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Abstract

Background: The knowledge base-driven pathway analysis is becoming the first choice for many investigators, in
that it not only can reduce the complexity of functional analysis by grouping thousands of genes into just several
hundred pathways, but also can increase the explanatory power for the experiment by identifying active pathways
in different conditions. However, current approaches are designed to analyze a biological system assuming that
each pathway is independent of the other pathways.

Results: A decision analysis model is developed in this article that accounts for dependence among pathways in
time-course experiments and multiple treatments experiments. This model introduces a decision coefficient—a
designed index, to identify the most relevant pathways in a given experiment by taking into account not only the
direct determination factor of each Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway itself, but also the
indirect determination factors from its related pathways. Meanwhile, the direct and indirect determination factors of
each pathway are employed to demonstrate the regulation mechanisms among KEGG pathways, and the sign of
decision coefficient can be used to preliminarily estimate the impact direction of each KEGG pathway. The simulation
study of decision analysis demonstrated the application of decision analysis model for KEGG pathway analysis.

Conclusions: A microarray dataset from bovine mammary tissue over entire lactation cycle was used to further
illustrate our strategy. The results showed that the decision analysis model can provide the promising and more
biologically meaningful results. Therefore, the decision analysis model is an initial attempt of optimizing pathway
analysis methodology.
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Background
To gain more mechanistic insights into the underlying
biology of the condition being studied, analyzing high-
throughput molecular measurements at the functional
level has become more and more appealing [1]. Espe-
cially, the knowledge base-driven pathway analysis is be-
coming the first choice for many investigators, which
mainly exploit pathway knowledge in public repositories,
such as Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [2]. KEGG pathway data-
bases store the higher order functional information for
systematic analysis of gene functions. Importantly,
KEGG pathway databases can be viewed as a set of

ortholog group tables including category pathways, sub-
category pathways and the secondary pathways, which
are often encoded by positionally coupled genes on the
chromosome and particularly useful in predicting gene
functions [3]. Therefore, KEGG pathway databases are
more widely used in current enrichment analysis plat-
forms. There are two advantages in this kind of pathway
analysis. One is to reduce the complexity through group-
ing thousands of differentially expressed genes (DEG)
from those high-throughput technologies to just several
hundred pathways; another is to increase the explanatory
power for the experiment through identifying the most
impacted pathways under the given conditions [1, 2].
In the last decade, the pathway analysis has experi-

enced the over-representation approach (ORA) [4–11]
and a functional class scoring approach (FCS) stages
[12–25]. Both ORA and FCS, including singular enrich-
ment analysis (SEA), gene set enrichment analysis
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(GSEA) and modular enrichment analysis (MEA), aim to
identify the significant pathways by considering the
number of genes in a pathway or gene co-expression [2].
However, these methods are currently limited by the fact
that they handle each pathway independently [19, 26]. In
fact, the pathways can cross and overlap because each
gene has multiple functions and can act in more than
one pathway [2]. Hence, exploring advanced data ana-
lysis methods and considering inter-pathway dependence
are still the most important challenge in pathway ana-
lysis up to now. To our knowledge, only Go-Bayes
method has incorporated the dependence structure of
the directed acyclic graph (DAG) in assessing Gene
Ontology (GO) term over-representation [27]. Besides, a
KEGG-PATH approach took into account the correl-
ation among the KEGG pathways in identifying the most
impact pathways and exploiting the regulations among
the KEGG pathways [28].
For time-course experiments and multiple treatments

experiments, the Dynamic Impact Approach (DIA) had
been validated to be an effective functional analysis
method in real study based on a priori biological know-
ledge [29, 30]. In DIA, the impact values and the impact
direction were calculated as “Impact = [Proportion of
DEG in the pathway] × [average log2 fold change of the
DEG] × [average of –log P-value of the DEG]” and “Im-
pact direction = Impact of up-regulated DEG-Impact of
down-regulated DEG” [29]. In fact, the impact value was
a pathway-level statistic aggregated the gene-level statis-
tics for all DEGs in the pathway. By ranking the esti-
mated impact values of pathways and considering the
sign of impact direction values, the DIA approach can
efficiently identify the most impact pathways and pro-
vide the impact direction of pathways. The outstanding
advantage of this method is to capture the dynamic na-
ture of the changing transcriptome. But, this ranking
method by ‘average values’ had two limitations: 1) hand-
ling each pathway independently; 2) considering the ef-
fect of transcriptome expression in a cell for each time-
course as “equal weight”. In fact, a biology mechanism
(or better a biology process) is a very complex network
consisting of multiple pathways/functions. Obviously,
the mutual regulations among pathways must exist and
the effect weight of transcriptome expression at different
time-course is unequal. In KEGG-PATH approach, the
indirect regulation from the other related pathways was
considered in the calculation of total effect for each
pathway, neglecting the retro-regulation of this pathway
to the other related pathways.
In this study, we attempted to develop a decision ana-

lysis model to select the most important pathways from
the same KEGG category or subcategory pathways, and
to demonstrate the regulation mechanisms among the
pathways belonging to the same KEGG category or

subcategory. In this method, a decision coefficient (DC)
index was conceived by considering the mutual regula-
tion between pathways and was used to identify the
most impacted pathways. Besides, the subdivision of DC
included not only the direct determination factor of each
pathway itself, but also the indirect determination fac-
tors from its related pathways. Meanwhile, the mutual
regulation mechanisms among pathways can be demon-
strated by the subdivision of DC. In addition, the impact
direction of each pathway can be preliminarily estimated
by using the sign of DC. Moreover, the decision percent-
age can be obtained by the ratio of DC absolute value of
the given subcategory pathway divided by the sum of
DC absolute values of all subcategories in the same cat-
egory. According to the decision percentage, a decision
tree can be constructed to visualize the decision results.
We tested the utility of the method using the DIA im-
pact value dataset from a functional analysis of the bo-
vine mammary transcriptome during the lactation cycle.

Methods
To introduce the decision analysis model, we take the
KEGG pathways for an example to define the following
notations.
We assumed that X = (X1, X2,⋯, Xm)

T, Xi = (Xi1, Xi2,⋯,
Xip)

T, (i = 1, 2,⋯,m), Xij = (Xij1, Xij2,⋯, Xijk)
T, (i = 1, 2,⋯,

m; j = 1, 2,⋯, p) are the sets of KEGG pathway categories,
subcategories and the secondary pathways, respectively.
Let yi(i = 1, 2,⋯,m) be the impact values of the i-th
KEGG pathway category and x = (xi1, xi2,⋯ xip)

T be the
impact values of its corresponding subcategory. The
vector x is assumed to follow a normal distribution x~
N(0, Rx), where Rx is the correlation matrix of x. Based on
the path analysis model, the total effect can be subdivided
into the direct effect and indirect effect through the
equation R̂xb

� ¼ R̂xy , where R̂x ¼ rjt
� �

p�p is the max-

imum likelihood estimation of correlation matrix Rx,
and R̂xy ¼ rjy

� �
p�1 is the correlation matrix of x and

yi, b* = (b1
* , b2

* ,⋯, bp
* )T is the solved path coefficient in-

dicating the direct effect of subcategory pathways
[28]. In fact, the path analysis approach is a standard
multiple linear regression model. In the linear regression
analysis, the coefficient of determination (CD) (0 ≤ R2 ≤ 1)
is the proportion of total variation of outcomes explained
by the model, which provides a measure of how well ob-
served outcomes are replicated by the model [31]. In other
words, the larger the value of CD is, the better the model is.
Usually, the CD were defined by the formula R2 ¼ 1−SSres

SStot
,

where SSres is the residual sum of squares, indicating the
discrepancy between the data and an estimation model;
SStot is the total sum of squares, indicating the total
“variability” of data set.
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In the path analysis, the CD (R2) can be subdivided into

the direct CD (
Xp
j¼1

R2
j ) and indirect CD (

Xp
j ¼ 1
j < t

Rjt ), which

can be denoted with the equation

R2 ¼
Xp
j¼1

R2
j þ

Xp
j ¼ 1
j < t

Rjt ¼
Xp
j¼1

b�j
� �2

þ
Xp
j ¼ 1
j < t

2b�j rjtb
�
t :

ð1Þ

The parameter R2 characterizes the proportion of
total variation of dependent variables yi determined
by all independent variables xi1, xi2,⋯, xip. According
to the subdivision, the ratios of direct CD and indir-
ect CD in the total CD can be calculated by the
formulae

Xp
j¼1

R2
j =R

2;
Xp
j ¼ 1
j < t

Rjt

����������

����������
=R2:

The comparison result of these two ratios for each
pathway category or subcategory will indicate clearly
which kind of determination is more important. The fact
that the ratio of indirect CD of given pathway was larger
indicates that the correlated regulation was more im-
portant than the direct determination for this pathway.
To demonstrate the proportion of total variation of

dependent variables yi determined by a specified path-
way xij(j = 1, 2,⋯, p), the decision coefficient (DC) R(j) of
a specified pathway is constructed as the sum of two
terms (Fig. 1) based on the ‘coefficient of determination
subdivision’ principle of path analysis:

R jð Þ ¼ b�j
� �2

þ 2
Xp
t ¼ 1
j≠t

b�j rjtb
�
t ð2Þ

The first term ((bj
*)2) is the direct determination factor that

demonstrates the direct decision-making capacity of the given
pathway. The bj

* value corresponds to the direct effect in the

path analysis model. The second term (2
Xp
t ¼ 1
j≠t

b�j rjtb
�
t ) is the

indirect determination factor including correlation determi-
nations of the given pathway from all other p− 1 pathways.
The indirect determination factor shows the indirect
decision-making capacity of the given pathway. The

phenomenon 2
Xp
t ¼ 1
j≠t

b�j rjtb
�
t

����������

����������
> b�j

� �2
and 2

Xp
t ¼ 1
j≠t

b�j rjtb
�
t

> 0 showed that the correlation regulation will strengthen
the decision capacity of the given pathway. On the contrary,

2
Xp
t ¼ 1
j≠t

b�j rjtb
�
t

����������

����������
> b�j

� �2
and 2

Xp
t ¼ 1
j≠t

b�j rjtb
�
t < 0 demon-

strated that the correlation regulation will weaken the deci-
sion ability of the given pathway. In detail, each term 2bj

*rjtbt
*

can reflect the magnitude and direction of correlated regula-
tion between pathways xij and xit. The larger the absolute
value of this term is, the larger the correlated regulation
between pathways xij and xit is. The phenomenon that
the sign of 2bj

*rjtbt
* was negative revealed that the regu-

lation was inhibited each other. Otherwise, the regula-
tion was activated. Therefore, the complex regulation

Fig. 1 The construction principle of decision coefficient for a specified pathway. a One path-chain including one bi-directional arrow. b The decision
coefficient of one specified pathway including the direct determination factor and the indirect determination factors from all other p − 1 pathways
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mechanisms among pathways can be demonstrated in
numerical form through the subdivision of decision co-
efficient (Table 1). In addition, DC cut-off with the dif-
ferent significance level can be calculated according to
the t-test statistics of DC as follows [32, 33]:

R jð Þcut−off ¼ 2tp n−q−1ð Þ rjy−b�j
��� ���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cjj 1−R2
� �
n−q−1

s
ð3Þ

where cjj is the j-th main diagonal element of inverse
matrix of Rx, p is the significance level (probability
threshold), and n is the sample size, q is the number of
independent variables. The tp(n − q − 1) is the upper (p/
2) ‐ quantile of t-test statistics with degrees of freedom
n − q − 1 under the given p probability threshold. This
quantiles will increase when the probability threshold
decreases due to p = P{|t| > tp(n − q − 1)}. The quantiles
tp(n − q − 1) can be obtained by consulting the ‘Quantiles
(Critical Values) for Student’s t-Distribution table’. For
example, let p = 0.05, t0.05(n − q − 1) can be consulted,
then R(j)cut − off can be calculated. The results {|Robs| ≥
R(j)cut − off} demonstrate that the observation values (Robs)
have statistical significance at the significant level of 0.05.
Obviously, the two processes of p = P{|Robs| ≥ R(j)cut − off} ≤
0.05 and {|Robs| ≥ R(j)cut − off} are equivalent.
The decision coefficient (DC) is a more scientific and

comprehensive index conceived in reflecting the
decision-making capability of the given pathway, and it
truly reflects the variable decision of each independent
variable to dependent variable. In this way, the most im-
pacted pathway can be chosen. The larger the absolute
value of DC of given pathway is, the larger the decision-
making ability of given pathway to its upper level path-
way. The value of DC can be positive or negative due to
the positivity and negativity of indirect determination
factor. Therefore, the sign of DC can characterize the
impact direction of given pathway to a certain degree.
Additionally, the decision tree was constructed below

(Fig. 2) to display the decision results visually for bio-
logical researchers according to the decision percentage.
The decision percentage (dp) is calculated as follows:

dp ¼ R jð Þ
�� ��

Xp
j¼1

R jð Þ
�� ��� 100% ð4Þ

Demonstration of decision analysis on simulated data
To explain how the proposed decision analysis to iden-
tify the most significant pathways and to demonstrate
the regulation among pathways, we performed computer
simulations. The random data satisfied the assumption
of normal distribution under the regression analysis. The
detailed analysis results of simulated data were listed in
Table 2.

By fully incorporating the correlated structure of
KEGG pathways, the decision analysis model shows dis-
tinctive advantages as below. First, the significant path-
ways can be identified through the DC cut-off calculated
by formula (3) with the given significance level. To the
given simulated data, when the significance level ( p-value)
was set at 0.01, the two most significant subcategory path-
ways (x3 and x4) were identified. But when the significance
level was set at 0.05, the three most significant subcat-
egory pathways (x2, x3 and x4) were all selected. This re-
sult demonstrated that more significant pathways can be
identified with the significance level increasing. Second,
the direct and indirect determination factors from the DC
can clearly display the correlated regulation among the
pathways (x1, x2, x3 and x4). For illustrative purpose, we
selected the most significant subcategory pathways x3 and
x4 (p ≤ 0.01) to probe into the regulation mechanisms
among pathways. As Table 2 shown, according to the sub-
division of DC, the indirect regulations of x1 and x2 to x3

Table 1 The detailed subdivided result of decision coefficient

Subcategory/the secondary pathways xi1 ⋯ xij ⋯ xit ⋯ xip

Direct and indirect determination factor (bj
*)2 and (2bj

*rjtbt
*) (j, t = 1, 2,⋯, p; j≠ t) (b1

* )2 ⋯ 2bj
*rj1b1

* ⋯ 2bt
*rt1b1

* ⋯ 2bp
* rp1b1

*

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

2b1
*r1jbj

* ⋯ (bj
*)2 ⋯ 2bt

*rtjbj
* ⋯ 2bp

* rpjbj
*

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

2b1
*r1tbt

* ⋯ 2bj
*rjtbt

* ⋯ (bt
*)2 ⋯ 2bp

* rptbt
*

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

2b1
*r1pbp

* ⋯ 2bj
*rjpbp

* ⋯ 2bt
*rtpbp

* ⋯ (bp
* )2

DC (R(j)) R(1) ⋯ R(j) ⋯ R(t) ⋯ R(p)

rjt (j, t = 1, 2,⋯, p; j ≠ t) indicates the correlation coefficient xij and xit. Obviously, the data satisfy rjt = rtj and R jð Þ ¼ b�j
� �2

þ 2
Xp
t ¼ 1
j≠t

b�j rjtb
�
t according to the decision

analysis method. In order to distinguish between the direct and indirect determination factor clearly, the direct determination factor has been indicated in bold italics

Du et al. BMC Bioinformatics  (2016) 17:407 Page 4 of 12



(2b3 r31b1 = 2.046 and 2b3 r32b2 = 0.4336) were all posi-
tive, but the regulation of x4 to x3 (2b3 r34b4 = − 12.7715)
was negative and far exceeded the positive regulation from
x1 and x2. Thus, the total indirect determination factor of

x3 (2
X
k≠3

b�3r3kb
�
k ¼ −10:2918) was negative. Obviously, the

DC value of pathway x3 (R(3) = − 3.6966) was negative be-
cause the total negative indirect determination from x1, x2
and x4 exceeded the direct determination of x3 ((b3 )2 =
6.7252). However, the indirect regulations of x1, x2 and x3
to x4 were all negative. The larger negative indirect regula-
tion led to the negative DC value. The detailed compari-
son of indirect regulation determination of x1, x2 and x3 to

x4 showed that the negative regulation of pathway x3 was
the largest and that of pathway x2 was the smallest. Third,
the sign of DC value can be used to predict the impact dir-
ection of pathways. The calculated results of simulated
data demonstrated that the impact direction of pathways
x1 and x2 were up-regulated and that of the pathways x3
and x4 were down-regulated.
We have also compared the DC value (R(j)) of decision

analysis and the total effect (rjy) of path analysis [28] based
on the simulated data (Table 2). In general, both the path
analysis and the decision analysis method emphasized the
‘correlation problem’ caused by the dependent structure
among pathways. The path analysis demonstrated the

Table 2 The decision analysis and path analysis results of simulated data
xj
to
y

bj
∗ xj↔ xk→ y rjkbk

∗ 2bj
∗rjkbk

∗
X
k≠j

rjkb
�
k rjy

X
j≠k

rkjb
�
j R(j)

x1
to
y

0.383 x1↔ x2→ y −0.162 −0.124 0.002 0.385 −0.700 0.148

x1↔ x3→ y 2.504 1.916

x1↔ x4→ y −2.340 −1.795x2
to
y

−1.097 x2↔ x1→ y 0.057 −0.124 0.243 −0.854 −0.416 0.670

x2↔ x3→ y −0.198 0.433

x2↔ x4→ y 0.384 −0.842
x3
to
y

−2.593 x3↔ x1→ y −0.369 1.196 2.009 −0.584 −0.278 −3.697

x3↔ x2→ y −0.084 0.434

x3↔ x4→ y 2.462 −12.772
x4
to
y

2.471 x4↔ x1→ y −0.362 −1.795 −3.117 −0.647 0.506 −9.300

x4↔ x2→ y −0.170 −0.843

x4↔ x3→ y −2.585 −12.799

Category
Pathway

Subcategory
Pathway

Subcategory
Pathway

?%

?%

?%

?%

?%

The
Secondary
Pathway

?%

?%the other
secondary
pathways

the othersubcategory pathways

the other
secondary
pathways

The
Secondary
Pathway

Fig. 2 The decision tree of KEGG pathways according to the decision percentage. The red sign ‘?%’ denotes the decision percentage of KEGG
subcategory pathway to its corresponding category pathway. Similarly, the black sign ‘?%’ denotes the decision percentage of the secondary
KEGG pathway to its corresponding subcategory pathway. In addition, the activated KEGG subcategory pathways were marked with red color, the
inhibited KEGG subcategory pathways were marked with blue color. In the same way, the activated secondary KEGG pathways were marked with
red circles; the inhibited secondary KEGG pathways were marked with blue circles
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identification of the significant pathways and the regula-
tion among pathways through the total effect (rjy) and its
subdivision. In fact, the regulations between pathways
were mutual and non-equivalent. Take x3 and x4, for ex-
ample, the regulation of x4 to x3 was positive (r34b4 =
2.4624), conversely, the regulation of x3 to x4 was negative
(r43b3

∗ = − 2.5847). The total effect of path analysis
included the direct effect (bj ) and indirect effect

(
X
k≠j

rjkb
�
k ) of pathway xj, but ignored the retro-regulation

of pathway xj (
X
j≠k

rkjb
�
j ). The decision coefficient of deci-

sion analysis gave consideration to the regulation and
retro-regulation of pathway xj on the basis of the subdiv-
ision of the coefficient of determination of path analysis.
For example, pathway x2 had a lower rank (fourth) accord-
ing to the total effect of path analysis. In contrast, pathway
x2 had a higher rank (first) according to the DC value of
decision analysis due to the retro-regulation of pathway x2
to x1, x3 and x4. The strategy of borrowing information
from retro-regulation allows the decision analysis to iden-
tify the most significant and mainly contributed pathways.
It is true that there is no gold standard to compare the
methods in real studies because the biological truth is
unknown. Therefore, the analysis results based on the
simulated data only help to illustrate the distinctive char-
acteristics of decision analysis.

Application
Datasets
The DIA impact values of the KEGG pathways from the
functional analysis of the bovine mammary transcriptome
during the lactation cycle were chosen to test the utility of

decision analysis model [30]. The two most important
pathway categories related to ‘Metabolism’ and ‘Environ-
mental Information Processing’ were selected and dis-
cussed in detail in our analysis due to their high biological
significance in bovine mammary [29, 30]. The decision
analyses results of the other pathway categories were also
attached in Additional file 1: Table S8. The detailed impact
data of selected KEGG pathway categories and subcat-
egories from -15 to 300 vs. -30d were shown in Additional
file 2: Table S1. In addition, few pathways were deleted in
that the number of missing data of these pathways was
greater than or equal to three. Meanwhile, when the num-
ber of the missing data included in the pathway was less
than three, they were filled with the average value of the
other values belonging to this pathway. The filled data
were marked in red color in Additional file 2: Table S1.
In order to compare the results of impact direction

produced by the decision analysis model and the DIA
method, the detailed impact direction data of selected
KEGG pathway categories and subcategories from -15 to
300 vs. -30d were also listed in Additional file 3: Table
S2. Similarly, the pathways including the missing data
were processed as mentioned above.

Results
The results of KEGG pathway categories and subcat-
egories based on the subdivision of total CDs were
shown in Table 3. The most impacted pathways identi-
fied according to different DC cutoff values were dis-
played in Additional file 4: Table S3. The comparison
results of the most impacted pathways (DC value ≥ 0.4)
under decision analysis model and DIA method were
listed in Additional file 5: Table S4. The detailed com-
parison results of all pathways under the decision

Table 3 The percentage of direct and indirect CD in the total CD for selected KEGG pathway categories and subcategories

KEGG pathway category and subcategory Total CD

direct CD indirect CD

1. Metabolism 0.179 0.821

1.1 Carbohydrate Metabolism 0.168 0.832

1.2 Energy Metabolism 0.616 0.384

1.3 Lipid Metabolism 0.260 0.740

1.4 Nucleotide Metabolism 0.538 0.462

1.5 Amino Acid Metabolism 0.203 0.797

1.6 Metabolism of Other Amino Acids 0.478 0.523

1.7 Glycan Biosynthesis and Metabolism 0.238 0.762

1.8 Metabolism of Cofactors and Vitamins 0.379 0.621

1.11 Xenobiotics Biodegradation and Metabolism 0.453 0.547

3. Environmental Information Processing 0.512 0.488

3.2 Signal Transduction 0.139 0.861

3.3 Signaling Molecules and Interaction 0.364 0.636
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analysis model and DIA method were displayed in
Additional file 6: Table S5. The DC subdivision re-
sults of selected KEGG pathway categories and sub-
categories were listed in Additional file 7: Table S6.
The decision trees of selected pathway categories and
subcategories were displayed in Additional file 8: Figure
S1 according to the decision percentage.

The subdivision results of total CDs
According to the path analysis approach, the total CD
(R2) of the selected KEGG pathway categories and sub-
categories had been calculated. The CDs (R2) of subcat-
egories ‘Energy Metabolism’ and ‘Metabolism of Other
Amino Acids’ were 0.8613 and 0.9972, respectively. The
CDs (R2) of the other KEGG pathway categories and
subcategories were almost up to 1. These results showed
that the observed outcomes were replicated by the
model very well.
The detailed ratios of direct and indirect CD for all se-

lected pathways were shown in Table 3. For the selected
KEGG pathway category, the indirect CD ratio of cat-
egory ‘Metabolism’ (up to 82 %) was far greater than its
corresponding direct CD ratio, indicating that the corre-
lated regulations among pathways in this category were
very important. On the contrary, the direct and indirect
CD ratios of the other category ‘Environmental Informa-
tion Processing’ (51 and 49 %) generally balanced, which
showed that the direct and indirect effect were almost
equally important. Similarly, the indirect CD ratios of al-
most all subcategory pathways were greater than their
corresponding direct CD ratios. The exceptions were
subcategories ‘Energy Metabolism’ and ‘Nucleotide Me-
tabolism’ in category ‘Metabolism’. Among of them, the
direct CD ratio of ‘Energy Metabolism’ was far greater
than the indirect CD ratio. The direct CD ratio of ‘Nu-
cleotide Metabolism’ was only slightly larger than its in-
direct CD ratio. In short, the fact that almost all indirect
CD ratios were greater than their corresponding direct
CD ratios further revealed that the complex regulating
mechanisms existed and were very important in the
KEGG pathways.

The results of decision analysis
Identification of the most impacted pathways
The KEGG categories ‘Metabolism’ and ‘Environmental
Information Processing’, including their all subcategories
and the secondary pathways, were analyzed to test the
utility of the decision analysis model. In order to use a
more suitable DC cut-off to identify the most impacted
pathways, the significance levels of 0.01, 0.05 and 0.1
were set to calculate the DC cut-off based on formula
(3). The results showed that the different DC cut-offs
were identified for different category and subcategory
pathways. After integration, three DC cut-offs (0.3, 0.4,

and 0.5) were chosen to compare (Additional file 4:
Table S3). It should be noted that the cut-off of 0.3 satis-
fied the condition of p ≤ 0.1 for all category and subcat-
egory pathways; the cut-off of 0.4 satisfied the condition
of p ≤ 0.05 for a large majority category and subcategory
pathways, with very few exceptions; the cut-off of 0.5
satisfied the condition of p ≤ 0.01 for only some of cat-
egory and subcategory pathways, with some exceptions.
The results of comparison showed that more suitable
cut-off was ≥0.4. Therefore, when the absolute value of
calculated DC for a pathway was greater than or equal
to 0.4, this pathway was considered to be the most
impacted.
As Additional file 5: Table S4 (a) shown, for KEGG

pathway category ‘Metabolism’, its four subcategories are
found to be the most activated pathways based on the
DC values. The pathway with the highest positive DC
value is ‘Lipid Metabolism’. Four subcategories are found
to be the most inhibited pathways. Especially ‘Carbohy-
drate Metabolism’ has the largest negative decision cap-
ability. Differently, the three most impacted subcategories
of category ‘Environmental Information Processing’ are all
activated. The most impacted pathway is ‘Signal Trans-
duction’, with the largest positive DC value.
As Additional file 5: Table S4 (b) shown, for the second-

ary pathways, the DC measure suggests that six pathways
are the most impacted pathways (three activated; three
inhibited) in subcategory ‘Lipid Metabolism’. Four path-
ways related to subcategory ‘Glycan Biosynthesis and
Metabolism’ are found to be the most impacted (one acti-
vated; three inhibited). Five the secondary pathways of
‘Signal Transduction’ are the most impacted (four acti-
vated; one inhibited) according to the DC values.
In some cases, the most impacted pathways

highlighted by the decision analysis model match our ex-
pectations. It is well known that the three main compo-
nents of milk in dairy cow are lactose, fat and protein
[29]. Thus, the presence of ‘Lipid Metabolism’ pathway
with the highest positive DC value might be expected to
appear, in that the lipid metabolism has something to do
with the lactose synthesis. In other cases, the pathways
are not immediately expected, but subsequent investiga-
tions revealed that these pathways identified by decision
analysis are supported by previous experiment results.
For example, the largest activation of ‘Glutathione me-
tabolism’ in subcategory ‘Metabolism of Other Amino
Acids’ appears to confirm previous data [34, 35], demon-
strating that this process was very important in amino
acids availability to mammary gland. In subcategory
‘Glycan Biosynthesis and Metabolism’, the secondary
pathways related to ‘Glycosphingolipid biosynthesis’, par-
ticularly ganglio series, showed the largest decision-
making ability in agreement with the findings reported by
DIA method. In fact, the glycosphingolipid synthesized by
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these pathways have been reported to display beneficial
health properties, especially for the defense of newborns
against pathogens [36]. In addition, gangliosides have an
important role in membrane function including cell sig-
naling, cell adhesion and protein sorting [37]. In still other
cases, no direct corroborative evidence could be found
(e.g. for ‘Calcium signaling pathway’ in subcategory ‘Signal
Transduction’). Thus, this finding serves as a hypothesis
for future testing.

Comparative analysis of KEGG pathways
In order to compare the results of the decision analysis
method with those of the DIA approach, we checked the
permutation order of DIA mean impact value of the
most impacted pathways (DC value ≥ 0.4) and their im-
pact directions. The details of compare results are listed
in Additional file 5: Table S4. As a whole (Table 4), for
the most impacted pathways comparison, the results
showed that in about 85 % (11/13) of the selected path-
way categories and subcategories, the concordance rate
of the most impacted pathways under the two methods
reaches or exceeds 50 %, even to 100 %. For the impact
direction comparison, in 77 % (10/13) of the selected
pathway categories and subcategories, the concordance
rate of impact direction under the two methods reaches
or exceeds 50 %, and in the remaining pathway categor-
ies and subcategories, the minimum concordance rate
was 33.3 %.

In addition, we roughly compared the results of the
decision analysis with those of KEGG-PATH approach.
The results demonstrated that the concordance rate of
pathway impact direction under decision analysis was
significantly higher than that under KEGG-PATH ap-
proach when DIA pathway impact directions were used
as standard. For example, for pathway categories ‘Metab-
olism’ and ‘Environmental Information Processing’, the
concordance rates of pathway impact direction under
decision analysis were 54.5 % (6/11) and 100 % (3/3), re-
spectively. However, the corresponding concordance
rates under KEGG-PATH were 45.5 % (5/11) and 33.3 %
(1/3). From the view of all the secondary pathways be-
longing to the same category, the concordance rates of
pathway impact direction were also obviously improved
from 49.3 % (34/69) and 57.1 % (8/14) under KEGG-
PATH to 58 % (40/69) and 64.3 % (9/14) under decision
analysis for categories ‘Metabolism’ and ‘Environmental
Information Processing’, respectively. For the most im-
pacted pathways comparison, the concordance rate com-
pared with KEGG-PATH seemed still higher than that
compared with DIA (Table 4). Based on this comparison,
several distinctions between the three approaches can be
made.
First, overwhelming majority of the most relevant

function pathways in the mammary gland during lacta-
tion are captured based on DC values (Additional file 5:
Table S4). Some of them also were found by mean

Table 4 The comparison results of the most impacted pathways and impact direction under decision analysis model, KEGG-PATH
and DIA method

KEGG pathway Categories/Sub-categories The concordance rate of impact
direction

The concordance rate of the
most impacted pathways

Decision analysis KEGG-PATH DIA KEGG-PATH

1 1. Metabolism For its sub-category pathways 54.5 %(6/11) 45.5 %(5/11) 62.5 % (5/8) 87.5 %(7/8)

2 3. Environmental Information Processing 100 %(3/3) 33.3 %(1/3) 0 (0/1) 100 %(1/1)

3 1.1 Carbohydrate Metabolism For its secondary pathways 35.7 % (5/14) 50 %(7/14) 40 % (2/5) 50 % (3/6)

4 1.2 Energy Metabolism 33.3 %(1/3) 33.3 %(1/3) 100 %(2/2) 100 %(2/2)

5 1.3 Lipid Metabolism 76.9 %(10/13) 30.8 %(4/13) 50 %(3/6) 33.3 %(2/6)

6 1.4 Nucleotide Metabolism 50 %(1/2) 0 (0/2) 100 %(2/2) 100 %(2/2)

7 1.5 Amino Acid Metabolism 54.5 %(6/11) 72.7 %(8/11) 50 %(2/4) 60 %(3/5)

8 1.6 Metabolism of Other Amino Acids 75 %(3/4) 75 %(3/4) 100 %(2/2) 100 %(2/2)

9 1.7 Glycan Biosynthesis and Metabolism 58.3 %(7/12) 41.7 %(5/12) 50 %(2/4) 25 %(1/4)

10 1.8 Metabolism of Cofactors and Vitamins 37.5 %(3/8) 37.5 %(3/8) 60 %(3/5) 60 %(3/5)

11 1.11 Xenobiotics Biodegradation and Metabolism 66.7 %(2/3) 100 %(3/3) 50 %(1/2) 100 %(2/2)

12 3.2 Signal Transduction 63.6 %(7/11) 63.6 %(7/11) 60 %(3/5) 60 %(3/5)

13 3.3 Signaling Molecules and Interaction 66.7 %(2/3) 33.3 %(1/3) 100 %(3/3) 100 %(3/3)

For the ‘The concordance rate of impact direction’ column, the denominator of each fraction in the parentheses denotes the number of subcategory pathways
and the secondary pathways from the front corresponding categories and sub-categories for two columns, and the numerator of each fraction for two columns
denotes the number of pathways with the same impact direction under DIA and decision analysis, and under DIA and KEGG-PATH respectively. For the ‘The
concordance rate of the most impacted pathways’ column, the denominator of each fraction in the parentheses denotes the number (a) of the most impacted
pathways identified based on DC values in corresponding pathway categories and sub-categories for two columns, and the numerator of each fraction
for two columns denotes the number of pathways which also appeared in top a pathways identified by DIA average impact values and by total effect
from KEGG-PATH, respectively
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impact values in DIA approach and by total effect in
KEGG-PATH approach. For example, for the subcat-
egories ‘Energy Metabolism’, ‘Nucleotide Metabolism’,
‘Metabolism of Other Amino Acids’ and ‘Signaling Mole-
cules and Interaction’, the most impacted secondary path-
ways are almost the same under the three methods. The
results showed that the correlation regulations strengthen
the direct determination of these secondary pathways to
some extent. These results also can be confirmed by the
subdivision of decision coefficient. (Additional file 7: Table
S6 (b)) In addition, the decision analysis method high-
lights some more biologically meaningful results. For ex-
ample, the ‘Lipid Metabolism’ subcategory has the largest
positive DC value. This result is potentially the most inter-
esting given the strong literature support described above.
The largely impacted pathway ‘Glycosphingolipid biosyn-
thesis–ganglio series’ was also present in the results as we
expected due to its importance role of modulating enzyme
properties, cell signaling, cell adhesion [30]. It is in-
teresting that the inhibition of gangliosides presents
in the results. This is in consistent with the fact that
the concentration of glycosphingolipids showed a
large decrease during the transition from colostrums
to mature milk [38].
Second, the pathways were identified as the most im-

pacted pathways based on the DC values, but they were
not found according to the mean DIA impact value. For
example, two subcategories, ‘Nucleotide Metabolism’ and
‘Metabolism of Other Amino Acids’, are not the most im-
pacted by DIA mean impact values, but are demonstrated
to be the most impacted based on the DC values. The sub-
division results of decision coefficients (Additional file 7:
Table S6 (a)) showed that subcategory ‘Nucleotide Metab-
olism’ has the relatively larger direct determination, and is
positively regulated by pathways ‘Lipid Metabolism’ and
‘Metabolism of Other Amino Acids’ to a large extent. The
subcategory ‘Metabolism of Other Amino Acids’ is also
largely positively regulated by ‘Nucleotide Metabolism’
and ‘Lipid Metabolism’. These subdivision results revealed
that the correlation regulation among pathways highlights
the importance of these two subcategories. In category
‘Environmental Information Processing’, subcategory
‘Signal Transduction’ is unexpectedly ranked the first
according to the DC value. On the contrary, this sub-
category has the smallest average impact value in DIA
approach. Obviously, ‘Signal Transduction’ is very im-
portant to the mammary gland during lactation [30].
These three sub-categories, ‘Nucleotide Metabolism’
and ‘Metabolism of Other Amino Acids’ and ‘Signal
Transduction’, also were selected as the most impacted
pathways under KEGG-PATH approach. The phenomenon
showed that the correlation regulation was very important
in identifying the most impacted pathways. In addition, the
strongly inhibition of pathways ‘Lysine degradation’ and

‘Tryptophan metabolism’ appeared to be consistent with
the inhibition of ‘Citrate cycle (TCA cycle)’. The result can
be supported by the fact that many of the products of these
two pathways could be precursors of TCA cycle pathway
[30]. The secondary pathways ‘Fatty acid elongation in
mitochondria’, ‘Fatty acid metabolism’ and ‘Steroid hormone
biosynthesis’ in the subcategory ‘Lipid Metabolism’ are se-
lected as the most impacted pathways based on the DC
values. But their DIA mean impact values are relatively
small. The result indicated that the correlation regulation
has resulted in the change of the importance of these path-
ways. But it was strange that these three secondary path-
ways were not selected as the most impacted pathways
according to KEGG-PATH. The result demonstrated that
the retro-regulation among these pathways should be very
important. Therefore, researchers should pay much more
attention to these correlation regulations. To shed light on
the difference, we checked the subdivision of decision coef-
ficient. (Additional file 7: Table S6 (b)) The results showed
that the ‘Fatty acid elongation in mitochondria’ and ‘Fatty
acid metabolism’ pathways were inhibited in that they were
negatively regulated by pathway ‘Arachidonic acid metabol-
ism’ to a great extent. The reduction of fatty acid metabol-
ism also can be supported by the fact that the fatty acid
taken up by the mammary tissue mainly was used towards
the synthesis of milk fat, including the components of
cellular membranes [30, 39]. Conversely, few of the most
impacted pathways based on mean DIA impact values
were not found according to DC values. For example, the
subcategories ‘Metabolism of Terpenoids and Polyketides’
and ‘Biosynthesis of Other Secondary Metabolites’ in cat-
egory ‘Metabolism’ were not found based on DC values. As
Additional file 9: Table S7 (a) showed that the two subcat-
egories have very small direct determination and were
slightly regulated by the other pathways. The importance
of these two subcategories was weakened just because of
the approximate balance of direct and indirect deter-
mination. Although the secondary pathways ‘Hedgehog
signaling pathway’ and ‘TGF-beta signaling pathway’ in
subcategory ‘Signal Transduction’ were not found to be
the most impacted pathways based on the DC values, they
would be selected when the cut-off of ≥ 0.3 was used.
Third, the results based on the decision analysis model

were displayed through the construction of decision tree
(Additional file 8: Figure S1). In the decision tree ‘net-
work’, the activated KEGG subcategory pathways were
marked with red color, the inhibited KEGG subcategory
pathways were marked with blue color. Similarly, the ac-
tivated secondary KEGG pathways were marked with
red circles; the inhibited secondary KEGG pathways
were marked with blue circles. Meanwhile, the red and
black numbers were used to denote the decision per-
centage of KEGG subcategory pathway to its corre-
sponding category pathway, the decision percentage of
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the secondary KEGG pathway to its corresponding
subcategory pathway, respectively. In this way, the re-
searchers can catch important information fleetly and
exactly.

Why does decision analysis perform better prediction
effects?
To explain why decision analysis outperforms the
KEGG-PATH approach, we calculated the retro-
regulation of each pathway in detail and listed all the re-
sults of decision analysis and KEGG-PATH approach in
Additional file 9: Table S7.
The first superiority of the decision analysis model

was that the retro-regulation of each pathway was con-
sidered in identifying the most significant pathways
based on the coefficient of determination. As Additional
file 9: Table S7 (a) showed, in category pathway “Envir-
onmental Information Processing”, the total effects of
the three subcategories were all relatively large by
KEGG-PATH method and there was few difference
among them; but their DC values had very big difference
when the retro-regulation was considered. More import-
antly, the selected significant subcategory pathway “Sig-
nal Transduction” based on the DC values was highly
impacted indeed as the documents reported during the
lactation [30]. Obviously, the calculation results was also
demonstrated that the retro-regulation of “Signal Trans-
duction” was relatively larger compared to the other
subcategory pathways. Thus, the positive mutual regula-
tion highlighted the significance of pathway “Signal
Transduction”. Differently, the subcategory pathway
“Lipid Metabolism” was negatively regulated by the
other subcategory pathways; conversely, the pathway
“Lipid Metabolism” had larger positive retro-regulation
on the other subcategory pathways and the positive direct
effect. Thus, the pathway “Lipid Metabolism” had the
positive decision-making ability. Similarly, the subcategory
pathways “Carbohydrate Metabolism” and “Glycan Bio-
synthesis and Metabolism” were positively regulated by
the other subcategory pathways; conversely, they had lar-
ger negative retro-regulation on the other subcategory
pathways and the negative direct effect. Thus, the two
pathways had the largely negative decision-making ability.
Another superiority of the decision analysis model was

that the impact directions of pathways could be esti-
mated preliminarily and directly according to the sign
(positive or negative) of the DC. Still further, the sign of
the DC also gave consideration to the dependences
among the pathways. In this study, the result of the deci-
sion analysis showed that the subcategory pathway
“Lipid Metabolism” had the largest positive decision-
making ability; however, the impact direction of its sec-
ondary pathway ‘Fatty acid metabolism’ was negative.
These results match our expectations because the lipid

metabolism had a lot to do with the synthesis of the lac-
tose and the reduction of fatty acid metabolism was con-
sidered towards the synthesis of milk fat through taking
up the fatty acids by the mammary tissue. Besides, the
fact that the impact direction of the TGF-beta pathway
was negative based on the decision analysis was in ac-
cordance with the fact that this pathway appeared to
have a negative role on mammary cell proliferation [40].

Discussion
In this study, a decision analysis model is first proposed
to identify the most impacted pathways. The decision
analysis model borrows the decision coefficient to judge
the importance of the pathways, which not only con-
siders the direct determination factor of pathway itself,
but also adds the correlation indirect determination fac-
tor with the other related pathways. Compared with DIA
approach, the decision analysis method overcomes the
deficiency of analyzing each pathway independently.
Compared with KEGG-PATH approach, the decision
analysis method constructs a DC index based on the co-
efficient of determination of regression analysis, rather
than correlation coefficient. Importantly, the retro-
regulation among pathways was considered in decision
analysis. Therefore, the decision analysis model is a stat-
istical data mining at a deeper level. For the estimation
of impact direction, the DIA method averages the im-
pact direction values of the pathway during different
time course. The KEGG-PATH approach needs to use
the gradient analysis from principal component analysis
(PCA) to estimate the impact directions of pathways.
However, the decision analysis can judge the impact dir-
ection directly through the sign of decision coefficient.
More importantly, the sign of decision coefficient was
caused by the correlated regulation from the other re-
lated pathways. Thus, the identification of pathway im-
pact direction (up-regulating or down-regulating)
through the decision coefficient also gave consideration
to the dependences among the pathways. Hence, it is a
major bright spot of the decision analysis model that the
identification of the most impacted pathways and their
impact directions through the decision coefficient took
account of the correlation among pathways from the
angle of ‘variation determination’.
In addition, the regulation mechanisms among path-

ways can be demonstrated through the subdivision of
decision coefficient. This numerical expression of the
correlation regulation among pathways is another major
highlight of the decision analysis model. The construc-
tion of decision tree can visually display the results of
decision analysis. We have developed a program in
Matlab (R2008a, version 7.6.0.324) to implement the de-
cision analysis (Additional file 10: S1). In the calcula-
tions, we found that the results might be inaccurate
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when the correlation matrix was close to singular or
badly scaled. But the relative error is basically controlled
to 10−15 and it can be neglected.
Although the decision analysis model is designed to

analyze the KEGG pathways, it is theoretically also ap-
plicable to the other databases with similar dependency
structure, such as Reactome, Wikipathways, etc. However,
considering the information about how cell and tissue
type, age, and environmental exposures affect pathway in-
teractions, how to apply the decision analysis to general
cases with the original gene expression value rather than
the DIA impact values is still a challenge. In order to bet-
ter understand large biological system, addressing these
issues, coupled with technological advances will likely im-
prove the confidence in results.

Conclusions
The decision coefficient (DC) based on coefficient of de-
termination (CD) of regression analysis gives consider-
ation to the inter-pathway dependence in identifying the
most impacted pathways and their impact directions.
Meanwhile, the regulation mechanisms among pathways
were demonstrated from the angle of ‘variation deter-
mination’. The decision analysis model is an initial at-
tempt of optimizing pathway analysis methodology.

Additional files

Additional file 1: Table S8. This file provides the original DIA impact
values and the detailed subdivided results of decision coefficient for the
other KEGG subcategory pathways and the other KEGG secondary
pathways in Table S8 (a)–(d), respectively. In order to distinguish between
the direct and indirect determination factor clearly, the direct
determination factor has been indicated in red box. (DOCX 67 kb)

Additional file 2: Table S1. This file provide the detailed impact data
of selected KEGG pathway categories, subcategories and the secondary
pathways from− 15 to 300 vs.− 30d in bovine mammary tissue during
lactation in Table S1 (a) and (b), respectively. The numbers colored in red
color are the filled data by the average of all the other impact values in
this pathway, which is the missing data originally. (DOCX 35 kb)

Additional file 3: Table S2. This file provide the detailed impact
direction data of selected KEGG pathway categories, subcategories and
the secondary pathways from− 15 to 300 vs.− 30d in bovine mammary
tissue during lactation in Table S2 (a) and (b), respectively. The numbers
colored in red color are the filled data by the average of all the other
impact values in this pathway, which is the missing data originally.
(DOCX 35 kb)

Additional file 4: Table S3. The file gives the comparison results of the
most impacted pathways identified according to different Decision
Coefficient (DC) values. (DOCX 24 kb)

Additional file 5: Table S4. This file gives the comparison of the most
impacted pathway subcategories and the most impacted secondary
pathways (DC value ≥ 0.4) under decision analysis model and DIA
method in Table S4 (a) and (b), respectively. In ‘Group’ column, ‘a’
showed that the pathway was the most impacted pathway under both
decision analysis model and DIA method; ‘b’ showed that the pathway
was the most impacted pathways only under decision analysis model,
and was not under DIA method. ‘RankDIA’ was the order of mean impact
value for the pathway. The sign “+” and “−” represent the up-regulating
and down-regulating impact direction, respectively. (DOCX 30 kb)

Additional file 6: Table S5. The file gives the comparison results of all
the selected subcategory pathways and all the selected secondary
pathways under DIA method and Decision analysis method in Table S5
(a) and (b), respectively. The sign “+” and “−” represent the up-regulating
and down-regulating impact direction, respectively. (DOCX 36 kb)

Additional file 7: Table S6. This file provides the detailed subdivided
results of decision coefficient for the selected KEGG subcategory
pathways and the selected KEGG secondary pathways in Table S6 (a) and
(b), respectively. In order to distinguish between the direct and indirect
determination factor clearly, the direct determination factor has been
indicated in red box. (DOCX 59 kb)

Additional file 8: Figure S1. The file gives the decision trees of
selected pathway categories and subcategories plotted according to the
decision percentage. (for (a) Metabolism and (b) Environmental
Information Processing) The activated KEGG subcategory pathways were
marked with red color, the inhibited KEGG subcategory pathways were
marked with blue color. In the same way, the activated secondary KEGG
pathways were marked with red circles; the inhibited secondary KEGG
pathways were marked with blue circles. (DOCX 431 kb)

Additional file 9: Table S7. This file provides the decision analysis and
path analysis results of the selected category pathways and the selected
subcategory pathways in Table S7 (a) and (b). (DOCX 1278 kb)

Additional file 10: S1. This file provides the code for the decision
analysis model in Matlab (R2008a, version 7.6.0.324). (DOCX 11 kb)
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