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Abstract

Background: The dominant paradigm in understanding drug action focuses on the intended therapeutic effects
and frequent adverse reactions. However, this approach may limit opportunities to grasp unintended drug actions,
which can open up channels to repurpose existing drugs and identify rare adverse drug reactions. Advances in
systems biology can be exploited to comprehensively understand pharmacodynamic actions, although proper

frameworks to represent drug actions are still lacking.

Results: We suggest a novel platform to construct a drug-specific pathway in which a molecular-level mechanism
of action is formulated based on pharmacologic, pharmacogenomic, transcriptomic, and phenotypic data related to
drug response (http://databio.gachon.ac kr/tools/). In this platform, an adoption of three conceptual levels imitating
drug perturbation allows these pathways to be realistically rendered in comparison to those of other models.
Furthermore, we propose a new method that exploits functional features of the drug-specific pathways to predict
new indications as well as adverse reactions. For therapeutic uses, our predictions significantly overlapped with
clinical trials and an up-to-date drug-disease association database. Also, our method outperforms existing methods
with regard to classification of active compounds for cancers. For adverse reactions, our predictions were significantly
enriched in an independent database derived from the Food and Drug Administration (FDA) Adverse Event Reporting
System and meaningfully cover an Adverse Reaction Database provided by Health Canada. Lastly, we discuss several
predictions for both therapeutic indications and side-effects through the published literature.

Conclusions: Our study addresses how we can computationally represent drug-signaling pathways to understand
unintended drug actions and to facilitate drug discovery and screening.

Keywords: Drug pathway, Drug-signaling pathway, Drug action, Pharmacodynamics, Drug repurposing, Drug

repositioning, Adverse reactions, Side effects

Background

The actions of drugs have been systematically observed
and recorded by governments, non-trading organiza-
tions, and academic institutions. From phenotypic
screening to post-marketing surveillance, abundant re-
ports have been archived and follow-up studies on the
mechanisms of action of drugs have been conducted.
Although this research delivers us advances in know-
ledge, our understanding of drug actions is generally
biased toward intended therapeutic effects and frequent
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adverse reactions. This partiality has caused delays in
deciphering the mechanisms of unintended drug actions.
Historically, it was inevitable that the discovery of unex-
pected drug actions, regardless of whether they are de-
sirable or not, usually depends on empirical detection
[1-3]. However, an unbiased analysis of drug actions
should be a basis for understanding unintended drug re-
sponses and predicting drug-repositioning opportunities
or undesirable reactions.

The rapidly expanding databases and newly available
data in the literature, including pharmacogenomic bio-
markers, drug-induced gene expression profiles, and
drug side-effect information, continually provide clues
which indicate unknown drug actions [1, 3, 4]. Recently,
computational approaches for systematic analyses of
these data have been highlighted, enhancing both the
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availability and usability of the data [4]. In comparison
to in vitro and in vivo experiments, computational
approaches are remarkable in terms of time and cost ef-
ficiency. Moreover, systematic implementations are re-
producible. These implementations can be utilized for
upcoming drugs as well as failed drugs, but a lack of
appropriate methods creates an arduous task for those
who attempt to integrate and utilize these scattered
pieces of evidence.

For a comprehensive understanding of drug action,
it is necessary to organize and analyze drug-signaling
pathways in a systematic manner. There have been
many attempts to predict drug actions based on simi-
lar properties of drugs, including their targets, chem-
ical structures and side effects [5, 6]. Although these
properties are fairly useful for distinguishing repur-
posed drugs, these attempts tend to depend on the
extrinsic properties of drugs and not on the intrinsic
mechanisms of drug actions. Therefore, the findings
are limited. One of the most tangible mechanisms of
action is a network in which the nodes refer to bio-
molecules and the edges refer to the physical inter-
action between two nodes [7]. It should be noted that
drugs exert their effects through multiple signaling
cascades in a molecular network rather than through
a single gene or a single route. Therefore, we need to
devise a network platform which realistically infers
the drug-signaling pathways.

Previously, few methods attempted to design drug-
signaling pathways at the molecular level in order to
identify a novel pathway for a particular drug [8, 9].
However, these methods tended to utilize limited re-
sources to generate the pathway or do not consider the
directionality of biological networks. Moreover, system-
atic approaches to represent the perturbation of molecu-
lar and cellular responses are lacking, as the field is in
its infancy.

Here, we devise a novel platform, called Drug Voyager
(http://databio.gachon.ac.kr/tools/), on which to con-
struct drug-signaling pathways for different drugs (Fig. 1).
With this platform, the molecular-level action of a drug
is represented by connecting the three conceptual levels
of “initiation,” “perturbation,” and “destination.” Each
level includes a combination of the five types of seed
genes related to drug responses and phenotypes: drug
target genes (TG), pharmacogenomic variant genes
(VG), differentially expressed genes (DEG), disease genes
(DisG), and side-effect genes (SEG). As a consequence
of construction of level-to-level pathways, 82 drug-
signaling pathways were generated in total for 82 drugs.
In the validation step, these pathways were significantly
enriched in known drug pathway databases and show
higher significance levels compared to when other
models are used.
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Fig. 1 Method overview: a Drug Voyager representing the molecular-
level actions of drugs by connecting three conceptual levels; b
constructing a pathway from the starting point to the end point;
and ¢ TRANSFORMER, utilizing drug-specific pathways to predict drug
indications and adverse reactions

Furthermore, we present TRANSFORMER, a new
method for translating the functional features of drug-
signaling pathways into new medicine and adverse reac-
tions. Based on the drug-signaling pathways generated
by Drug Voyager and a snapshot of the cross-talk within
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each pathway, TRANSFORMER predicts drug indica-
tions and adverse reactions. Our predictions for thera-
peutic use significantly overlaps with drug indications
currently tested in clinical trials and an up-to-date drug-
disease association database. When used to predict
PubChem bioassay results, TRANSFORMER surpasses
existing methods in terms of its ability to classify active
compounds for cancers. For adverse reactions, our pre-
dictions show high significance levels in enrichment test-
ing for an independent database derived from Adverse
Event Reporting System [10] of the Food and Drug
Administration (FDA) and meaningfully cover the
Adverse Reaction Database provided from Health
Canada [11]. Lastly, we highlight several predictions for
both therapeutic indications and side effects through
pathway analyses and from published reports.

Results

Validation of drug-signaling pathways

As noted above, we devised a novel platform, termed
Drug Voyager, which constructs drug-signaling pathways
for individual drugs. In this platform, the three concep-
tual levels of initiation, perturbation, and destination
were adopted to imitate drug perturbations. We assume
that a signal transduction cascade in drug action begins
at the initiation level and reaches the destination level
through the perturbation level. Given the genes that
contribute to drug responses and phenotypes, they were
assigned to corresponding levels and the mechanism of
action of a drug was delineated by connecting these
three conceptual levels (Methods section). Among all
the FDA approved drugs, some drugs whose corre-
sponding genes are unknown have been filtered out, and
finally 82 drugs remain. By constructing level-to-level
pathways, Drug Voyager built 82 drug-signaling path-
ways, one for each of 82 drugs. The validity of each of
these pathways was evaluated by the following three ob-
servations: 1) enrichment in the Small Molecule Pathway
Database (SMPDB) [12], 2) enrichment in PharmGKB
[13], and 3) the co-occurrence of the drug and genes in
the literature. We then compared Drug Voyager with
other pathway construction models.

We undertook gene enrichment computations in the cu-
rated drug-action pathways extracted from SMPDB [12].
The drug pathways from SMPDB were generated based on
various medical and pharmacology textbooks, as well as
relevant published reviews and online databases such as
KEGG [14] and the Medical Biochemistry Page [15].
Among the 82 drugs, information about the drug-action
pathways was accessible for 35, and we concentrated on 25
of these which had pathways composed of ten or more ele-
ments. Twenty-one (84%) of the 25 drug-signaling path-
ways were significantly enriched in the curated drug-action
pathways (one-tailed Fisher’s exact P < 0.05).
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In addition, the validity of the drug-signaling pathways
was tested by comparing these pathways to the pharma-
codynamic pathways derived from PharmGKB [13].
Pharmacodynamic pathways depict the pharmaco-
dynamics of a drug based on evidence obtained through
an extensive review of a variety of sources, including the
U.S. FDA biomarker list [16] and Clinical Pharmacogen-
etics Implementation Consortium (CPIC) nominations
[17]. Out of the 82 drugs, it was possible to obtain phar-
macodynamic pathways from PharmGKB for three:
valproic acid, methotrexate, and etoposide. All three
drug-signaling pathways derived from Drug Voyager for
these drugs were significantly enriched in pharmaco-
dynamic pathways in terms of their member genes
(one-tailed Fisher’s exact P =9.27E-09, 3.79E-10, and
7.55E-07, respectively).

Furthermore, by querying PubMed, we counted the
co-occurrences of a drug and member genes for each
drug-signaling pathway in the literature. The public ap-
plication program interface (API) of the National Center
for Biotechnology Information (NCBI), E-utilities, was
used to send queries, with each query made up of a drug
generic name and an official gene symbol. For compari-
son to a random control (the same drug and random
gene queries), the seed genes, which were used to con-
struct the pathway, were removed from the pathway
members, and a random control was generated with an
identical number of the remaining member genes. We
found that pathway members for each drug significantly
co-occurred when they were compared to random con-
trols (81/82 drugs, Wilcoxon rank sum P < 0.05).

We compared the significance of Drug Voyager with
the significance levels of three other models: 1) the basic
model, 2) the Silberberg model [8], and 3) the Gottlieb
model [9]. Our platform, Drug Voyager, employs the
three conceptual levels of initiation, perturbation, and
destination, and it assigns drug-specific genes to these
levels. In contrast, the basic model is a simple model
that utilizes the same genes used by Drug Voyager,
but at two levels. This model consists of a start level,
which contains TGs, and an end level, which involves
the other four types of genes (VG, DEG, DisG, and
SEG). With this model, the pathway for each drug
was constructed using the same construction method
used with Drug Voyager.

Silberberg et al. [8] reconstructed drug-specific subnet-
works for each drug by connecting TGs to DEGs. More
recently, the Gottlieb model [9] applied three types of
genes (TG, VG, and DisG) and linked them to each
other to build drug-specific pathways for each drug. For
comparison, we used their models with up-to-date inter-
action networks equivalent to Drug Voyager. Figures 2a,
b display box plots of the enrichment tests for each
model applied to the same set of drugs and show that
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the pathway members of our model were more signifi-
cantly enriched than those of the other methods in the
curated drug pathways.

Drug-signaling pathway as a better indicator of drug
repositioning

Drug repositioning has been of great interest to the
pharmaceutical industry, with increased numbers of sys-
tematic analyses to identify additional drug indications
[4]. Similar properties of drugs have been used to
generate new hypotheses on drug indications and have
been considered the crucial basis for computational
drug-repositioning approaches [5, 6]. We harness drug-
signaling pathways to calculate drug similarity levels and
compare the results with prime similarity measurements
to discriminate known chemical-disease associations
[18] from unknown chemical-disease pairs. The similar-
ity levels of drug-signaling pathways were computed in
three different ways: Gene-Sim, GO-Sim and KEGG-Sim
(Method section). Other similarity measures traditionally
successful in predicting drug indications were compiled,
i.e., chemical similarity, drug target similarity and side-
effect similarity measures (Additional file 1). Based on
each similarity measure, feature values were assigned to
each drug indication and classifiers learned using several
classification algorithms, including Naive Bayes, Logistic
Regression and Decision Tree (C4.5). We found that
classifiers using the drug-signaling pathway similarity
computed by Gene-Sim and GO-Sim show better per-
formance than those using other similarity measures
when predicting known drug associations (Fig. 3).

In addition, drug clusters generated based on the simi-
larity between drug-signaling pathways suitably reflect the
anatomical, therapeutic and chemical (ATC) classification
system [19], in which drugs are categorized according to
their therapeutic properties. We were able to find that
some unexpected drugs are included in the clusters and
that these drugs can be regarded as candidates for drug
repositioning, common side-effects and even drug-drug
interactions (Fig. 4 and Additional file 1).

Predicting new drug indications

TRANSFORMER utilizes drug-signaling pathways de-
rived from Drug Voyager to predict novel drug indica-
tions under the assumption that drugs which have
functionally similar pathways could have similar thera-
peutic effects (Fig. 1c). The known indications of a cer-
tain drug were assigned to other drugs which show
significant similarity to that drug. Three approaches
were applied to measure the functional similarity be-
tween drug-signaling pathways: Gene-Sim, GO-Sim and
KEGG-Sim (Methods section).

To select the optimal cutoff for each similarity, we
compare drug-disease pairs derived from each cutoff
with those of the latest and most reliable repositories: 1)
clinical trials [20], and 2) the Comparative Toxicoge-
nomics Database (CTD) chemical-disease associations
[18]. In Fig. 5, distinct cutoff values for which the output
drug-disease pairs were strongly supported in both regis-
tries were identified for each drug-similarity measure-
ment. By considering the most significant cutoff values,
we obtained three optimal thresholds for three similarity
measures, and they yielded three sets of drug-disease
pairs. In a conservative manner, we only chose the inter-
sections between the three sets. Consequently, we ac-
quired 1,816 drug indications (Additional file 2). They
were also significantly enriched in clinical trials (one-
tailed Fisher’s exact P =5.09E-23, odds ratio =3.7" and
the CTD (P = 1.30E-13, odds ratio = 4.3).

Furthermore, we evaluated our predictions using
PubChem bioassays for cancers and compared these
results to the prediction results obtained from Oh
et al. [21] and Gottlieb et al. [6]. We queried the pre-
dicted drugs for each type of cancer and then
acquired active or non-active records for each drug-
cancer pair. In total, 345 drug-cancer pairs were ag-
gregated. Using these pairs, we computed the F1
scores of the predictions identified by each method
(Table 1). Our prediction shows better performance
(F1=0.43) than the other methods in terms of its
ability to predict active compounds for cancers.
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Predicting side effects of drugs
In addition to predicting drug indications, the same
strategy was applied to infer drug-related side effects.
Using the pathway-based similarities of drugs, the
known side effects of a particular drug were assigned to
other similar drugs. If the assigned side effects were in
the known set, they were discarded. We applied three
drug-drug-similarity measures (see Methods) and ob-
tained a set of drug and side-effect pairs for each thresh-
old and for each similarity measure. The three sets were
selected using the optimal threshold for each similarity
measure (Fig. 5b). Finally, the drug and side-effect asso-
ciations that were included in all three sets were pro-
posed as new side effects for existing drugs. In total,
11,152 predictions spanning 39 drugs and 1,598 side ef-
fects were determined in this manner (Additional file 3).
For validation purposes, drug-event associations were
gathered from the OFFSIDES database [22], in which as-
sociations were statistically induced from the FDA
Adverse Event Reporting System. The OFFSIDES data-
base contains 438,801 off-label side effects for 1,332

Table 1 Evaluation of methods on PubChem bioassays for
cancers. Performance of prediction results on cancer bioassays
were displayed

Methods F1 score Recall Precision Odds ratio
TRANSFORMER 042 0.56 0.34 298
Gottlieb et al. 0.29 0.24 0.36 235
Oh et al. 0.16 0.13 0.19 0.67

drugs which are different from those in the SIDER data-
base [23] (less than 5% overlap). Our predictions of drug
side effects were significantly enriched in OFFSIDES
(one-tailed Fisher’s exact P = 2.59E-95, odds ratio = 2.2).

Additionally, an adverse reaction database, Canada’s
MedEffect, was used for further evaluation. In order to
reduce confounding effects, we use only high-confidence
reports that include exactly one drug which is suspected
as the primary reason for an adverse reaction. Out of
30,664 drug-reaction pairs, 1,982 pairs involve drugs and
side effects that belong to our data set (34 drugs and
529 side effects). Our predictions, which consist of 34
drugs and 529 side effects, significantly overlap with
MedEffect (one-tailed Fisher’s exact P =4.79E-09, odds
ratio = 1.6).

Discussion

In this study, we propose a computational platform to
extract drug-signaling pathways for different drugs and
its application to predictions of drug indications and side
effects. By integrating genetic and phenotypic resources
reflecting drug responses, we can formalize drug actions
into drug-signaling pathways. Similarity between the
drug-signaling pathways successfully led to meaningful
candidates for drug indications and side effects.

To validate the computed drug-signaling pathways, we
utilize the most comprehensive and reliable drug action
pathway databases reflecting current knowledge of drug
action. Despite considerable effort to accumulate drug
action pathways, the curated pathways are limited to
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cover all of the computed pathways. Out of the 82 com-
puted pathways, 30% of them are validated by SMPDB
and only three drugs are validated by PharmGKB. The
low coverages of known pathway databases might limit
the applicability of this study. However, the further val-
idation using text mining on literature was conducted
for all 82 pathways and the statistical significance of 81
pathways was observed. Given the incompleteness of the
curated pathways, a literature mining may reinforce the
validation by covering the rest.

Also, we note that there can be a limitation when
our method is applied to new compounds or drugs
whose seed genes are not known because genes re-
lated to drug responses and phenotypes are required
to construct the drug-signaling pathways. But the rap-
idly expanding databases and systematic prediction
pipelines to secure drug-relevant genes may comple-
ment the restriction [13, 24-27].

Although our approach successfully obtains meaning-
ful candidates for new drug uses and possible side ef-
fects, it is still limited with regard to its ability to offer
insight into new mechanisms of drug actions. Here, we
undertake a pathway analysis of the inferring mecha-
nisms of unexpected drug actions based on drug-
signaling pathways. To explore specific drug actions
which are assumed to be responsible for new indica-
tions, we focus on the commonalities between
drug-signaling pathways for both drugs, one a known
treatment for a certain disease and the other a predicted
one. Among the predicted drug indications, we highlight
the following three indications as case studies: 1) halo-
peridol for Alzheimer’s disease, 2) propranolol for
asthma and 3) thalidomide for prostate cancer. Also, we
suggest a repositioning candidate for breast and prostate
cancer, 4) fluphenazie, which is worth conducting fur-
ther research on its feasibility of therapeutic application.
Haloperidol is an antipsychotic agent which is used as a
treatment for schizophrenia. The prediction of its use
for Alzheimer’s disease originated from the similarity be-
tween haloperidol and valproic acid, which is a promis-
ing agent to combat Alzheimer’s disease [28] (Gene-Sim
=044, GO-Sim=0.71, and KEGG-Sim=0.87). The
drug-signaling pathway of haloperidol has a large degree
of overlap with that of valproic acid. Additional file 4:
Figure S1 shows the shared portion. Genes in the shared
part are annotated with the “Jak-STAT signaling path-
way,” the “ErbB signaling pathway,” and the “vascular
smooth muscle contraction pathway” in the KEGG path-
way database using the DAVID tool (P-value < 0.05).
These pathways have been studied and reported to be
significantly linked to Alzheimer’s disease, as explained
below. Dysregulation of the Jak-STAT signaling pathway
is mainly associated with brain inflammation processes
and neuronal/glial survival in the mature central nervous
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system (CNS). It is also involved in most brain disorders,
including Alzheimer’s disease [29]. Seven genes, JAKI,
JAK3, GRB2, IL2, PIK3R1, SOS1, and MYC, as shown in
Additional file 4: Figure S1 are involved in the Jak-STAT
signaling pathway. Aberration of ErbB signaling pathway
have been deciphered as key regulatory entity in human
diseases. Especially, deficiency of ErbB signaling is re-
lated to the development of neurodegenerative disorders,
including Alzheimer’s disease and multiple sclerosis.
[30]. Six genes, Gabl, GRB2, PIK3R1, SOS1, MYC, and
Src, as shown in Additional file 4: Figure S1 are involved
in the ErbB signaling pathway. It has been shown that
the endophenotype-associated pathways of Alzheimer’s
disease include vascular smooth muscle contraction,
which was previously implicated in the biology of
Alzheimer’s disease [31, 32]. Four genes, CYP4All,
GNA11, MYHI11, and NPR1 in Additional file 4: Figure
S1, are involved in vascular smooth muscle contraction.

Propranolol, a beta-adrenergic antagonist used pre-
dominantly for hypertension, was predicted to be effi-
cient in the treatment of asthma. In our method, a basis
for this prediction was two asthma medications, fluniso-
lide and theophylline, which have similar drug-signaling
pathways to that of propranolol. We found that drug-
signaling pathways for these three drugs have large por-
tions in common. Those shared pathway elements are
shown in Additional file 5: Figure S2, and the genes are
annotated with “MAPK signaling pathway”, “Neurotro-
phin signaling pathway”, and “VEGF signaling pathway”
in the KEGG pathway database using DAVID tools
(P-value < 0.05). Those pathways have been demon-
strated to have a significant relationship with asthma in
the following studies. Asthmatic patients demonstrated
increased immunostaining for phospho (p)-ERK1/2, p-
p38a/P/y (p-p38), and pJNK1/2/3 (pJNK) [33], which are
important members of the MAPK signaling pathway,
and are also shown in Additional file 5: Figure S2.
Neurotrophins and their receptors are expressed in lung
components, and the neurotrophin signaling pathway may
be important in normal lung development, developmental
lung disease, and allergy and inflammation (e.g., rhinitis,
asthma) [34]. Eight genes including MAPK3, MAPK1,
MAPK14, MAPKS8, MAP2K7, MAP3K1, RPS6KA6, and
RAF1 in Additional file 5: Figure S2 are involved in the
neurotrophin signaling pathway. Elevated VEGEF levels
have been observed in patients with asthma [35]. Fur-
thermore, it has also been suggested [36] that VEGF
excess can contribute to the pathogenesis of Th2 in-
flammatory disorders such as asthma. Six genes in-
cluding MAPK3, MAPK1, MAPK14, PLA2G1B, RAFI,
and SRC in Additional file 4: Figure S2 are involved
in the VEGF signaling pathway.

We predict that thalidomide can be used for prostate
cancer. Thalidomide, an immunosuppressive agent, was
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once withdrawn from the market because of its terato-
genic effects and has been reintroduced and used for im-
munological diseases. Thalidomide’s drug-signaling
pathway substantially overlaps with a drug-signaling
pathway for estradiol which has a therapeutic effect on
prostate cancer [37]. Additional file 6: Figure S3 shows
the overlapping pathway. The genes in Additional file 6:
Figure S3 are annotated with “TCA cycle”, “pyruvate me-
tabolism”, and “Wnt signaling pathway” in the KEGG
pathway database, using DAVID tools (P-value < 0.05).
Those pathways have been reported and observed to
have a significant relationship with prostate cancer, as
detailed below. It has been reported [38] that there are
significant changes in citrate-related metabolism and
transport in prostate cancer. The tricarboxylic acid
(TCA) cycle is also linked to the excess production of
reactive oxygen species (ROS). As excess ROS causes
damage to DNA, RNA and proteins, it leads to oxidative
stress, including metabolic alteration and mitochondrial
dysfunction which accelerate tumorigenesis in prostate
cancer. Five genes including DLAT, DLD, PC, PDHAZ2,
and PDHB were involved in the TCA cycle. Those five
genes were also found in pyruvate metabolism, and
pyruvate is used for metabolic imaging of prostate can-
cer [39]. Disruption or dysregulation of the Wnt signal-
ing pathway can lead to the development of many
tumors including prostate cancer [40]. The Wnt/p-ca-
tenin pathway may regulate prostate tumor cells’
invasive behavior, mediating cell proliferation and
epithelial-mesenchymal trans-differentiation [41]. CTBP1,
JUN, and MYC in Additional file 6: Figure S3 are down-
stream genes in the Wnt signaling pathway.

Fluphenazine is one of phenothiazine antipyscotics,
which is categorized as dopamine receptor antagonists
and calmodulin inhibitors. TRANSFORMER predicted
its new indication for breast and prostate cancer. It was
found that a drug-signaling pathway of this agent shares
substantial members with that of estradiol, which has
been reported to be used for treatment of breast and
prostate cancer. To identify functional commonality, GO
annotation analysis was performed on the shared part of
their pathways. Table 2 shows the top 10 GO enrich-
ment results. Among them, we focus on cyclin-
dependent kinase (CDK) activity and G-protein coupled
receptor (GPCR) signaling pathway. It is clear that CDK
family is principal to several signaling pathways regulat-
ing transcription and cell-cycle progression. In year
2013, FDA approved CDK4 and CDK6 inhibitors for
breast cancer as breakthrough therapies [42, 43]. We
found that the shared part of fluphenazine and estradiol
drug-signaling pathways involves several CDK4/6 inhibi-
tor genes, including CDKN2A, CDKN1B and CDKNIA.
The other interesting CDK protein in the shared part is
CDK5, which has multiple roles in some tissues with
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relevance to cancers [44]. GPCR controls key physio-
logical functions [45]. It is reviewed that GPCRs can be
crucial players in tumor growth and metastasis [46].
Especially, CHRM3 gene which is annotated to GO
term of GPCR signaling pathway was identified in the
shared part. In the recent study, it has been found
that autocrine activation of CHRM3 promotes pros-
tate cancer growth [47]. These findings could support
the potential indication of fluphenazine for breast
cancer and prostate cancer.

Additionally, we discuss a few predicted adverse drug
reactions based on published studies and the US FDA
Online Label Repository. Although the FDA drug label
is biased toward the number of occurrences of adverse
reactions that are observed and reported in clinical trials
or post-marketing surveillance, it is one of the clearest
options for comparison to the predicted results. We
highlight the predicted adverse reactions of the three
drugs paclitaxel for bradycardia and tachycardia, valproic
acid for delirium and neutropenia, and tamoxifen for
hypothyroidism. Paclitaxel, a tubulin modulator used in
chemotherapy, was predicted to induce bradycardia and
tachycardia. In one phase 2 study, 29% of the 45 patients
who were treated with paclitaxel developed bradycardia
[48]. In a subsequent large-cohort study, a rate of 0.1%
of cardiac toxicity was reported, and most of these cases
were asymptomatic bradycardia. In rare cases, atrial and
ventricular tachycardia were described [49]. Another
study assessing cardiac disturbances in one hundred
African-American patients treated with paclitaxel found
that 26% of patients experience sinus tachycardia [50].

Valproic acid, which is administered predominantly in
epilepsy and psychiatric disorders, was suspected to
cause delirium in our prediction results. Delirium had
been reported in three studies in which valproic acid
levels in plasma were within therapeutic ranges [51-53].
Although delirium is excluded from the adverse reac-
tions described in the FDA drug labeling for valproic
acid, the most common form of delirium, hyperactivity,
is included in the labeling. In addition to delirium, neu-
tropenia appeared in our predictions for valproic acid.
Likewise, neutropenia following valproic acid exposure
was also observed in other studies [54—56]. The FDA
drug label does not specify neutropenia as an adverse re-
action for valproic acid, but leukopenia is labeled. As the
most common subtype of leukopenia is neutropenia, this
label corroborates that our prediction is supported in
the current pharmacovigilance system.

Tamoxifen, a selective estrogen receptor modulator
(SERM) used predominantly for the treatment of breast
cancer, was inferred to be a possible agent responsible for
hypothyroidism by our method. The FDA drug label does
not include warnings for drug-induced hypothyroidism.
However, particularly in postmenopausal breast cancer
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Table 2 The top ten Gene Ontology terms enriched. GO annotation analysis was performed on the shared members derived from

the drug-signaling pathways of fluphenazine and estradiol

GO term Description P-value FDR g-value
GO:1904029 regulation of cyclin-dependent protein kinase activity 1.11E-09 9.24E-06
GO:0000079 regulation of cyclin-dependent protein serine/threonine kinase activity 1.11E-09 4.62E-06
GO:0051726 regulation of cell cycle 1.28E-09 3.54E-06
GO:0051301 cell division 1.37E-09 2.83E-06
GO:0051290 protein heterotetramerization 4.61E-09 7.64E-06
G0:0034723 DNA replication-dependent nucleosome organization 1.55E-08 2.14E-05
GO:0006335 DNA replication-dependent nucleosome assembly 1.55E-08 1.83E-05
GO:0006334 nucleosome assembly 1.58E-08 1.63E-05
GO:0051262 protein tetramerization 4.87E-08 4.48E-05
GO:0007186 G-protein coupled receptor signaling pathway 5.95E-08 4.94E-05

patients, significant alterations in thyroid function tests
were observed during treatment with tamoxifen [57].
Specifically, the previous study reports that tamoxifen
treatment significantly elevates plasma levels of thyroid-
stimulating hormone (TSH) and significantly suppresses
free triiodothyronine (FT3) and free thyroxine (FT4). As
the diagnosis of hypothyroidism is confirmed by an ele-
vated TSH level and a low FT4 level, we can suspect that
tamoxifen may have an effect in inducing hypothyroidism.
In a more recent study, the authors raise caution related
to treating thyroid dysfunction in women who are taking
SERMs such as tamoxifen [58].

We further note that it was difficult to find litera-
ture evidence of predictions of severe adverse reac-
tions such as cardiac arrest and coma, as we found
that the more the relative severity of the adverse re-
actions increases, the fewer reports there are available
(Additional file 7: Figure S4).

Conclusions

Verifiable hypotheses about unintended drug actions are
implicitly inherent in emerging data relevant to drug re-
sponses. Our study shows how we can utilize these data
to computationally represent drug-signaling pathways.
Furthermore, computational analysis of drug-signaling
pathways can provide more precise predictions of drug-
repositioning candidates and adverse reactions as well as
the mechanisms of unintended actions.

Methods

Datasets

Drug-specific genes

The five types of genes relevant to drug responses and
phenotypes were obtained and assembled for each drug
from the following references. First, drug target proteins
were obtained from DrugBank [24] and mapped to cor-
responding genes. Second, the pharmacogenomic vari-
ants associated with the drug responses were extracted

from PharmGKB [13] and mapped to the assigned
genes. Third, small-molecule gene expression profiles
were gathered from Connectivity Map [59]. For each
drug treatment, a differentially expressed gene set
relative to a vehicle-treated control was selected from
the MCF7 cell lines. The gene set consisted of probe
sets ranked in the top 50 and bottom 50. Fourth, dis-
ease genes were extracted from the Online Mendelian
Inheritance in Man (OMIM) database [25] and known
drug-disease associations were collected from Gottlieb
et al. [6] Disease genes were assigned to drugs which
are known to be associated with the diseases. Fifth,
genes related to side effects were collected from
Gottlieb and Altman [9] and known associations be-
tween drugs and side effects were extracted from the
SIDER database [23] (July 2015). Side-effect genes
were assigned to drugs if these drugs are known to
be associated with the side effect. In brief, 82 drugs
with at least one gene of each gene type were used
out of the entire group of FDA-approved drugs se-
lected from DrugBank. The average number of drug-
specific genes for each drug was 165 + 43.

Biological networks

Curated pathways were extracted from the Pathway
Interactions Database [60], BioCarta [61], and Reac-
tome [62]. The union of the pathway interactions in-
cludes approximately 50,000 directed interactions
and more than 14,000 biomolecules consisting of
RNAs, proteins, compounds, and complexes of these.
Protein-protein interactions (PPIs) were aggregated
from multiple sources, including BioGrid [63] (ver-
sion 3.3.124), the Database of Interacting Proteins
[64] (May 2015), IntAct [65] (May 2015), and the
Molecular Interaction Database [66] (May 2015). The
integration of the PPIs led to more than 400,000
interactions.
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Known drug indications

In order to predict new drug indications on the basis of
current use, known drug indications were obtained from
the gold standard [6]. Out of 1,933 indications spanning
593 drugs and 313 diseases, we obtained 414 indications
as known drug indications for 82 experimental drugs.
These encompass 155 diseases.

Known drug side effects

To predict new adverse reactions, 97,755 drug and side-
effect pairs were downloaded from the SIDER database
(July 2015). Among them, 15,630 pairs that contain
drugs for which it is possible to generate a drug-
signaling pathway were used as the known side effects of
drugs. For validation purposes, drug-event associations
were obtained from the OFFSIDES database [22]. These
associations were statistically detected from the FDA
Adverse Event Reporting System. The OFFSIDES data-
base includes 438,801 off-label side effect events for
1,332 drugs. Among them, 10,334 drug-event associa-
tions were preprocessed for 82 drugs.

A platform for building a drug-signaling pathway
Drug Voyager was designed to construct a drug-
signaling pathway for each drug (Fig. 1a). In order to
render the drug response pathways realistically, three
conceptual levels were used, and these were termed “ini-
tiation,” “perturbation,” and “destination.” Each level had
specific element genes relevant to the drug response or
phenotype. There are five types of element genes: drug
target genes (TG), pharmacogenomic variant gene (VG),
differentially expressed genes (DEG), disease genes
(DisG), and side-effect genes (SEG). Based on the as-
sumption that drug targets initiate a signaling cascade
that ultimately affects the disease phenotype, the TGs
were regarded as components of the initiation level. The
VGs and DEGs were assigned to the perturbation level.
Then, the DisGs and SEGs were added to the destination
level. Drug Voyager reconstructs level-to-level pathways
using the construction method described below (i.e.,
from the initiation level to the perturbation level, and
from the perturbation level to the destination level). By
combining level-to-level pathways, a consequent drug-
signaling pathway was generated for each drug.

Constructing a pathway from the starting point to
the end point A pathway was constructed by connect-
ing the given start points and end points based on the
interactions determined from biological networks
(Fig. 1b). These networks consist of the manually cu-
rated pathway interactions, including signaling pathways,
regulatory pathways, and metabolic pathways. Moreover,
the pathways were established to propagate signals be-
tween diverse biomolecules such as genes, chemical
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compounds, and complexes, rather than only the signals
between genes. Out of all paths from the start points to
the end points, the shortest paths were generated by tra-
versing the curated pathway interactions in the given di-
rections. Among them, the particular paths in which the
last interaction is the regulation of transcription or
translocation were considered as the resulting pathways.
If no paths were connected, the curated PPIs were
allowed to compose the front of the paths up to three
interactions, linking the start points to known pathway
components.

Predicting drug-repositioning candidates and new
adverse reactions We devised a novel method, TRANS-
FORMER, to translate the functional features of a drug-
signaling pathway into a new medicine and its adverse
reactions. The drug-signaling pathway constructed by
Drug Voyager was applied to infer new drug indications,
including therapeutic uses and adverse reactions (Fig. 1c).
Given the assumption that some drugs which have func-
tionally similar pathways could have similar therapeutic
effects, three approaches were applied to measure func-
tional similarity between drug-signaling pathways. These
were the gene component similarity (Gene-Sim), gene
ontology (GO) enrichment similarity (GO-Sim), and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment similarity (KEGG-Sim) approaches. For Gene-
Sim, a binary vector was generated for a drug-signaling
pathway to indicate gene membership of a correspond-
ing pathway. For GO-Sim, the enrichment in the gene
ontology for a biological process was observed to anno-
tate each drug-signaling pathway, and a binary vector
depicts the involvement of the biological process
(P-value < 0.01, using DAVID [67]). In addition to GO-
Sim, a snapshot of the pathway cross-talk was obtained
based on the enrichment test. For KEGG-Sim, a binary
vector indicating significantly enriched KEGG pathway
membership was generated for each drug-signaling path-
way (P-value < 0.01, using DAVID [67]). Sequentially, the
Jaccard coefficient was used to calculate the degree of
similarity between two binary vectors for each approach.

Based on the similarity measures and the given thresh-
old for each similarity, known indications of a certain
drug were assigned to other drugs which show signifi-
cant levels of similarity to the original drug. If the
assigned drug indication was found among the known
indications, it was removed. As a result, the assigned
drug indications are independent of the known indica-
tions. Only cases in which the newly assigned drug-
disease pairs satisfied all three measurements were
considered to be new predictions.

To determine the optimal threshold, newly assigned
drug-disease pairs were statistically compared to valid
drug-disease associations, for which clinical trials and
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the curated drug-disease relationship were used. The
threshold resulting in the lowest P-value was selected for
each similarity measure. To predict new adverse reac-
tions, the same method described above was used. The
known side effects of drugs were employed instead of
the known indications. In order to determine the opti-
mal threshold, we used OFFSIDES, an off-label side-
effects database [21].

Statistics in enrichment test To identify significant en-
richment in the reference annotation, we used hypergeo-
metric test. If a query contains valid entities (i.e. genes)
from a total of t entities, for a given annotation (i.e. GO
term), there are q entities within k and m entities within
t associated with it, then the possibility that whether en-
tities associated with this annotation is enriched among
the queried entity list could be calculated by hypergeo-
metric test,
m_(m) (t-m
P(X=x>q) :ZLS")

x=q (lt<
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Schematic illustration of component-specific pathway construction. (2)
Prediction models based on drug similarity. (3) Drug clusters based on
drug-signaling pathways. (4) PID molecule ID notation for Figure S1, S2
and S3. Figure S6. PID molecule ID notation for Figure S1. Figure S7.
PID molecule ID notation for Figure S2. Figure S8. PID molecule ID
notation for Figure S3. (DOCX 874 kb)

Additional file 2: Predicted drug indications. The list of 1,816 novel
drug indications spanning 47 drugs and 122 diseases. (XLSX 54 kb)

Additional file 3: Predicted side effects of drugs. The list of 11,152 novel
side effects of drugs spanning 39 drugs and 1,598 side effects. (XLSX 179 kb)

Additional file 4: Figure S1. The overlap between drug-signaling
pathways (haloperidol and valproic acid). The shared pathways derived from
each drug-signaling pathway for haloperidol and valproic acid. (JPG 933 kb)

Additional file 5: Figure S2. The overlap between drug- signaling
pathways (propranolol, flunisolide, and theophylline). The shared pathways
derived from each drug-signaling pathway for propranolol, flunisolide, and
theophylline. JPG 1113 kb)

Additional file 6: Figure S3. The overlap between drug- signaling
pathways (thalidomide and estradiol). The shared pathways derived from
each drug-signaling pathway for thalidomide and estradiol. JPG 973 kb)

Additional file 7: Figure S4. The relationship between severity and
frequency of the adverse reactions. Each point of the scatter plot represents
a side effect. X-axis shows its frequency in known drug-side effect pairs and
Y-axis displays the relative severity. (JPG 481 kb)

Abbreviations

API: Application program interface; ATC: The anatomical, therapeutic and
chemical; CNS: Central nervous system; CPIC: Clinical Pharmacogenetics
Implementation Consortium; CTD: Comparative Toxicogenomics Database;
DEG: Differentially expressed genes; DisG: Disease genes; FDA: Food and
Drug Administration; FT3: Free triiodothyronine; FT4: Free thyroxine;
Gene-Sim: gene component similarity; GO: Gene ontology; GO-Sim: Gene
ontology enrichment similarity; KEGG: Kyoto Encyclopedia of Genes and
Genomes; KEGG-Sim: Kyoto Encyclopedia of Genes and Genomes enrichment
similarity; NCBI: National Center for Biotechnology Information; OMIM: Online

Page 11 of 13

Mendelian Inheritance in Man; PPIs: Protein-protein interactions; ROS: Reactive
oxygen species; SEG: Side-effect genes; SERM: Selective estrogen receptor
modulator; SMPDB: Small Molecule Pathway Database; TCA: The tricarboxylic
acid; TG: Drug target genes; TSH: Thyroid-stimulating hormone;

VG: Pharmacogenomic variant genes

Acknowledgements

The authors are grateful to all of the reviewers and handling editors of this
manuscript and its predecessors, as their feedback definitely helped improve
the manuscript. Also, we thank to Dr. TM. Murali for the constructive discussion.

Funding

This research was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning (NRF-2015R1A2A2A03004088). The funder
had no role in study design or conclusions of this study.

Availability of data and materials
The datasets supporting the results of this article are included within the
article or in additional files.

Authors’ contributions

M.O. designed the research. MO, T.L. and G.J. performed research. M.O,, JA.
and C.P. analyzed the data. M.O. and Y.Y. wrote the manuscript. All authors
read and approved the final manuscript.

Competing interest
All authors declare no competing interests exist.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details

'Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
“Department of Computer Science & Engineering, Incheon National
University, Incheon, South Korea. *Department of Computer Engineering,
Gachon University, Seongnam, South Korea. *Biomedical HPC Technology
Research Center, Korean Institute of Science and Technology Information,
Daejeon, South Korea. *Postal Address: Gachon University, 339Ho, Woongji BD,
1324 Seongnam-daero, Seongnam-si 13120, South Korea.

Received: 7 October 2016 Accepted: 22 February 2017
Published online: 28 February 2017

References

1. Jin G, Wong ST. Toward better drug repositioning: prioritizing and integrating
existing methods into efficient pipelines. Drug Discov Today. 2014;19(5):637-44.

2. Bolgér B, Arany A, Temesi G, Balogh B, Antal P, Matyus P. Drug repositioning
for treatment of movement disorders: from serendipity to rational discovery
strategies. Curr Top Med Chem. 2013;13(18):2337-63.

3. LiJ, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current
trends in computational drug repositioning. Brief Bioinform. 2016;17(1):2-12.

4. Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational
drug repositioning: from data to therapeutics. Clin Pharmacol Therap. 2013;
93(4):335-41.

5. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification
using side-effect similarity. Science. 2008;321(5886):263-6.

6. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring
novel drug indications with application to personalized medicine. Mol Syst
Biol. 2011,7(1):496.

7. Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease.
Cell. 2011;144(6):986-98.

8. Silberberg Y, Gottlieb A, Kupiec M, Ruppin E, Sharan R. Large-scale elucidation
of drug response pathways in humans. J Comput Biol. 2012;19(2):163-74.

9. Gottlieb A, Altman RB. Integrating systems biology sources illuminates drug
action. Clin Pharmacol Ther. 2014,95(6):663.


dx.doi.org/10.1186/s12859-017-1558-3
dx.doi.org/10.1186/s12859-017-1558-3
dx.doi.org/10.1186/s12859-017-1558-3
dx.doi.org/10.1186/s12859-017-1558-3
dx.doi.org/10.1186/s12859-017-1558-3
dx.doi.org/10.1186/s12859-017-1558-3
dx.doi.org/10.1186/s12859-017-1558-3

Oh et al. BMC Bioinformatics (2017) 18:131

1.
12.

20.
21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

The food and drug administration (FDA) adverse event reporting system.
http://www.fda.gov/Drugs/GuidanceComplianceRegulatorylnformation/
Surveillance/AdverseDrugEffects. Accessed Jul 2015.

Health Canada. http://www.healthcanada.gc.ca/medeffect. Accessed Jul 2015.
Frolkis A, Knox C, Lim E, Jewison T, Law V, Hau DD, Liu P, Gautam B, Ly S,
Guo AC, Xia J. SMPDB: the small molecule pathway database. Nucleic Acids
Res. 2010;38 suppl 1:D0480-7.

Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF,
Altman RB, Klein TE. Pharmacogenomics knowledge for personalized
medicine. Clin Pharmacol Ther. 2012,92(4):414-7.

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference
resource for gene and protein annotation. Nucl Acids Res. 2015:gkv1070.

The medical biochemistry page. http://themedicalbiochemistrypage.org.
Accessed July 2015.

Table of pharmacogenomic biomarkers in drug labeling. http://www.fda.
gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.
htm. Accessed Jul 2015.

Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation
consortium of the pharmacogenomics research network. Clin Pharmacol
Therap. 2011,89(3):464-7.

Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D,
King BL, Wiegers TC, Mattingly CJ. The comparative toxicogenomics
Database’s 10th year anniversary: update 2015. Nucleic Acids Res. 2015;
43(D1):D914-20.

Skrbo A, Begovi¢ B, Skrbo S. Classification of drugs using the ATC system
(anatomic, therapeutic, chemical classification) and the latest changes. Med
Arh. 2003;58(1 Suppl 2):138-41.

Clinical Trials. https://clinicaltrials.gov. Accessed July 2015.

Oh M, Ahn J, Yoon Y. A network-based classification model for deriving
novel drug-disease associations and assessing their molecular actions. PLOS
ONE. 2014,9(10):e111668. doi:10.1371/journal.pone.0111668.

Tatonetti NP, Patrick PY, Daneshjou R, Altman RB. Data-driven prediction of
drug effects and interactions. Sci Transl Med. 2012;4(125):125ra31.

Kuhn M, Letunic |, Jensen LJ, Bork P. The SIDER database of drugs and side
effects. Nucl Acids Res. 2015:gkv1075.

Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang
Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug
discovery and exploration. Nucleic Acids Res. 2006;34 suppl 1:D668-72.
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes
and genetic disorders. Nucleic Acids Res. 2005;33 suppl 1:D514-7.

LINCS L1000 project. http://lincs-dcic.org/#/

Kuhn M, Al Banchaabouchi M, Campillos M, Jensen LJ, Gross C, Gavin AC,
Bork P. Systematic identification of proteins that elicit drug side effects. Mol
Syst Biol. 2013,9(1):663.

Zhang XZ, Li XJ, Zhang HY. Valproic acid as a promising agent to combat
Alzheimer's disease. Brain Res Bull. 2010:81(1):3-6.

Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, Dournaud
P, Gressens P, Collingridge GL, Peineau S. The role of JAK-STAT signaling
within the CNS. Jak Stat. 2013;2(1):€22925.

Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of
signaling and therapeutics. Curr Opin Cell Biol. 2007;19(2):124-34.

Silver M, Janousova E, Hua X, Thompson PM, Montana G. Alzheimer’s
disease neuroimaging initiative. Identification of gene pathways implicated
in Alzheimer's disease using longitudinal imaging phenotypes with sparse
regression. Neuroimage. 2012,63(3):1681-94.

Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's
disease and other disorders. Nat Rev Neurosci. 2011:12(12):723-38.

Alam R, Gorska MM. Mitogen-activated protein kinase signalling and ERK1/2
bistability in asthma. Clin Exper Allergy. 2011;41(2):149-59.

Prakash YS, Thompson MA, Meuchel L, Pabelick CM, Mantilla CB, Zaidi S,
Martin RJ. Neurotrophins in lung health and disease. Expert Rev Respir Med.
2010:4(3):395-411.

Lee YC, Lee HK. Vascular endothelial growth factor in patients with acute
asthma. J Allergy Clin Immunol. 2001;107(6):1106.

Lee CG, Ma B, Takyar S, Ahangari F, DelaCruz C, He CH, Elias JA. Studies of
vascular endothelial growth factor in asthma and chronic obstructive
pulmonary disease. Proc Am Thorac Soc. 2011,8(6):512-5.

Langley RE, Cafferty FH, Alhasso AA, Rosen SD, Sundaram SK, Freeman SC,
Pollock P, Jinks RC, Godsland IF, Kockelbergh R, Clarke NW. Cardiovascular
outcomes in patients with locally advanced and metastatic prostate cancer

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

Page 12 of 13

treated with luteinising-hormone-releasing-hormone agonists or
transdermal oestrogen: the randomised, phase 2 MRC PATCH trial (PR09).
Lancet Oncol. 2013;14(4):306-16.

Mycielska ME, Patel A, Rizaner N, Mazurek MP, Keun H, Patel A, Ganapathy V,
Djamgoz M. Citrate transport and metabolism in mammalian cells. Bioessays.
2009;31(1):10-20.

Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M,
van Criekinge M, Chang JW, Bok R, Park |, Reed G. Metabolic imaging of
patients with prostate cancer using hyperpolarized [1-13C] pyruvate. Sci
Transl Med. 2013;5(198)):198ra108.

Yardy GW, Brewster SF. Wnt signalling and prostate cancer. Prostate Cancer
Prostatic Dis. 2005;8(2):119-26.

Kypta RM, Waxman J. Wnt/B-catenin signalling in prostate cancer. Nat Rev
Urol. 2012,9(8):418-28.

Breakthrough therapies. http://www.focr.org/breakthrough-therapies.

Sherr CJ, Beach D, Shapiro Gl. Targeting CDK4 and CDKé: from discovery to
therapy. Cancer Discov. 2016;6(4):353-67.

Arif A. Extraneuronal activities and regulatory mechanisms of the atypical
cyclin-dependent kinase Cdk5. Biochem Pharmacol. 2012,84(8):985-93.
Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat
Rev Mol Cell Biol. 2002;3(9):639-50.

Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev
Cancer. 2007;7(2):79-94.

Wang N, Yao M, Xu J, Quan Y, Zhang K, Yang R, Gao WQ. Autocrine
activation of CHRM3 promotes prostate cancer growth and castration
resistance via CaM/CaMKK-mediated phosphorylation of Akt. Clin Cancer
Res. 2015,21(20):4676-85.

McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS,
Armstrong DK, Donehower RC. Taxol: a unique antineoplastic agent with
significant activity in advanced ovarian epithelial neoplasms. Ann Intern
Med. 1989;111(4):273-9.

Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, Oakes
M, McGuire W, Reed E, Gibbs H. A reassessment of cardiac toxicity
associated with Taxol. J Natl Cancer Inst Monogr. 1992;15:117-30.

Kamineni P, Prakasa K, Hasan SP, Akula R, Dawkins F. Cardiotoxicities of
paclitaxel in African americans. J Natl Med Assoc. 2003,95(10):977.

Gareri P, Lacava R, Cotroneo A, Bambara V, Marigliano N, Castagna A,
Costantino DS, Ruotolo G, De Sarro G. Valproate-induced delirium in a
demented patient. Arch Gerontol Geriatr. 2009;49:113-8.

Huang CC, Wei IH. Unexpected interaction between quetiapine and valproate
in patients with bipolar disorder. Gen Hosp Psychiatry. 2010;32(4):446-e1.
Ozen S, Bilbl |, Soyucok E. Valproate induced hypoactive delirium in a bipolar
disorder patient with psychotic features. Turk Psikiyatri Derg. 2010;21:79-84.
Chakraborty S, Chakraborty J, Mandal S, Ghosal MK. A rare occurrence of
isolated neutropenia with valproic acid: a case report. J Indian Med Assoc.
2011;109(5):345-6.

Hung WC, Hsieh MH. Neutropenia associated with the comedication of
quetiapine and valproate in 2 elderly patients. J Clin Psychopharmacol.
2012;32(3):416-7.

Chang LR, Chang HC, Lin YH. Quetiapine-and valproate-associated neutropenia
and thrombocytopenia after lamotrigine-induced Steven-Johnson syndrome.
J Clin Psychopharmacol. 2012;32(1):133-4.

Anker GB, Lenning PE, Aakvaag A, Lien EA. Thyroid function in postmenopausal
breast cancer patients treated with tamoxifen. Scand J Clin Lab Invest. 1998,58(2):
103-7.

Pearce EN. Thyroid dysfunction in perimenopausal and postmenopausal
women. Brit Menopause Soc J. 2007;13(1):8-13.

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J,
Brunet JP, Subramanian A, Ross KN, Reich M. The connectivity Map: using
gene-expression signatures to connect small molecules, genes, and disease.
Science. 2006;313(5795):1929-35.

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID:
the pathway interaction database. Nucleic Acids Res. 2009;37 suppl 1:D674-9.
Nishimura D. BioCarta. Biotech software & internet report: the computer
software journal for scient. 2001;2(3):1517-20.s

Vastrik |, D'Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de
Bono B, Gillespie M, Jassal B, Lewis S, Matthews L. Reactome: a knowledge
base of biologic pathways and processes. Genome Biol. 2007;8(3):1.
Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen
D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T. The BioGRID
interaction database: 2015 update. Nucleic Acids Res. 2015;43(D1):D470-8.


http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects
http://www.healthcanada.gc.ca/medeffect
http://themedicalbiochemistrypage.org/
http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
https://clinicaltrials.gov/
http://dx.doi.org/10.1371/journal.pone.0111668
http://lincs-dcic.org/#/
http://www.focr.org/breakthrough-therapies

Oh et al. BMC Bioinformatics (2017) 18:131

64.

65.

66.

67.

Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The
database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32
Suppl 1:D449-51.

Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F,
Campbell NH, Chavali G, Chen C, Del-Toro N, Duesbury M. The MintAct
project—IntAct as a common curation platform for 11 molecular interaction
databases. Nucl Acids Res. 2013:gkt1115.

Licata L, Briganti L, Peluso D, Perfetto L, lannuccelli M, Galeota E, Sacco F,
Palma A, Nardozza AP, Santonico E, Castagnoli L. MINT, the molecular
interaction database: 2012 update. Nucleic Acids Res. 2012;40(D1):D857-61.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large
gene lists using DAVID bioinformatics resources. Nat Protoc. 20094(1):44-57.

Page 13 of 13

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolVled Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Validation of drug-signaling pathways
	Drug-signaling pathway as a better indicator of drug repositioning
	Predicting new drug indications
	Predicting side effects of drugs

	Discussion
	Conclusions
	Methods
	Datasets
	Drug-specific genes
	Biological networks
	Known drug indications
	Known drug side effects


	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interest
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

