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Abstract

Background: The random forests algorithm is a type of classifier with prominent universality, a wide application
range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to
improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature

selection and parameter optimization.

Results: We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on
imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original
synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results
on the original data using random sampling, Borderline-SMOTET1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE.
Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter
optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on
binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests
algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can
achieve the minimum OOB error and show the best generalization ability.

Conclusion: The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data

distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and
effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they
surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform

feature selection and parameter optimization.
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Background

Tin Kam Ho proposed the random forests (RF) concept
[1] and the Random Subspace algorithm [2] in 1995 and
1998, respectively. Breiman [3] proposed a novel ensemble
learning classification, random forests, by combining
bagging ensemble learning and Tin Kam Ho’s concept in
2001. The feature of random forests that allows for
avoiding over-fitting makes it suitable for use as a data
dimension reduction method for processing data with
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missing values, noise and outliers. Although random
forests have been applied to many other fields such as
biological prediction [4], fault detection [5], and network
attacks [6], studies seeking to improve the algorithm itself
are lacking. The RF algorithm still has some shortcomings;
for example, it performs poorly for classification on
imbalanced data, fails to control the model during specific
operations, and is sensitive to parameter adjustment and
random data attempts. Usually, there are two ways to
improve RF: increase the accuracy of each individual
classifier or reduce the correlation between classifiers.
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First, it is possible to increase the classification accuracy
in minor class samples of RF for imbalanced training
sets through data preprocessing. Several types of methods
[7-10] based on both data and algorithms exist for imbal-
anced data. Chen [11] found that undersampling provides
results closer to the original samples than does oversam-
pling for large-scale data. A novel sampling approach [12]
based on sub-modularity subset selection was employed
to balance the data and select a more representative data
subset for predicting local protein properties. Similarly, an
algorithm combining RF and a Support Vector Machine
(SVM) with stratified sampling [13] vyielded a better
performance than did other traditional algorithms for
imbalanced-text categorization, including RE, SVM, SVM
with undersampling and SVM with oversampling. A novel
hybrid algorithm [14] using a radial basis function neural
network (RBENN) integrated with RF was proposed to im-
prove the ability to classify the minor class of imbalanced
datasets. In addition, imbalanced data for bioinformatics is
a well-known problem and widely found in biomedical
fields. Applying RF with SMOTE to the CHOM, CHOA
and Vero (A) datasets [15] is considered a remarkable im-
provement that is helpful in the field of functional and
structural proteomics as well as in drug discovery. Ali S
[16] processed imbalanced breast cancer data using the
CSL technique, which imposes a higher cost on misclassi-
fied examples and develops an effective Cost-Sensitive
Classifier with a GentleBoost Ensemble (Can-CSC-GBE).
The Mega-Trend-Diffusion (MTD) technique [17] was
developed to obtain the best results on breast and colon
cancer datasets by increasing the samples of the minority
class when building the prediction model.

Second, it is possible to improve algorithm construction.
Because the decision trees in the original algorithm have
the same weights, a weighted RF was proposed that used
different weights that affected the similarity [18] between
trees, out-of-bag error [19], and so on. Weighted RF has
been shown to be better than the original RF algorithm
[20]. Ma [21] combined Adaboost with RF and adaptive
weights to obtain a better performance. The weight of at-
tributes reduces the similarity among trees and improves
RF [22]. Moreover, the nearest K-neighbour [23] and
pruning mechanism can help achieve a better result when
using margin as the evaluation criterion [24].

In this paper, the main work is divided into two parts:
first, the CURE-SMOTE algorithm is combined with RF
to solve the shortcomings of using SMOTE alone. Com-
pared with results on the original data, random oversam-
pling, SMOTE, Borderline SMOTE], safe-level-SMOTE,
C-SMOTE, and the k-means-SMOTE algorithm, CURE-
SMOTE's effectiveness when classifying imbalanced data
is verified. Then, to simultaneously optimize feature selec-
tion, tree size, and the number of sub-features, we propose
a hybrid algorithm that includes a genetic-random forests
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algorithm (GA-RF), a particle swarm-random forests
algorithm (PSO-RF) and an artificial fish swarm-random
forests algorithm (AFSA-RF). Simulation experiments
show that the hybrid algorithm obtains better features,
selects better parameter values and achieves a higher
performance than traditional methods.

Methods

Random forests algorithm review

Algorithm principle

RF is a combination of Bagging and Random Subspace,
consisting of many binary or multi-way decision trees
hi(x), hy(X), ... ByTree(x), as shown in Fig. 1. The final
decision is made by majority voting to aggregate the
predictions of all the decision trees. The original dataset
T = {(x;1, X2, ...,x,-M,yi)}f»\il contains N samples, the vec-
tor x;1, X3, ..., X;5; denotes the M-dimension attributes or
features, Y= {yi}f\’ denotes classification labels, and a
sample is deduced as label ¢ by y; = c.

There are two random procedures in RF. First, training
sets are constructed by using a bootstrap [25, 26] mech-
anism randomly with replacement [Fig. 2 (I)]. Second,
random features are selected with non-replacement from
the total features when the nodes of the trees are split.
The size k of the feature subset is usually far less than
the size of the total features, M. The first step is to select
Kk features randomly, calculate the information gain of x
split and select the best features. Thus, the size of candi-
date features becomes M — k. Then, continue as shown
in Fig. 2 (II).

Classification rules and algorithmic procedure

The best attribute can be computed by three methods: in-
formation gain, information gain rate and Gini coefficient,
which correspond to ID3, C4.5 [27] and CART [28],
respectively. When the attribute value is continuous, the
best split point must be selected. We use the CART
method in this paper; hence, a smaller Gini coefficient in-
dicates a better classification result. Let P; represent the
proportion of sample i in the total sample size. Assume
that sample T is divided into k parts after splitting by
attribute A.

Gini(T) = 1—2621)3 (1)

Gini(T,A) = zk:L (2)
’ p mGim‘(T,)

There are several ways by which the termination criteria
for RF can be met. For example, termination occurs when
the decision tree reaches maximum depth, the impurity of
the end node reaches the threshold, the number of final
samples reaches a set point, and the candidate attribute is
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used up. The RF classification algorithm procedure is
shown in Algorithm 1.

CURE-SMOTE algorithm

Definition and impact of imbalanced data

In recent years, the problem of classifying imbalanced
data [29] has attracted increasing attention. Imbalanced
data sets generally refer to data that is distributed
unevenly among different categories where the data in
the smaller category is far less prevalent than data in the
larger category. The Imbalance Ratio (IR) is defined as
the ratio of the number of minor class samples to the

number of major class samples. Therefore, imbalanced
data causes the training set for each decision tree to be
imbalanced during the first “random” procedure. The clas-
sification performance of traditional RF on imbalanced
data sets [30] is even worse than that of SVMs [31].

SMOTE algorithm

Several methods exist for processing imbalanced data,
including sample-based and algorithmic techniques, the
combination of sampling and algorithm techniques, and
feature selection. In particular, a type of synthesis resam-
pling technique algorithm called the synthetic minority
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Algorithm 1: RF classification
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Input: training set, testing set, cluster number c, tree number nTree, deepness, hyper parameter «, attribute

select method, termination criteria

Output: RF classification model and classification result

1 Fori=1:nTree

Generate each tree recursively without pruning;
End

(o) NV, IR S NRVS A \S]

plc|x)=(1/nTree)y h (c|x);
7  Predict class through majority voting

c«argmax p(c|x), and calculate OOB error;

8 Return

Use the bootstrap method to produce training sets with size /V for each tree;
Select « attributes randomly building nodes and split the dataset by the best attribute;

Calculate the probability of an unknown sample x belonging to class ¢ :

oversampling technique (SMOTE) [32-34], has a posi-
tive effect on the imbalanced data problem. The specific
idea is implemented as follows: obtain the k -nearest
neighbours of sample X in the minor class, select n
samples randomly and record them as X, Finally, the
new sample X, is defined by interpolation as follows:

Xnew = Xorigin + rand x (Xi_Xarigin)7 i=12,..,n,
(3)

where rand is a random number uniformly distributed
within the range (0,1), and the ratio for generating new
samples approximates [1/IR] - 1.

However, some flaws exist in the SMOTE algorithm.
First, the selection of a value for k is not informed by
the nearest neighbours selection. Second, it is impossible
to completely reflect the distribution of original data
because the artificial samples generated by the minor
class samples at the edges may lead to problems such as
repeatability and noisy, fuzzy boundaries between the
positive and negative classes.

Therefore, researchers have sought to improve the
SMOTE algorithm. The Borderline—~SMOTEL algorithm
[35] causes new samples to be more effective using
interpolation along the border areas, but it fails to find
all the boundary points. Definitions for this algorithm
are shown in Table 1: m is the number of nearest-

Table 1 Definitions in Borderline-SMOTE 1

Point Definition
Noisy point m=k
Boundary point/dangerous point m/2<k<m
Safe point 0<k<m/2

neighbour samples in the minor class, and k is the number
of samples in the major class.

Motivated by Borderline—-SMOTE 1, safe-level- SMOTE
[36] advocates calculating the safe level of minor class
samples, but it can easily fall into overfitting. Cluster-
SMOTE [37] obtains a satisfactory classification effect for
imbalanced datasets by using K-means to find clusters of
minor class samples and then applying SMOTE. In
addition, spatial structures have been studied such as N-
SMOTE [38] and nuclear SMOTE [39]. The authors of
[40] proposed an interpolation algorithm based on cluster
centres. SMOTE was combined with a fuzzy nearest-
neighbour algorithm in [41]. In [42], a preferable classifi-
cation effect promoted by hierarchical clustering sampling
was shown. Recently, a SMOTE noise-filtering algorithm
[43] and MDO algorithms with Markov distance [44] have
been proposed. In general, many improved versions of the
SMOTE algorithm have been proposed, but none of these
improvements seem perfect. This paper seeks to solve the
shortcomings of SMOTE.

The K-means algorithm is effective only for spherical
datasets and its application requires a certain amount of
time. The CURE [45] hierarchical clustering algorithm is
efficient for large datasets and suitable datasets of any
shape dataset. Moreover, it is not sensitive to outlier and
can recognize abnormal points. Consequently, CURE is
better than the BIRCH, CLARANS and DBSCAN algo-
rithms [46]. In the CURE algorithm, each sample point
is assumed to be a cluster. These points are merged
using local clustering until the end of the algorithm.
Thus, the CURE algorithm is appropriate for distributed
extensions. In this paper, inspired by C-SMOTE [40]
and the hierarchical clustering sampling adaptive
semi-unsupervised weighted oversampling (A-SUWO)
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[42] algorithms, the novel CURE-SMOTE algorithm is
proposed to accommodate a wider range of applica-
tion scenarios.

Design and analysis of CURE-SMOTE

The general idea of the CURE-SMOTE algorithm is as
follows: cluster the samples of the minor class using
CURE, remove the noise and outliers from the original
samples, and, then, generate artificial samples randomly
between representative points and the centre point. The
implementation steps of the CURE-SMOTE algorithm
are as follows:

Step 1. Normalize the dataset, extract the minor class
samples, X, and calculate the distance dist among them.
Each point is initially considered as a cluster. For each
cluster U, Ur and Uc represent the representative set
and the centre point, respectively. For two data items
p and ¢, the distance between the two clusters U and V'
is:

dist(U,V) = min dist(p,q). (4)

pellrgeVr

Step 2. Set the clustering number, ¢, and update the
centre and representative points after clustering and
merging based on the smallest distance of the two
clusters,

|U|-Uc+|V]|-Vc
Ue———— o — (5)
[U|+|V|
Ur—{p+a-(Uc-p)|pelr}, (6)

where |U| is the number of data items for class U, and
the shrinkage factor a is generally 0.5. The class with
slowest growth speed is judged to contain abnormal
points and will be deleted. If the number of representa-
tive points is larger than required, select the data point
farthest from the clustering centre as the first represen-
tative point. Then, the next representative point is the
one farthest from the former. When the number of clus-
tering centres reaches a predefined setting, the algorithm
terminates, and clusters containing only a few samples
are removed.

Step 3. Generate a new sample according to the
interpolation formula. X represents the samples after
clustering by the CURE algorithm.

X0, =X +rand(0,1) x (Ur-X). (7)

new

Step 4. Calculate IR, and return to Step 3 if IR < IR,,.

Step 5. Finally, classify the new dataset as X,ep = X
u{XZeW} and add samples of the major class by RF.
The distance is measured using Euclidean distance.
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For example, the distance between sample X;
= (X11, X12 ..., X11) and sample
Xo = (Xo1, Xoo o, Xong) is dip =

During the clustering process of the CURE-SMOTE
algorithm, noisy points must be removed because they
are far away from the normal points, and they hinder
the merge speed in the corresponding class. When
clustering is complete, the clusters containing only a few
samples are also deemed to be noisy points. For the
sample points after clustering, the interpolation can
effectively prevent generalization and preserve the
original distribution attributes of the data set. In the
interpolation formula, X; is replaced by the representa-
tive points; consequently, the samples are generated only
between the representative samples and the samples in
the original minor class, which effectively avoids the in-
fluence of boundary points. The combination of the
clustering and merge operations serves to eliminate the
noise points at the end of the process and reduce the
complexity because there is no need to eliminate the
farthest generated artificial samples after the SMOTE
algorithm runs. Moreover, all the termination criteria
such as reaching the pre-set number of clusters, the
number of representative samples, or the distance
threshold, avoid setting the k value of the original
SMOTE algorithm and, thus, reduce the instability of
the proposed algorithm.

Research concerning feature selection and parameter
optimization

Classification [47] and feature selection [48-50] are
widely applied in bioinformatics applications such as
gene selection [51, 52] and gene expression [53-55].
Chinnaswamy A [56] proposed a hybrid feature selection
using correlation coefficients and particle swarm
optimization on microarray gene expression data. The
goal of feature selection is to choose a feature subset
that retains most of the information of the original data-
set, especially for high-dimensional data [57]. The au-
thors of [58] showed that machine-learning algorithms
achieve better results after feature selection. Kausar N.
[59] proposed a scheme-based RF in which useful fea-
tures were extracted from both the spatial and transform
domains for medical image fusion. During the second
"random" time of RF, a number of attributes were
selected randomly to reduce the correlation between
trees, but this operation promotes redundant features
that may affect the generalization ability to some degree.
Thus, new types of evaluation mechanisms were
proposed based on the importance of the attributes
[21, 60, 61], using weighted features as well as cost-
sensitivity features [62], and so on; however, their calcula-
tions are comparatively complicated. Recently, researchers
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have combined the RF algorithm with intelligent algo-
rithms. Such combinations have achieved good results in
a variety of fields. In [5], an improved feature selection
method based on GA and RF was proposed for fault
detection that significantly reduces the OOB error. The
results of [4, 6] indicate that a type of hybrid PSO-RF
feature selection algorithm is widely applied in certain
fields. However, the works mentioned above do not
involve parameter optimization.

Three main parameters influence the efficiency and per-
formance of RF: nTree—the size of the tree, MinLeaf—the
minimum sample number of leaf nodes, and x —the attri-
bute subset size. Previous studies have shown that the
classification performance of RF is less sensitive to
MinLeaf [63]. A larger nTree increases the number of
trees in the classifier, helps ensure the diversity of individ-
ual classifiers and, thus, improves performance. However,
a larger nTree also increases the time cost and may lead to
less interpretable results, while a small nTree results in
increased classification errors and poor performance.
Usually, « is far less than the number of total attributes
[64]. When all the similar attributes are used for splitting
the tree nodes in the Bagging algorithm, the effect of the
tree model worsens due to the higher similarity degree
among trees [65]; when « is smaller, the stronger effects of
randomness lower the classification accuracy. The hyper
parameter x behaves differently for different issues [66];
hence, an appropriate value can cause the algorithm to
have excellent performance for a specific problem.
Breiman pointed out that selecting the proper « value has
a great influence on the performance of the algorithm [3]
and suggested that the value should be 1, VM, %\/A_/I , 2

VM and | logy(M) + 1. Generally, « is fixed as /M, but
that value does not guarantee obtaining the best classifier.
Therefore, the authors of [67] suggested that the minimum
OOB error be used to obtain the approximate value to
overcome the shortcomings of the orthogonal validation
method. Moreover, OOB data has been used to estimate
the optimal training sample proportion to construct the
Bagging classifier [68]. To sum up, it is difficult for trad-
itional parameter values to achieve an optimal perform-
ance. In terms of the search for the optimal parameter,
typical approaches have incorporated exhaustive search,
grid search, and orthogonal selection, but these methods
have a high time complexity.

Review of intelligent algorithms
Because intelligent algorithms are superior for solving
NP-hard problems and for optimizing parameters, they
have been the subject of many relevant and successful
studies [69-72].

The main idea behind the genetic algorithm (GA) is to
encode unknown variables into chromosomes and
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change the objective function into fitness functions. The
fitness value drives the main operations—selection, cross-
over and mutation—to search for the best potential indi-
viduals iteratively. Eventually the algorithm converges, and
the optimal or a suboptimal solution of the problem is
obtained. GA has the advantage of searching in parallel,
and it is suitable for a variety of complex scenarios.

The particle swarm optimization (PSO) algorithm is
theoretically simpler and more efficient than the GA
[73]. The main idea behind PSO is to simulate the
predation behaviour of birds. Each particle represents a
candidate solution and has a position, speed and a
fitness value. Historical information on the optimal solu-
tion instructs the particle to fly toward a better position.

The artificial fish swarm algorithm (AFSA) [74] is a
novel algorithm with high potential. The main idea be-
hind AFSA is to imitate the way that fish prey, swarm,
follow and adopt random behaviours. The candidate
solution is translated into the individual positions of the
fish, while the objective function is converted to food
concentration.

Diagrams for GA, PSO and AFSA are shown in Fig. 3.

There is little research on optimizing the hyper param-
eter x of random forests. In [67], the size of the decision
tree is fixed at 500, but this approach achieves the optimal
parameter on only half the dataset. Worse, it requires con-
siderable time and is suitable for single parameter
optimization only. This paper proposes combining a new
hybrid algorithm for feature selection and parameter
optimization with RF is proposed based on [4—6].

The proposed hybrid algorithm for feature selection and
parameter optimization

We propose the hybrid GA-RF, PSO-RF or AFSA-RF
algorithm for feature selection, parameter optimization
and classification. The algorithm seeks to remove redun-
dant features and attain the optimal feature subset and,
finally, to explore the relation between performance and
nTree, as well as the hyper parameter «.

Generally, p -fold cross validation is used to traverse
the parameter and to estimate the algorithm in the
experiment, but time complexity is high. In this paper,
OOB error replaces the cross-validation algorithm for
binary classification, while the full misclassification error
is used for multi-classification. Hence, the time com-
plexity is reduced to 1/p. During the process, cross
validation is required for classification.

Objective function:

f(nTree*, ", {Attribute;|i = 1,2...,M}) = arg min(avgOOB error)
(8)

Studies have shown that the larger nTree is, the more
stable the classification accuracy will be. We set nTree
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and « in the range [0, 500] and [1, M], respectively, by
considering both the time and space complexities.
Optimization variables: nTree, k, {Attribute;|i=1,2 ..., M}
Binary encoding involves two tangent points and
three steps. Let nTree and x be numbers in the bin-
ary system. A value of 0 in {Attribute]|i=1,2 ..., M}
represents an unselected feature in the corresponding

position, while a 1 represents the selected features.
M

The constraint condition is KSZ Attribute;.
=1

Then, an nTree is generated randomly between [0, 500].
Because 2° =512, a 9-bit length ensures a full set of
variables. The bits used for x and the bits used for
the attributes are different for different data sets. The
bits of x are the binary representation of M, while
the number of bits of the attributes are M (Fig. 4),
The initialization continues until a valid variable is
generated.

The diagram for a hybrid algorithm based on RF and an
artificial algorithm for feature selection and parameter
optimization is shown in Fig. 5.

Atrribute
0 0 1 1 | 0 1 0 0 1 1 0 1 1

Fig. 4 Binary coding

Hybrid GA-RF

Step 1. Initialize the population: Perform binary
encoding. The population size is set to popsize, the
max iteration time is set to maxgen, the crossover
probability is P, and the mutation probability is
P,

Step 2. Combine the GA with RF classification and
calculate the fitness function, F=max(1/f), gen=1.
Step 3. Perform the selection operation with the
roulette method: the probability of selecting an
individual is dependent on the proportion of the
overall fitness value that the individual represents:

popsize

pi=Fi/ Z F. )

Step 4. Conduct the crossover operation with the
single-point method: two selected individuals cross at a
random position with different values. The offspring
generation will be regenerated until it turns out to be
legal. The process is shown in Fig. 6.

Step 5. Mutation operation: select an individual and a
position j randomly to mutate by switching 0 and 1.
When a feasible solution is achieved, calculate the
fitness value and update the optimal solution. The
mutation operation is shown in Fig. 7

Step 6. When gen > maxgen, the algorithm will
terminate; otherwise, return to Step 3.
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Fig. 5 The diagram of a hybrid algorithm based on RF and an artificial algorithm

Hybrid PSO-RF

Step 1. Initialize the population. The population size is
set to popsize, the max iteration time is set to maxgen,
the position of the binary particle is Xy = {Zx 1, Zx2, ---}»
k=1,2, ... popsize, the velocity is V, the learning factors
are ¢y, ¢y, and the weight is w.

Step 2. Combine the PSO with RF classification and
calculate the fitness function F = max(1/f), gen = 1.
Step 3. Update the velocities V¥ * and positions X< *!
of particles. Let P* be the optimal position of an
individual particle, P¢" be the optimal position of all
particles, and rand be a random number uniformly
distributed in the range (0,1):

VA — vk 4o (Pkka) + czrg(ngka),rl,rze[Q 1]

07
L,

rand > sigmoid (V*+1)

d~U(0,1).
rand<sigmoid (V1) ran 0.1)

Zk+1,j = {

Step 4. If gen > maxgen, the algorithm will terminate;
otherwise, return to Step 3.

(12)

Hybrid AFSA-RF

Step 1. Initialize the population. The population size is
set to popsize, the maximum number of iterations is set
to maxgen, the fish positions are Xy ={Z; 1, Z¢ o, ...}, k=
1,2, ... popsize, the visual distance is visual, the
crowding degree factor is delta, and the maximum
number of behaviours to try is try_number.

Step 2. Combine with RF classification and calculate
the food concentration F = max(1/f);

(10) Step 3. Swarm and follow at the same time.
a) Swarm behaviour: The current state of a fish is
) . 1 X, the number of partners in view is #f, and
sigmoid (V*) = — (11) ! P F Y,
1+eV the centre position is X,.. When i delta -
Fitness;, move to the centre position according
nTree K Atrribute nTree K Atrribute
0011‘0100‘11011 0011‘0100‘11011
o 4 M I
@ =y <5 47 N4 N4
1011‘0001|01111 0111‘0110‘10011
Fig. 6 Crossover operation Fig. 7 Mutation operation
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to the following formula; otherwise, conduct
the prey behaviour.

ZiiZiki = Ze,

0 Zii#Zcj,rand > 0.5

1 Zyi#Z.;,rand<0.5.

Ziy1,i =

(13)

b) Follow behaviour: Find the fish X,,,, with the
maximum food concentration value, Fp,y.
If F;“—f > delta -F;, move to X ., and calculate the
food concentration value. Then, update the food
concentration value by comparing it with the value
of the swarm behaviour; otherwise, conduct the prey
behaviour.

Zk,i Zk,i = Zmax,i
0 Zi;i#Z max,rand > 0.5
1 Zii#Z max,i, rand<0.5.

Ziy1i =

(14)

¢) Prey behaviour: The current state is Xy = {Z; ;}, and
the random selection state is X; = {Z;;} around the
vision range with d;; = visual When F > F;restart to
generate the next state, Xy, 1, and calculate the food
concentration until try_number is reached;
otherwise, terminate the prey behaviour according
to the following function:

ZyiZii = Zj,
0 Zyi#Zj;,rand > 0.5
1 Zk,i IZN', rand<0.5.

Zis1,; =

(15)

Step 4. Update the state of the optimal fish. When
gen > maxgen, the algorithm will terminate; otherwise,
return to Step 3.

Results and discussion

The experiments in this paper are divided into two parts.
Experiment 1 explores the validity of the CURE-SMOTE
algorithm. Experiment 2 investigates the effectiveness of
the hybrid algorithm.

Performance evaluation criteria

Referring to the evaluation used in [75], the measures of
the quality of binary classification are built using a
confusion matrix, where TP and FN are the numbers of
correctly and incorrectly classified compounds of the
actual positive class, respectively. Similarly, TN and FP
denote the numbers of correctly and incorrectly classi-
fied compounds of the actual negative class.
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Table 2 Dataset

|d Dataset N M Positive Negative IR Label
class class
1 Circle 1362 2 229 1133 0.2021:1 1.0
2 Blood-transfusion 748 4 178 570 03123:1 42
3 Haberman's survival 306 3 81 225 0.36:1 2:1
4 Breast-cancer- 702 10 243 459 052491 1.0
wisconsin
5 SPECT train 80 23 26 54 04815 1.0

The measures accuracy, sensitivity, specificity and
precision are defined as follows.

Accurcacy = (TP + TN)/(TP+ TN + FP + FN)

— (TP + TN)/N
(16)
Sensitivity or Recall = TP/(TP + FN) (17)
Specificity = TN /(FP + TN) (18)
Precision = TP/(TP + FP) (19)

The classifiers may have a high overall accuracy with
100% accuracy in the majority class while achieving only
a 0—10% accuracy in the minority class because the over-
all accuracy is biased towards the majority class. Hence,
the accuracy measure is not a proper evaluation metric
for the imbalanced class problem. Instead, we suggest
using F-value, Geometric Mean (G-mean) and AUC for
imbalanced data evaluations.

The F-value measure is defined following [26]. A larger
F-value indicates a better classifier. F-value is a perform-
ance metric that links both precision and recall:

2
F = .
1/Precision + 1/Recall

(20)

The G-mean [76] attempts to maximize the accuracy
across the two classes with a good balance and is defined
as follows. Only when both sensitivity and specificity are
high can the G-mean attain its maximum, which indi-
cates a better classifier:

G-mean = +/Sensitivity-Specificity. (21)

AUC is the area under the receiver operating charac-
teristics (ROC) curve. AUC has been shown to be a
reliable performance measure for imbalanced and cost-

Table 3 Comparison of algorithms and references

Algorithm Reference Algorithm Reference
SMOTE [32] Safe-level SMOTE [36]
Borderline-SMOTE 1 [35] C-SMOTE [36]
k-means-SMOTE [37] - -
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Clustering diagram by CURE-SMOTE
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Fig. 10 The CURE clustering result

sensitive problems. An AUC-based permutation variable
is presented in [77]; this approach is more efficient than
the approach based on the OOB error.

The training set is obtained by using the bootstrap
method. Because of repeated extraction, it contains
only 63% of the original data; the 37% of the data
that never appear are called "out-of- -bag" (OOB)
data [78]. OOB estimation is an unbiased estimate of
the RF algorithm and can be used to measure the
classifier's generalization ability. A smaller OOB error
indicates a better classification performance. OOB
error is defined as follows:

nTree

OOB error = Z OOB error;/nTree. (22)

Margin is a new evaluation criterion that has been
applied to the classification of remote sensing data [79].
The larger the margin is, the higher the classifier's
credibility is:

nTree

margin = Z margin;/nTree. (23)

Experiment 1 and parameter settings

The experiments were implemented using Matlab 2012a
on a workstation with a 64-bit operating system, 2 GB of
RAM and a 2.53 GHz CPU. Artificial Data Circle and
UCI imbalanced datasets were selected for the experi-
ments. More detailed information about five datasets is
listed in Table 2. To simulate the actual situation appro-
priately and preserve the degree of imbalance of the ori-
ginal data, the training set and testing set were divided
using stratified random sampling at a ratio of 3:1, except
for SPECT. The SPECT.test dataset incorporates 187
samples, and the proportions of the classes labelled 1
and 0 are 84:103, respectively. The tree size is 100 and
the depth is 20.

To verify the effectiveness of the CURE-SMOTE
algorithm it was compared with the original data, random
oversampling, SMOTE, Borderline-SMOTEL, safe-level
SMOTE, C-SMOTE (using mean value as the centre) and
k-means-SMOTE (shown in Table 3) algorithms. To
evaluate the performance of the different algorithms,
F-value, G-mean, AUC and OOB error are used as
performance measures. The results of each experiment
were averaged over 100 runs to eliminate random effects.

To facilitate the comparisons, m and k were set to 20
and 5, respectively, in SMOTE, Borderline-SMOTE1 and
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Table 4 The classification results of different sampling algorithms
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Dataset Method F G-Mean AUC OOB error
1. Circle Original data 0.9081 09339 0.9389 0.0296
Random oversampling 0.9249 0.9553 0.9567 0.0163
SMOTE 0.9086 0.9535 0.9579 0.0384
Borderline-SMOTE1 09110 0.9534 0.9619 0.0438
Safe-level-SMOTE 09146 0.9595 0.9559 0.0431
C-SMOTE 0.9302 09713 0.9813 0.0702
k-means-SMOTE 09262 0.9589 0.9602 0.0323
CURE-SMOTE 0.9431 0.9808 0.9855 0.0323
2. Blood-transfusion Original data 0.3509 0.5094 0.5083 0.2548
Random oversampling 0.3903 0.5490 0.5449 0.2250
SMOTE 04118 0.5798 0.5537 0.2152
Borderline-SMOTE1 04185 0.5832 0.5424 0.1630
Safe-level-SMOTE 04494 06174 0.5549 0.2479
C-SMOTE 04006 0.5549 0.5531 0.2418
k-means-SMOTE 04157 0.5941 05433 0.1872
CURE-SMOTE 0.5393 0.6719 0.6533 02531
3. Haberman'’s survival Original data 03279 05018 0.6063 03149
Random oversampling 0.3504 05178 0.5959 0.1534
SMOTE 04350 0.5971 06259 0.1728
Borderline-SMOTE1 04523 06119 0.6298 0.2589
Safe-level-SMOTE 04762 0.6008 0.6030 0.3077
C-SMOTE 04528 0.5487 0.5656 02780
k-means-SMOTE 04685 0.6249 0.6328 0.1828
CURE-SMOTE 0.5000 0.6282 0.6940 0.2717
4. Breast—cancer-wisconsin Original data 0.9486 09619 0.9491 0.0446
Random oversampling 0.9451 0.9623 0.9620 0.0301
SMOTE 0.9502 0.9666 0.9627 0.0341
Borderline-SMOTE1 0.9506 0.9661 09635 0.0379
Safe-level-SMOTE 0.9509 0.9671 0.9638 0.0404
C-SMOTE 0.9491 0.9636 0.9561 0.0380
k-means-SMOTE 0.9449 09616 09562 0.0373
CURE-SMOTE 0.9511 0.9664 0.9621 0.0427
5. SPECT train Original data 0.6348 06764 0.6579 0.3634
Random oversampling 0.6539 0.6924 0.6753 0.3468
SMOTE 0.6618 0.6990 0.6825 0.3688
Borderline-SMOTE1 06710 0.6926 06746 03489
Safe-level-SMOTE 06770 0.7074 06913 03160
C-SMOTE 0.6564 0.6936 0.6764 0.3448
k-means-SMOTE 0.6796 0.6941 0.6846 0.3599
CURE-SMOTE 0.6855 0.7155 0.6951 0.1108

From the classification results obtained by the different sampling algorithms discussed in Table 4, the best F-value, G-mean and AUC were achieved
on the Circle dataset by CURE-SMOTE, and its OOB error is second-best, behind only random sampling. The overall classification result on the blood-
transfusion dataset is poorer, but the CURE-SMOTE algorithm achieves the best F-value, G-mean and AUC, while its OOB error is inferior to the ori-
ginal data. On the Haberman's survival dataset, the F-value, G-mean and AUC achieved by CURE-SMOTE are superior to the other sampling algorithms.
For the breast-cancer-wisconsin dataset, CURE-SMOTE achieves the best F-value, but its G-mean and AUC are slightly lower, although they are little differ-
ent from the other sampling algorithms. On the SPECT dataset, CURE-SMOTE surpasses the other sampling algorithms with regard to F-value, G-mean,

AUC and OOB error

The best value of every performance evaluation criteria obtained by the algorithms are marked in boldface
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Table 5 Dataset

id Dataset N M Positive Negative IR Label
class class
1 Connectionist 208 17 97 m 0.8739 RM
Bench
2 Wine 130 13 59 71 0831 12
3 lonosphere 351 34 126 225 056  bg
4 Breast-cancer- 702 10 243 459 05249 1.0
wisconsin
5 Steel Plates Faults 1,941 27 - - - 7
labels
6 Libras Movement 360 90 - - - 15
labels
7 mfeat-factors 2,000 216 - - - 10
labels

safe-level-SMOTE. The number of clusters in C-SMOTE
and k-means-SMOTE were set to five. Following the
suggested setting for the CURE algorithm, the cluster re-
sults are better when the constriction factor is in the
range [0.2, 0.7] and when the number of representative
points is greater than 10. Thus, the constriction factor
was set to 0.5 and the number of representative points
was set to 15. The number of clusters was set to two in
the circle, while the others were all five. Samples were
removed when the number of representative points did
not increase for ten iterations or when the sample size
of the cluster class was less than 1/(10c) of the total
sample size when clustering was complete. In the experi-
ments in this paper, IR, was fixed at 0.7. The CURE-
SMOTE algorithm diagram is depicted in Fig. 8.

Results and discussion of CURE - SMOTE algorithm
Figure 9 shows the results of the original data, random
sampling, SMOTE sampling, Borderline-SMOTE1 sam-
pling, safe-level SMOTE sampling, C-SMOTE sampling,
K-means SMOTE sampling and CURE-SMOTE sam-
pling, as well as the CURE clustering result. The black
circles and the red star represent the major class sample
and minor class sample, respectively, in the original data,
and the blue squares represent the artificial samples gen-
erated by different methods. Figure 10 shows the CURE
clustering results of the minor class sample. The cluster-
ing centre is two, the stars show the centres, and the
blue diamonds indicate the representative points.

Figure 9 shows that a large number of data are
obtained repeatedly by random sampling, and some data

Table 6 Parameter settings
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are not selected at all. The SMOTE algorithm also pro-
duces repeated data and generates mixed data in other
classes as well as noise. Borderline-SMOTEL picks out
the boundary point of minor class by calculating and
comparing the samples of the major class around the
minor class; consequently, the generated data are con-
centrated primarily at the edges of the class. Safe-level
SMOTE follows the original distribution, but still gener-
ates repeated points and distinguishes the boundary
incorrectly. Although C-SMOTE can erase the noise, the
generated data are too close to the centre to accurately
identify other centres. K-means-SMOTE can identify the
area of the small class and slightly improves on the
SMOTE effect. The proposed CURE-SMOTE algorithm
generates data both near the centre and the representa-
tive points; overall, it follows the original distribution.
Moreover, the representative points help to avoid noise
being treated as a constraining boundary during the gen-
erating process. Detailed results are listed in Table 4.

In conclusion, the classification results of the CURE-
SMOTE algorithm as measured by the F-value, G-
means, and AUC are substantially enhanced, whereas
the results using SMOTE alone are not particularly
stable. Meanwhile, Borderline-SMOTE1, C-SMOTE, and
the k-means-SMOTE algorithm are even worse than
random sampling on some datasets. Thus, the CURE-
SMOTE algorithm combined with RF has a substantial
effect on classification.

Experiment 2 and parameter settings

In this section, to test the effectiveness of the hybrid algo-
rithm for feature selection and parameter optimization,
we selected the representative binary classification and
multi-classification imbalanced datasets shown in Table 5.
These data are randomly stratified by sampling them into
four parts with a training set to testing set ratio of 3:1. In
this procedure, 4-fold stratified cross validation is used for
classification. The parameter settings are listed in Table 6.
The depth is set to 20 for experiment 2.

Results and discussion of the hybrid algorithm

According to the proposed settings in previous works, the
parameters for all of the methods were set as follows:
nTree =100, k =1, VM, L logo(M) + 1) and M. Accuracy,
OOB error and margin were selected as the evaluation cri-
teria. The detailed results are listed in Table 7 and Table 8.

Hybrid GA-RF popsize :5 maxgen :20 Pc: 0.6 Pm:0.1

Hybrid PSO-RF popsize :5 maxgen :20 ci:1.5 r1,r,€[0,1] Vmin:Vmax = -0.5:0.5 w:0.5
1.5

Hybrid AFSA-RF popsize: 5 maxgen: 20 visual: 3 try_number: 5, delta: 0.618
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Table 7 The binary classification results
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1 VM L logaM) + 1 M GA-RF PSO-RF AFSA-RF
Connectionist Bench Accuracy 0.6442 0.6442 0.6058 0.6635 0.6538 0.7308 0.6827
Sensitive 0.5882 06122 0.6500 0.7556 05741 0.6744 0.5870
Precision 06522 06250 04906 0.5862 0.7045 06744 0.6585
Specificity 0.6981 06727 0.5781 0.5932 0.7400 0.7705 0.7586
F 06186 0.6186 0.5591 0.6602 0.6327 0.6744 0.6207
G-mean 0.6408 06418 06130 06695 06518 0.7209 0.6673
AUC 04107 04119 0.3758 04482 04248 0.5196 04453
0OOB 0.3808 0.3889 0.3344 0.3391 03314 0.3085 0.2932
margin 0.1078 0.1632 0.1991 02084 0.2056 0.1468 0.2418
nTree 100 100 100 100 315 193 151
K 1 4 5 17 6 8 4
num (Attribute) 17 17 17 17 13 16 15
Wine Accuracy 0.9846 0.9692 0.9846 0.9692 0.9846 0.9846 0.9692
Sensitive 1.0000 0.9286 1.0000 1.0000 1.0000 1.0000 1.0000
Precision 0.9655 1.0000 0.9677 09333 0.9706 0.9643 0.9355
Specificity 09730 1.0000 09714 0.9459 0.9688 09737 0.9444
F 0.9825 0.9630 0.9836 0.9655 0.9851 0.9818 0.9667
G-mean 0.9864 0.9636 0.9856 09726 0.9843 0.9868 09718
AUC 09730 0.9286 09714 0.9459 0.9688 0.9737 0.9444
0OOB 0.0442 0.0502 0.0288 0.0748 0.0246 0.0156 0.0238
margin 06951 0.7553 0.8149 0.7995 0.7863 0.7890 0.8345
nTree 100 100 100 100 349 354 90
K 1 3 4 13 5 1 5
num (Attribute) 13 13 13 13 12 1 12
lonosphere Accuracy 0.9200 09314 0.9371 0.9257 09371 0.9257 09314
Sensitive 0.9107 0.8475 0.8889 0.8824 0.8333 0.9032 0.9107
Precision 0.8500 0.9434 0.9057 09231 0.9804 0.8889 0.8793
Specificity 0.9244 09741 0.9587 09533 09913 0.9381 09412
F 0.8793 0.8929 0.8972 0.9003 0.9009 0.8960 0.8947
G-mean 09175 0.9086 0.9231 09171 0.9089 0.9205 0.9258
AUC 0.8956 0.8651 0.9002 0.8975 0.8548 0.8835 0.9029
00B 0.1096 0.0860 0.1132 0.0884 0.0668 0.0831 0.0825
margin 0.5696 0.6918 06511 0.7041 0.7349 0.6934 06351
nTree 100 100 100 100 339 321 350
K 1 5 6 34 9 15 2
num (Attribute) 34 34 34 34 29 30 28
Breast -cancer -wisconsin Accuracy 0.9801 0.9658 09715 0.9573 0.9544 0.9801 0.9658
Sensitive 0.9914 0.9474 0.9583 0.9748 0.9919 1.0000 0.9474
Precision 0.9504 0.9474 0.9583 0.9063 0.8905 0.9421 0.9474
Specificity 0.9745 0.9747 09784 0.9483 0.9342 0.9705 09747
F 0.9701 0.9474 0.9583 0.9393 0.9385 0.9702 0.9474
G-mean 0.9829 0.9609 0.9683 0.9614 0.9626 0.9851 0.9609
AUC 0.9844 0.9555 0.9595 0.9547 0.9601 0.9850 0.9474
00B 0.0422 0.0399 0.0433 0.0467 0.0304 0.0411 0.0372
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Table 7 The binary classification results (Continued)
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margin 0.8247 0.8569
nTree 100 100

K 1 3

num (Attribute) 10 10

0.8509 0.8652 0.8842 08179 0.8616
100 100 319 420 351

4 10 3 1 3

10 10 9 9 7

The best value of every performance evaluation criteria obtained by the algorithms are marked in boldface

GA-RE PSO-RF and AFSA-RF represent the hybrid
algorithm.

From the Connectionist Bench results, we find that
the AFSA-RF achieves the minimum OOB error and the
maximum margin. The best parameter combination is
(151,4), and « is the same as the traditional value, VM.
The features selected by AFSA-RF were (11111101
10111111 1], meaning that the 7th and 10th fea-
tures were removed. PSO-RF obtained the best F-value,
G-mean and AUC. On the wine dataset, PSO-RF
achieved the minimum OOB error and the maximum
G-mean and AUC scores. The best parameter combin-
ation is (354,1), and «x is the same as the traditional
value, 1. There are 15 features selected in total. More-
over, GA-RF achieved the best F-value and AFSA-RF
achieved the best margin. For Ionosphere, we find that
GA-RF achieved the best OOB error, F-value and margin.
The best parameter combination is (339,9), but the value
of x is considerably different from the classic value. There
are 29 total features selected. The best G-mean and AUC

Table 8 The multi-classification results

scores were obtained by AFSA-RF. For breast-cancer-
wisconsin, we GA-RF achieved the best performance for
OOB error and margin. The best parameter combination
is (319,3), and « is the same as the traditional value, VM.
There are nine features selected in total. PSO-RF achieved
the maximum F-value, G-mean and AUC.

The multi-classification results show that the hybrid
GA-RF, PSO-RF and AFSA-RF almost always discover
better features and select better parameter values than
the traditional value. There, are some differences
between the best x and the traditional value. The more
features there are originally, the greater the number of
redundant features that are removed.

Figure 11 demonstrates that, overall, the OOB error
values for all the hybrid algorithms are lower than the
traditional value with fixed parameters for the six
datasets. Although the traditional value is reasonable for
some datasets, it fails to achieve good performance over
the entire problem set. In conclusion, the hybrid
algorithm effectively eliminates redundant features and

1 VM L logoM) + 1 M GA-RF PSO-RF AFSA-RF

Steel Plates Faults Accuracy 0.7464 0.7485 0.7598 0.7814 0.7881 0.7998 0.7914

00B 0.3152 0.2819 0.2746 0.2640 0.2437 0.2276 0.2115

margin 0.2456 03384 0.3484 03789 03803 0.3812 03810

nTree 100 100 100 100 397 283 400

K 1 5 5 27 8 6 6

num (Attribute) 27 27 27 27 23 22 22
Libras Movement Accuracy 0.7167 0.7556 0.6889 0.6444 0.7606 0.7767 0.7928

0OOB 0.3546 0.3397 0.3480 03163 0.3030 03323 03116

margin 0.1464 0.1798 0.1990 02180 02443 02677 0.2910

nTree 100 100 100 100 258 348 135

K 1 9 7 90 12 8 9

num (Attribute) 90 90 90 90 56 76 49
mfeat-fac Accuracy 04280 0.9030 0.8010 0.9620 0.9673 0.9600 09611

0OOB 0.6949 0.1823 03192 0.0486 0.0416 0.0410 0.0361

margin —-0.0987 04561 02361 0.8708 0.8749 0.8615 0.8698

nTree 100 100 100 100 377 270 196

K 1 15 8 215 14 18 11

num (Attribute) 215 215 215 215 145 112 164

The best value of every performance evaluation criteria obtained by the algorithms are marked in boldface
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Fig. 11 Comparison of OOB errors among different methods and datasets

obtains a suitable combination of parameters. Therefore,
it enhances the classification performance of RF on
imbalanced high-dimensional data.

Conclusions

To improve the performance of the random forests
algorithm, the CURE-SMOTE algorithm is proposed for
imbalanced data classification. The experiments show
that the proposed algorithm effectively resolves the
shortcomings of the original SMOTE algorithm for
typical datasets and that various adaptive clustering
techniques can be added to further improve the algorithm.
We plan to continue to study the influence of feature selec-
tion and parameter settings on RF. The proposed hybrids
of RF with intelligent algorithms are used to optimize RF
for feature selection and parameter optimization. Simula-
tion results show that the hybrid algorithms achieve the
minimum OOB error, the best generalization ability and
that their F-value, G-mean and AUC scores are generally
better than those obtained using traditional values. The hy-
brid algorithm provides new effective guidance for feature
selection and parameter optimization. The time and data
dimensions of the experiments can be increased to further
verify the algorithm’s effectiveness.
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