
CART-RF do not obtain good results due to the nature of
the problem, since there are different types of predictors
and different numbers of categories. In this situation, CIT
provides a better alternative to CART, as is well explained
in [15]. This statement is also corroborated by the results
shown in Fig. 2, where the average rankings for each vari-
able are shown. This information is also displayed in table
form in Additional file 1: Table S2. The results for other
sample sizes are shown in Additional file 1: Figures S3
and S4. Note that GVIM, MD and IPM from CART-RF

Table 4 Simulation design of responses for Scenario 3 and 4

Variables Y1|X1 = 0 Y1|X1 = 1 Y2|X1 = 0 Y2|X1 = 1

Scenario 3 2 + 2·X2 + N(0,0.1) 3 + 4·X2 + N(0,0.2) 2 + 3·X2 + N(0,0.15) 3 + 5·X2 + N(0,0.2)

Scenario 4 idem 4 + N(0,0.2) idem 5 + N(0,0.2)

The variables are sampled independently from the following distributions. N(μ, σ ) stands for the normal distribution with mean μ and standard deviation σ
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Fig. 1 Ranking distribution of X2 for VIMs in Scenario 1. Barplots with
the ranking distribution (in percentage) of X2. The darker the bar, the
greater the importance of X2 for that method

selected X2 erroneously most times as the least important
predictor, and X5, which is irrelevant, as the most impor-
tant one. IPM fromCIT-RFwithmtry= 5 was themethod
with the lowest average ranking for X2, i.e. that which gave
the highest importance, in average terms, for X2.
As regards the variable selection methods varSelRF and

varSelMD, they have to be analyzed differently, as pre-
dictors are not ranked. The percentage of times that X2
belonged to the final selected model of varSelRF was 66%,
despite selecting two variables on 82 occasions, three vari-
ables on 15 occasions and four variables on 3 occasions.
Remember that only X2 was relevant. Note that IPM from
CIT-RF with mtry = 5 detected X2 as the most impor-
tant predictor on 69% of occasions, and X2 was among the
twomost important predictors on 84% of occasions (much
greater than 66%). The results for varSelMD were very
poor with both mtry values. The method varSelMD with
mtry = 2 selected four predictors on 20% of occasions
and five predictors, i.e. all the predictors, the remaining
80% of the times. It selects X2 on 80% of occasions, pre-
cisely when all the variables were chosen. In other words,
it selected the four non-relevant variables and left X2 out
of the model on 20% of occasions, and the remaining 80%
of the times it did not make any selection, as it chose all
the variables, including those which were irrelevant. The
method varSelMD with mtry = 5 selected all the predic-
tors on 24% of occasions, four predictors 72% and three
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predictors 4%. X2 was among those selected on only 26%
of occasions (when all the variable were selected on 24%
of occasions).
IPM values are also easy to interpret, since they are pos-

itive and add one. The average IPM (from CIT-RF with
mtry = 5) values of cases in the 100 data sets for each
variable were: 0.18 (X1), 0.31 (X2), 0.18 (X3), 0.17 (X4) and
0.16 (X5). So X2 was the most important, whereas it gave
more or less the same importance to the other variables.
An issue for further research is to determine from which
threshold (maybe depending on the number of variables)
a predictor can be considered irrelevant.
IPM can also be computed in class-specific terms, as

PVIM-CART-RF. (They can also be computed casewise,
but we omit those results in the interests of brevity). As an
illustrative example, results from a data set are examined.
In [11] we showed two problems for which the results
of IPM by class were more consistent with that expected
than those of PVIM-CART-RF by class, and this is also the
case with the current problem. Table 5 shows the impor-
tance measures by group and globally. The IPM rankings
seem to be more consistent at a glance than those for
PVIM-CART-RF. For instance, the ranking by PVIM for
class 1 gave X1 as the most important predictor, whereas
X1 was the fourth (the penultimate) most important pre-
dictor for class 0. We computed Kendall’s coefficient W
[35] to assess the concordance. Kendall’s coefficient W
is an index of inter-rater reliability of ordinal data [36].
Kendall’s W ranges from 0 (no agreement) to 1 (com-
plete agreement). Kendall’s W for the ranking of PVIM
CART-RF (mtry = 2) for class 0 and 1 was 0.5, whereas
for IPM CIT-RF (mtry = 5) it was 0.95. We repeated this
procedure for each of the 100 data sets, and the aver-
age Kendall’s W were 0.71 and 0.96 for PVIM-CART-RF
(mtry = 2) and IPM CIT-RF (mtry = 5), respectively.
Therefore, the agreement between the class rankings for
IPM was very high. Note that in this case, the impor-
tance of predictors followed the same pattern for each
response class as reflected by the IPM results, but it could

Table 5 Analysis by class of a data set in Scenario 1

Measures PVIM IPM

0 1 G 0 1 G

X1 4 1 4 3 3 3

X2 2 3 2 1 1 1

X3 3 2 3 5 4 5

X4 1 4 1 2 2 2

X5 5 5 5 4 5 4

The first column is the name of the variables. The two following columns
correspond to the PVIM ranking (CART-RF,mtry = 2) for each class, whereas the third
column is the same but calculated globally (labeled as G). The last three columns
contain the ranking of the IPM values (CIT-RF,mtry = 5) first by group and the last
column computed globally (labeled as G)

be different in other cases. This has great potential in
applied research, as explained in [32, 37]: for example, dif-
ferent predictors may be informative with different cancer
subtypes.

Scenario 2
According to the model generation, the most important
variables were X1, X2, X5 and X6, which were equally
important. The following variables in terms of impor-
tance were X3 and X7, which were also equally important.
The other variables were irrelevant. However, there was a
correlation pattern between variables X1, X2, X3 and X4,
which were highly correlated, but they were uncorrelated
to the other variables. Each VIM can be affected by this
in different ways. Theoretically, if we rank the 12 variables
by importance (from the most to the least important), the
true ranking of each variable should be: 2.5, 2.5, 5.5, 9.5,
2.5, 2.5, 5.5, 9.5, 9.5, 9.5, 9.5, 9.5. Note that X1, X2, X5 and
X6 should be in any of the first four positions, and 2.5 is
the mean of 1, 2, 3 and 4. Analogously, X3 and X7 should
be in 5th or 6th position, and 5.5 is the mean of these two
values. Similarly, for the other variables, the mean of the
7th, 8th, 9th, 10th, 11th and 12th positions is 9.5.
Figure 3 shows the (flipped) average ranking (from the

100 data sets) for each method with mtry = 3 and
mtry = 12. The results for other sample sizes are shown in
Additional file 1: Figures S5 and S6. As in [25], correlated
predictors were given high importance with small mtry
values, although X3 was not so important, even when X4
was irrelevant. Note that with mtry = 3, only MD gave
higher importance (least ranking) to X5 and X6 than to
the irrelevant X4. This is due to the high correlation with
truly important variables X1 and X2. This effect is miti-
gated when mtry is increased. For mtry = 12, the ranking
profiles were more like the true one. The closest ranking
profile to the true one was that given by IPM CIT-RF. The
profiles of MD and IPM CART-RF were near to IPM CIT-
RF, and all these methods are based on the tree structure.
The IPMCIT-RF ranking for the most important (equally)
variables was around 3 for all of them. For other methods
there was more variation among the rankings of these four
variables. For example, for CPVIM the average ranking for
X1 and X2 was around 2.5, but it increased to around 4
for X5 and X6, despite being equally important. For the
second equally important variables (X3 and X7), the IPM
CIT-RF ranking gave a value of 5.5 forX3 (equal to the true
one) and 7.5 for X7. The other methods gave more impor-
tance (lower ranking) to X3 and less importance to X7
(higher ranking), i.e. the other methods were further away
from the true ranking. As regards the irrelevant variables,
the IPM CIT-RF ranking gave a value of 6.8 for X4 and
around 9 for the other uninformative variables. The X4
ranking for other methods was lower, i.e. they erroneously
placedmore importance on the uninformative variableX4.
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Therefore, IPM CIT-RF with mtry = 12 better identified
the true pattern of importance.
The variable selection methods do not rank the vari-

ables, so the analysis can only be based on the selections.
The distributions of the selections can be seen in Table 6.
The number of variables selected by varSelRF varied from
2 to 8, although the most frequent numbers were 5 (on 31
occasions) and 6 (on 44 occasions). Note that the uninfor-
mative variable X4 was selected more times than the most
important variables X5 and X6. As regards varSelMD, the
results were good and were in line withMD. Formtry = 3,
it selected 3 to 6 variables: four variables on 26 occasions,
five variables on 51 occasions and six variables on 20 occa-
sions. It detected the most important variables, although
X4 was incorrectly selected 62% of the times, and X7 was
only selected 3% of the times. The same happened for
varSelMD with mtry = 12, although this time the num-
ber of X4 selections was lower (30%) and the number of
X7 selections was higher (21%). The number of variables
selected by varSelMD withmtry = 12 ranged from 3 to 6,
although it usually selected 4 (40%) or 5 (44%) variables.

Remember that varSelRF takes into account the error rate
for selecting the solution. This could be the reason why X4
is frequently selected by this method, because X4 is highly
correlated with other variables in the model generation.
This could also be the reason why the results for varSelRF
in Scenario 1 were not as bad as for other methods based
on CART-RF.

IPM for a new case
IPM can be computed for a new case using either CIT-
RF or CART-RF. Let us consider one of the data sets. A
new artificial case with a value of zero in all the variables,
i.e. the population mean of the generating model, can be
built. According to the model construction, the impor-
tance pattern should be as discussed above. Figure 4 shows
the IPM with mtry = 12 for CIT-RF and CART-RF for
this new case. Note that the other methods do not allow
importance values to be computed for new cases. The four
most important variables match the generating model.
Variable X3 was the following most important. Variable
X7 was as important as X3, but as before, its importance
was underestimated. The importance of the other vari-
ables was negligible, although IPM CART-RF attached
some importance to X4. Therefore, RF not only predicts
the response of unlabeled samples (with unknown status),
but also the importance of variables for each of those sam-
ples can be obtained with IPM. As discussed previously,
local importance could reveal variables that are impor-
tant for a subset of samples of the same class, which could
be masked from global importance values [37]. This has
potential and it is something to be explored further in the
future, as only few studies have used local importances as
yet [38, 39]. However, this should be approached with cau-
tion, as local importances could be noisier since they are
based on smaller sample sizes.

Application to C-to-U conversion data
First of all, let us analyze the VIMs. The composition of
this data is similar to the data structure of Scenario 1
(predictors of different types), so only the results for the
best methods in Scenario 1 are shown here. PVIM was
computed with CIT-RF as in Scenario 1, with ntree = 50
and mtry = 3 as in [15]. CPVIM could not be computed
for this data set (not even if the threshold was changed)
due to the high storage needs. But, as shown in [25],
with increasingmtry values the unconditional importance
resembled the behavior of the conditional importance,

Table 6 Distribution (in percentage) of selections for variable selection methods in Scenario 2

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

varSelRF 98 97 90 87 82 63 6 2 2 2 1 1

varSelMD (mtry = 3) 97 97 74 62 85 70 3 0 0 0 0 0

varSelMD (mtry = 12) 79 76 48 30 96 92 21 2 5 1 5 3
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so PVIM-CIT-RF with mtry = 43 was also considered.
IPM-CIT-RF withmtry = 43 was also computed.
RFs are a randomized method. Therefore, the RF was

computed 100 times from different seeds to gain stability
in VIMs values. The VIM values from the 100 replications

were averaged, and are displayed by barplots in Fig. 5.
The results are similar to those in [15], although with
some slight differences. As in [14, 15], position -1 was
very important, followed by position 1, which was not
detected in [14]. Note that GVIM, the method with the
worst results in Scenario 1, was used in [14]. In [15], fe and
dfe were somewhat important (only fe in [14]), but accord-
ing to the results with PVIM (mtry = 43) and IPM, cp
(more than fe) and fe were somewhat important, but not
dfe. Furthermore, according to IPM, there were also two
somewhat important variables: positions -13 and 13.
In this real case, we do not know the true impor-

tance pattern of the variables. So, besides the variable
importance study, let us also analyze the prediction
accuracy in this data set. The same scheme as in [15]
was considered. The original data were split into a train-
ing and test set with a size ratio of 2:1. This procedure was
repeated 100 times. Each time the following operations
were carried out. A RF-CART with bootstrap sampling
without replacement, with ntree = 50 and mtry = 3
as in [15] was grown using the training set, and obser-
vations in the test set were predicted with this RF. The
same procedure was performed with a CIT-RF with the
settings suggested for the construction of an unbiased
RF in [15], again with ntree = 50 and mtry = 3, as in
[15]. These two procedures were used in [15]. On this
occasion, the variable selection varSelRF was considered
(varSelMD was not considered due to the poor results
obtained in Scenario 1). An RF-CART was built as before,
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Table 7 Mean and standard deviation of misclassification rates in C-to-U conversion data

Method RF-CART RF-CIT varSelRF R-PVIM (mtry = 3) R-PVIM (mtry = 43) R- IPM

Mean 0.3051 0.2859 0.3054 0.2825 0.2793 0.2793

Std. deviation 0.0227 0.0250 0.0265 0.0219 0.0192 0.0208

Results produced by using the regularization procedure derived by VIMs are preceded by an R

but using only the variables selected by varSelRF, and pre-
dictions in the test set were calculated. This is a kind
of regularization, which attempts to erase noise (uninfor-
mative predictors) to improve the prediction. The same
strategy was employed to exploit the best VIMs in Sce-
nario 1. The idea was as follows. The same VIMs that
appeared before in Fig. 5 were considered. The predictors
were ranked according to these VIMs. The m = 10 most
important predictors were selected, and used to grow a
CIT-RF with the settings suggested for the construction of
an unbiased RF in [15], again with ntree = 50 andmtry =
3. The test set was predicted by this RF. The valuem = 10
(a round number) was an intermediate value, not too small
or too high, in view of the importance patterns displayed
in Fig. 5 (there were not many important variables among
the 43 predictors). The tuning parameterm should be fur-
ther investigated, but the results are reported here without
refining the value of m. The mean and standard devia-
tion of the misclassification rates over the 100 runs appear
in Table 7.
The results obtained are similar those that appear in

[15]. The greatest successes were achieved by methods
conducted with CIT, as expected due to the data com-
position with predictors of different types. Furthermore,
the regularization strategy using VIMs reported the best
performance. In particular, the best results were achieved
by using PVIM and IPM with CIT-RF and mtry = 43
to select the most important predictors before refitting
the RF-CIT. In fact, both methods significantly (p-values
of Student’s t-test for paired samples are well below
0.05) improved on the results given by RF-CART, CIT-RF
and varSelRF.

Scenarios 3 and 4
Tables 8 and 9 show the average ranking (from the 100
data sets) for each method. The results for other sample
sizes are shown in Additional file 1: Tables S3, S4, S5
and S6. For scenario 3 and 4, variables X1 and X2 partici-
pated in the response generation, so both predictors were

important. However, their importance level differs in each
scenario. In scenario 4, X2 only intervened in the response
generation when X1 = 0, so intuitively it should have had
less importance than in scenario 3. As X1 and X2 partic-
ipated in the response generation in a different way, and
they are also variables of different types, it is difficult to
judge their relative importance theoretically. In any case,
X1 and X2 should rank in the first or second positions in
scenario 3, while the other irrelevant variables should rank
in 5th position (the mean of positions 3, 4, 5, 6, and 7).
In scenario 3, IPM considered X2 as the most impor-

tant variable, followed by X1 in all the runs. The average
IPM values were 32% for X1 and 68% for X2, and near
zero for the other variables. The average rank for the other
variables was around 5, except for X5 (the variable that
was highly correlated with X2), with an average ranking of
3.4. Nevertheless, MD considered mostly X1 as the most
important variable and in second position X2, although
not in all the runs. For MD with mtry = 3, X5 was
the most important on 8 occasions, and the second most
important on 24 occasions. For MD with mtry = 7, X5
is the most important on 4 occasions, and the second
most important on 8 occasions. Furthermore, MD always
ranked X7 in last position (presumably because of its cat-
egorical nature), when it was no less important than the
other uninformative variables.
In scenario 4, MD with mtry = 7 considered X1 as the

most important variable, followed by X2 in all the runs.
On the other hand, MD with mtry = 3 considered X1 as
the most important in all the runs, as well as IPM. How-
ever, X2 was the second most important in all runs, except
on 28 occasions for MDwithmtry= 3 and 6 occasions for
IPM, where X2 was considered the third. The average IPM
values were 40% for X1, 26% for X2 and around 7% for the
other variables. However, as IPM is defined casewise, IPM
can be also computed according to the group values of X1.
Note that this kind of information supplied by IPM about
importance in subgroups of data could only be available
for MD if the RF was regrown with that subset of data. For

Table 8 Average ranking of variables for VIMs in Scenario 3

Methods X1 X2 X3 X4 X5 X6 X7

MD (mtry = 3) 1.36 2.04 4.85 4.99 2.60 5.16 7.00

MD (mtry = 7) 1.19 1.97 4.87 4.96 2.84 5.17 7.00

IPM (CIT-RF,mtry = 7) 2.00 1.00 5.41 5.40 3.40 5.43 5.37



Epifanio BMC Bioinformatics  (2017) 18:230 Page 13 of 16

Table 9 Average ranking of variables for VIMs in Scenario 4

Methods X1 X2 X3 X4 X5 X6 X7

MD (mtry = 3) 1.00 2.28 5.07 4.97 2.74 4.94 7.00

MD (mtry = 7) 1.00 2.00 4.91 5.02 3.22 4.85 7.00

IPM (CIT-RF,mtry = 7) 1.00 2.06 4.59 4.71 6.11 4.75 4.78

samples with X1 = 0, the average IPM values were 47% for
X1 and 53% for X2. Remember that when X1 = 0, the vari-
able X2 intervened in the generation of the responses. For
samples with X1 = 1 (X2 did not intervene in the gener-
ation of the responses), the average IPM values were 35%
for X1, 7% for X2, 13% for X3, 13% for X4, 6% for X5, 13%
for X6 and 12% for X7. Note that when X1 = 1, neither
of the variables intervened in the model generation, so all
the variables were equally unimportant. The selection fre-
quency with CIT should be similar [15]. The sum of IPM
of the two correlated variables X2 and X5 was 13%. Note
also that this situation, where neither of the predictors is
related with responses, is not expected (nor desirable) in
practice.

Application to a nutrigenomic study
Let us first analyze the VIMs. As the response is mul-
tivariate, only MD and IPM-CIT-RF can be computed.
This problem is placed in a high-dimensional setting: it
deals with large p (122) and small n (40). As explained
in [10], as p increases, the tree becomes overwhelmed
with variables, so trees will be too shallow. If we com-
pute varSelMD and IPM-CIT-RF with mtry = 122 and
ntree = 1000, only the variable diet is selected in both
cases. This solution could be viewed as a ’degenerate’
solution. Then, the default mtry value in function rfsrc
from R package randomForestSRC [20] is used. In this
case mtry = p/3 (rounded up), i.e. mtry = 41. A total
of 34 variables were selected by varSelMD, diet being
the least deep and genotype being the fourth least deep.
However, except for diet, the depth values were not
very different. To provide stability, this procedure was
repeated 100 times with different seeds. A total of 44
variables were selected in some of the replicates. Half
of these, 22 variables, were selected in all the replicates
and 27 of them were selected on more than 75% of
occasions. In particular, these were the following 27
predictors (the number of times they were selected
over the 100 replicates is given in brackets): ACAT2
(100), ACBP (100), ACC2 (100), ACOTH (100),
apoC3 (100), BSEP (89), CAR1 (100), CYP2c29 (100),

CYP3A11 (100), CYP4A10 (100), CYP4A14 (100), diet
(100), G6Pase (96), genotype (100), GK (77), GSTpi2
(100), HPNCL (100), Lpin (100), Lpin1 (100), Lpin2 (97),
Ntcp (100), PLTP (100), PMDCI (100), S14 (100), SPI1.1
(100), SR.BI (99), and THIOL (100).
For the 100 replicates of IPM-CIT-RF with mtry = 41,

the ranking of the first variables was very stable: diet
was the first in all replicates, and genotype the second.
The average ranking of the first ten ranked predictors
together with the standard deviation for the 100 repli-
cates can be seen in Table 10. Although not suggested
by the varSelMD results, the IPM values indicate that
four variables accounted for most relevance (nearly 70%).
In particular, these are the averaged IPM values for the
four variables in brackets: diet (33.7%), genotype (19.5%),
PMDCI (7.5%) and THIOL (6.2%). The barplot of these
IPM values can be seen in Fig. 6. The seventh and eight
most important predictors according to IPM, BIEN and
AOX were not selected in any of the replications of
varSelMD.
Let us analyze the prediction performance. Prediction

error was calculated using OOB data. As the responses
were continuous, performance was measured in terms
of mean-squared-error. The prediction error for each
of the 21 responses was standardized (dividing by the
variance as in the R package randomForestSRC [20])
for proper comparison. The prediction error using the
function rfsrc from R package randomForestSRC with
the default values was computed, which is referred to
as rfsrc. varSelMD was applied as before, and the func-
tion rfsrc was again used for prediction afterwards, but
the selected variables were used as input instead all
the variables. This procedure is referred as varSelMD.
Finally, instead of varSelMD, IPM-CIT-RF was applied as
before, and the 10most important variables were selected,
for prediction. This procedure was referred as IPM.
The standardized errors for each response were aver-
aged over 100 independent experiments, and their results
are summarized in Table 11 and displayed in Fig. 7. The
lower prediction errors from IPM can be clearly observed.
Furthermore, by pooling the samples for each variable

Table 10 Average ranking of the first 10 ranked variables in the nutrigenomic study for IPM (SD in brackets)

diet genotype PMDCI THIOL CYP3A11 CYP4A14 BIEN AOX CYP4A10 FAS

1 (0) 2 (0) 3.1 (0.3) 3.9 (0.4) 5 (0.2) 6.1 (0.8) 9.1 (3.6) 9.1 (3) 12.4 (5.2) 17 (8.6)
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Fig. 6 Barplot of averaged IPM values for nutrigenomic study. The ranking of the 10 predictors with the largest IPM values appears at the bottom.
Their names can be found in Table 10

and using a Student’s t-test for paired samples with α

= 0.05, IPM significantly improves varSelMD, which in
turn improves rfsrc.

What are the advantages and limitations of IPM?
One of the advantages is the out-performance of IPM in
the previous comparisons. In addition, its case-wise con-
stitution should also be highlighted. IPM can be defined
globally, for each class (for RF-classification) and locally,
as well as for new cases (even if we do not know their true
response). Only PVIM can also be computed locally, by
class and globally, but except for IPM, none of the other
methods are able to estimate a variable’s influence in a
new case without knowing its true response. Furthermore,
IPM can be computed for subsets of data, with no need to
regrow the forest for those subsets.
Furthermore, IPM is independent of any prediction

error, likeMD. This is very advantageous as it is not always
known how the prediction error can be clearly mea-
sured [33], and VIMs (rankings of important variables)
can be different if different prediction error measures
are employed. Furthermore, as IPM is only based on the
tree structures, it can be applied to all kind of forests,
regardless of the outcome, from RF-classification to Mul-
tivariate RFs. [33] indicates another possible advantage of

Table 11 Mean and standard deviation of standardized
prediction errors in the nutrigenomic study

Method rfsrc varSelMD IPM

Mean 54.81 50.13 45.61

Std. deviation 16.35 15.72 15.71

MD due to the fact that it is not linked to any predic-
tion error, which is also the case of IPM. Although RFs
are excellent in prediction for high dimensions, predic-
tion performance breaks down when the number of noisy
predictors increases, as it overwhelms the trees. As a con-
sequence, it is difficult to select variables effectively, and
methods that are based on prediction error, such as PVIM,
may be more susceptible to these effects than methods
based on tree structure. As long as a predictor v repeat-
edly splits across the forest, MD or IPM have a good
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Fig. 7 Boxplots of standardized prediction errors for nutrigenomic
study. Distributions of standardized prediction errors for each
variable, for methods rfsrc (in blue), varSelMD (in black) and IPM (in
red) from 100 replications
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chance of identifying v, even in the presence of many noisy
predictors.
As regards computational complexity, IPM basically

depends on exploring the trees for each observation, so
the most computational burden part is growing the trees.
In addition, IPM is conceptually simple and its interpre-
tation is very accessible for everyone as it is expressed in
percentages.
The influence of sample size on the performance of

IPM is investigated in the simulated scenarios. Results
are shown for sample sizes of n = 50 and n = 500 in
Additional file 1. As indicated by [40], the data sets are
usually high dimensional, i. e. with a small sample size rel-
ative to the dimension, and RFs with the largest trees are
optimal in such studies. However, this is not the case with
n = 500, where there are few variables with a high number
of observation. In such situations, it is desirable to have
the terminal node size go up with the sample size [40]. In
those cases, the maximum depth (maxdepth) of the trees
in RFs may regulate overfitting [41]. As IPM results are
based only on the tree structure, it is fundamental to grow
trees that are not overfit, otherwise noise is introduced,
which can distort the results.
The drawbacks of IPM are common to any other rank-

based VIM, in the sense that caution is needed when
interpreting any linear ranking because it is possible that
multiple sets of weak predictive variables may be jointly
predictive.

Conclusion
A new VIM for RFs, IPM, has been introduced and
assessed in different scenarios, within both simulated and
real frameworks. IPM can be used in place of (or in addi-
tion to) other VIMs. The advantages and limitations of
IPM have been highlighted in the previous Section.
There also some questions that deserve further

research, such as the choice of mtry or maxdepth (for
a high n) in RFs for IPM computation. As the objective
of IPM is not prediction, but to indicate the contribu-
tion of variables to prediction, high mtrys with CIT-RF
have given very good performance in the simulation stud-
ies carried out. However, when p > n, mtry should be
reduced. Besides the qualitative information provided by
IPM for understanding problems, if we want to use that
information for predicting, we have to select a threshold
for selecting the variables for regrowing the RF. In the
problems, a round fixed number of the 10 variables with
the highest IPM values was selected for predicting pur-
poses, with promising results. An open question would be
to explore the selection of this number and its relation-
ship with the distribution of IPM values (possibly selecting
variables with IPM values above a certain threshold),
together with the number of observations and predictors.
A detailed study should be made with scenarios covering

p> n cases, such as scenarios with a few relevant variables
and many irrelevant variables and scenarios with many
slightly relevant variables. Another open question it is to
try to perform a theoretical study of IPM, as in [10] for
MD. Note that, according to [42], it seems very difficult to
carry out a detailed theoretical study of PVIM, but IPM is
not a randomization procedure like PVIM.

Additional files

Additional file 1: Supplementary file. This file shows the results of VIMs in
the simulated scenarios for sample sizes of n = 50 and n = 500. Figure S1:
Ranking distribution (in percentage) of X2 for VIMs in Scenario 1 with n =
50. Figure S2: Ranking distribution (in percentage) of X2 for VIMs in
Scenario 1 with n = 500. Figure S3: Average ranking of variables for VIMs
in Scenario 1 with n = 50. Figure S4: Average ranking of variables for VIMs
in Scenario 1 with n = 500. Table S1: Ranking distribution (in percentage)
of X2 for VIMs in Scenario 1 with n = 120. Table S2: Average ranking of
variables for VIMs in Scenario 1 with n = 120. Figure S5: Average
ranking for each VIM in Scenario 2, formtry =3 andmtry = 12, with n = 50.
Figure S6: Average ranking for each VIM in Scenario 2, formtry = 3 and
mtry = 12, with n = 500. Table S3: Average ranking of variables for VIMs in
Scenario 3, with n = 50. Table S4: Average ranking of variables for VIMs
in Scenario 3, with n = 500. Table S5: Average ranking of variables for VIMs
in Scenario 4, with n = 50. Table S6: Average ranking of variables for
VIMs in Scenario 4, with n = 500. (PDF 166 kb)

Additional file 2: R source code. This is a compressed (.zip) file with data
and R codes for reproducing the results. There is a file called Readme.txt
that explains the contents of six files. Two files contain the two real data
sets. The R code for computing IPM for RF-CART and CIT-RF is available in
one file. The R code for each of the simulations is available in another file,
while the other two files contain the R codes for each application to real
data. (ZIP 43 kb)
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