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Abstract

Background: With the advent of large scale biological data collection for various diseases, data analysis pipelines
and workflows need to be established to build frameworks for integrative analysis. Here the authors present a
pipeline for identifying disease specific gene-drug interactions using CNV (Copy Number Variation) and clinical data
from the TCGA (The Cancer Genome Atlas) project. Two cancer types were selected for analysis, LGG (Brain lower
grade glioma) and GBM (Glioblastoma multiforme), due to the possible progression from LGG to GBM in some
cases. The copy number and clinical data were then used to preform survival analysis on a gene by gene basis on

sub-populations of patients exposed to a given drug.

Results: Several gene-drug interactions are identified, where the copy number of a gene is associated to survival of
a patient exposed to a certain drug. Both Irinotecan/HAS2 (Hyaluronan synthase 2) and Bevacizumab/PGAM1
(Phosphoglycerate mutase 1) are interactions found in this study with independent confirmation. Independent
work in colon, breast cancer and leukemia (Gyorffy, Breast Cancer Res Treat 123:725-731, 2010; Mueller, Mol
Cancer Ther 11:3024-3032, 2010; Hitosugi, Cancer Cell 13:585-600, 2012) showed these two interactions can

lead to increased survival.

Conclusion: While the pipeline produced several possible interactions where increased survival is linked to normal or
increased copy number of a given gene for patients treated with a given drug, no instance of low copy number or full
deletion was linked to increased survival. The development of this pipeline shows a promising utility to identify
possible beneficial gene-drug interactions that could improve patient survival and may illustrate some of the

problems inherent in this kind of analysis on these data.
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Background

The analysis of large scale biological data has multiple
challenges including noise filtering and data integration
[1, 2] but can provide fruitful queries into questions
about various diseases. Here a pipeline is implemented
for integrative analysis of CNV data, drug treatment and
survival data, for the purpose of identifying beneficial
gene-drug interactions, where the copy number of a
gene is associated to survival of patients exposed to a
certain drug. The pipeline is applied to data from LGG
and GBM cancer patients in the TCGA database as an
example and results are presented. The use of omics
data in survival analysis has been previously shown to
help answer questions at the genetic level in cancer
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survival [3]. However, that analysis is not without its dif-
ficulties. Variation in levels of gene expression between
patient profiles and obtaining the necessary number of
patients for sufficient statistical power are just a few of
the hurdles that need to be addressed with any study of
this nature.

TCGA provides a large and robust data set for the
analysis of multiple diseases [4—7]. Survival analysis is an
excellent tool for the identification of various traits or
treatments that are predictive of patient survival. The
combination of genomic and proteomic features with
patient information provides an excellent resource for
predicting patient survival [8]. Previous studies have per-
formed extensive analysis to identify biomarkers predict-
ive of survival. Those survival analyses typically focused
on survival data and genomic features, but did not pro-
vide any treatment-specific insights. The identification of
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treatment-specific survival predictors would be a useful
step toward personalized medicine. Treatment-specific
survival prediction can be accomplished by combining
genomic, drug, and survival data from TCGA, stratifying
patients into treatment groups and perform survival ana-
lysis for each separately. This introduces several chal-
lenges since drug data contains alternating names of
drugs, misspellings, and other confusing information.

The use of CNV has different applications in survival
analysis when compared to the use of expression levels.
While gene copy number, RNA expression and protein
expression can be related, it is usually not a linear rela-
tionship [9, 10]. These are various ways used to repre-
sent the level of activity a gene may have in a biological
system. CNV has intrinsic cutoffs in the form of fewer
number of gene copies (one or zero), healthy or normal
number of copies (two for a typical gene) and more cop-
ies (three plus). This allows for easy categorization for
survival analysis using a physical change in the genome
of the cancer. The use of CNV does not preclude the
use of other information but can serve as a way to iden-
tify genes of interest using survival analysis before look-
ing at other omics data. LGG and GBM were selected
for analysis since it is believed that they may share some
common genetic elements and it has been proposed that
LGG may lead to GBM in some instances [11]. This
connection may allow for the pooling of the LGG and
GBM patients to increase the statistical power of the
survival analysis and detect genes that may otherwise be
missed. GBM has been characterized in the past by
members of the TCGA network [4—7, 12, 13] and ana-
lyses have yielded novel results such as the correlation
between GBM subtypes and expression of PDGEFRA,
IDHI1, EGFR and NF1 [12] and the identification of the
CpG methylator phenotype [5].

Our pipeline (Fig. 1) starts with using the CNV, sur-
vival and drug treatment TCGA data, which involves an
amount of data annotation and cleaning drug names.
Cleaning drug names is key since the objective of the
pipeline is to preform drug-specific survival analysis for
gene-drug interactions. The number of patients exposed
to a given drug varies, as shown in Table 1. In our ana-
lysis, we only considered drugs with more than 30
patients exposed in the LGG and GBM data in TCGA.
For a given drug, all LGG and GBM patients exposed to
the drug are selected for analysis. Survival analysis is
preformed to correlate copy number of each gene and
survival data using Kaplan—Meier curves and Cox pro-
portional hazard modeling. Because the number of
patients exposed to a given drug is small, we performed
two survival analyses, and identified genes that are sig-
nificant in both analyses. Since we combined LGG and
GBM patients in our analysis and two cancers have dif-
ferent survival, cancer type becomes a confounding
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Fig. 1 Data processing pipeline. A simple outline of the data
processing pipeline for searching TCGA data for gene-drug interactions
in individual and pooled cancer types

factor. To avoid this confounding factor, a fisher test is
preformed to genes identified in both survival analyses.
The genes whose copy numbers show significant correl-
ation with cancer type are filtered out. Finally, expres-
sion data can be used as one form of validation,
examining whether the drug-specific correlation between
copy number and survival also manifests at the gene ex-
pression level. This data is not available for all genes that
have copy number data in TCGA, but can be a potent
parallel of a proposed gene-drug interaction.

This multistep analysis pipeline serves the dual pur-
pose of looking for gene-drug interactions and as a way
to look for similarities between multiple cancer types.
The pooling of cancer types allows for the possible en-
richment of signals in the data when the cancer types

Table 1 Patient drug exposure summary

Patient numbers

Drug LGG GBM LGG + GBM
Temozolomide 241 239 580
Bevacizumab 41 92 133
Lomustine 32 49 84
Irinotecan 16 60 76
Dexamethasone 0 60 60
Carmustine 12 39 51

Gliadel Wafer 5 35 40
Etoposide 10 28 38
Procarbazine 17 22 39

Total numbers of patients in each cancer type who have been exposed to
each drug. Only drugs with 30 or more total patients exposed between both
cancer types are shown
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appear to be related. Many genes significant in the
pooled analysis appear near but do not cross the thresh-
old for significance in the individual analysis of LGG
and GBM separately, and few genes found to be signifi-
cant in the individual analyses were lost in the pooled
analyses.

Methods

Data cleaning and stratification by drug exposure

When dealing with drug exposure data from TCGA
sources, there are several nomenclature problems that
must be dealt with. The drugs listed in TCGA can be
recorded by one of many names, an ID number, an
abbreviation or an associated study. These identifiers
also contain misspellings of these names or miss-entries
(0 instead of o or 6 instead of G). These errors make
it impossible to use drug exposure data systematically
in an integrative omics analysis. The drug data requires
cleaning and standardization. In this paper, all data clean-
ing was performed by referencing the NCI Drug diction-
ary [14] (2015 accession) and Broad GDAC Firehose [15].
The NCI Drug dictionary was queried for each entry and
corrections or standardization to the preferred name of
the drug.

Once the drug names were standardized, patients were
grouped by drug exposure. This stratification allows us
to use copy number data in survival analysis to identify
genes that predict survival in a drug-specific way. These
identified genes may not correlate with survival when
the survival analysis is applied to the entire set of all
patients. Hence, patient stratification by drug exposure
allows the proposed analysis to identify gene-drug inter-
actions that impact patient survival.

Survival analysis

Survival analysis was performed using a standard Kaplan—
Meier curve with a Bonferroni correction to p-values
based on the number of gene clusters with identical
CNV patterns. Secondary analysis using a standard Cox
proportional hazard model without any p-value correc-
tion was used on the same gene clusters. A standard
acceptance cutoff for p < =.05 was used. Fisher test was
used as a filtering step to prevent possible bias in the
analysis due to the pooling of two cancer types. The
fisher test was performed by cancer type and CNYV,
forming a 2x3 fisher’s matrix to filter out genes whose
copy numbers are significantly different in the two
cancer types. All statistical tests used standard R [16]
functions without editing.

Software

All software for analysis was written in an R [16] en-
vironment and code samples are available in the
Additional file 1 associated with this paper. The survival
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package supplied in the base R environment was used for
all survival analysis.

Results
Data preprocessing
Drug data consisted of multiple entries per patient of each
drug they were given. These drugs are listed in a semi-
temporal (by date of entry into the database) order but
many drugs appear in multiple names. This required
manually cleaning the drug names using the NCI [14]
drug dictionary database as a reference. After drug data
was cleaned to remove multiple names for drugs in a
given cancer type, patients were stratified by drug expos-
ure. Multiple drug exposures were treated as independent
for the purposes of this analysis, a patient would be listed
separately for each drug they were exposed to regardless
of order, number or length of treatments. During cleaning
of drug names, certain combinations of drugs such as
Procarbazine, Lomustine, and Vincristine were treated as
a single drug treatment since they are usually prescribe to-
gether and listed under one heading (PVC) in the data.
These combinations of drugs did not play an important
role because the numbers of patients exposed to the com-
binations were too small to perform survival analysis.
Data cleaning changed the names of the 279 unique
differently named drug exposures in the data down to
100 unique drug treatments in the LGG and GBM
patients. The number of patients exposed to each drug
examined can be found in Table 1. The number of patients
for each drug is a small portion of the total pool of pa-
tients, and for many drugs too small for survival analysis in
an individual cancer. By pooling the LGG and GBM
patient, we were able to increase the number of patients
with a given drug treatment to perform an analysis on.
GDAC [15] CNV data was used for this analysis where
GISTIC2.0 [17] was used on raw TCGA data with ampli-
fication and deletion cutoffs of 0.1 on a log base 2 scale,
such that no copy number change is 0, genes with am-
plifications have positive values (1, 2), and genes with
deletions have negative values (-1 or -2). This CNV data
was accessed in April of 2015, as was the survival and
drug treatment data from the TCGA data portal.

Analysis of gene-drug interactions

Drugs with 30 or more patients were considered in our
analysis. For each drug a separate analysis was per-
formed, focusing on patients exposed to that drug. CNV
data was used to place patients into three categories of
CNV based on full or partial deletion, no change in copy
number, or increased copy number. Kaplan-Meier ana-
lysis and cox proportional hazard modeling were per-
formed using death or last visit time for a censored date
using standard R [16] functions. Both of these tests were
subject to p < = .05 significance.
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Separate analysis of the individual cancer types pro-
vided promising gene-drug interactions in LGG and
GBM separately. However, due to the above minimum
required number of patients (Table 1), there were no re-
sults that could be compared between the two cancer
types (Table 2, colm. 1&2).

Pooling of LGG and GBM patient data provided a more
robust data set and a larger number of patients for each
drug. The pooled data was analyzed as stated above to
identify gene-drug interactions (Table 2, column 3). The
overlap between the pooled and individual analyses was
shown in Table 2 column 4. Since LGG and GBM patients
in general have different survival, any gene whose copy
number differs between the two cancers would show up
as significant in the pooled survival analysis. To remove
the artificially significant genes by pooling, a 2x3 Fisher’s
test (cancer type by gene CNV) on the overlapping genes
was performed, to identify and remove genes whose copy
numbers show significant difference between LGG and
GBM. Finally the gene-drug interactions identified were
reported (Table 2). Additionally, expression data for the
genes of interest can be examined with boxplots and ¢-test
to confirm the identified gene-drug interactions at gene
expression level. Across LGG and GBM patients, 128
genes were found to have survival impact when combined
with three drugs (Table 2). Ninety-seven of these genes
had expression data that could be examined as part of the
follow up analysis.

HAS2-irienotecan interaction

Following one identified gene-drug interaction, HAS2
and Irinotecan, shows that among patients treated with
Irinotecan, normal or elevated copy number of HAS2

Table 2 Genes found through analysis
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correlates with increased survival. This example illus-
trates how the drug-specific focus on survival analysis of
gene-drug interactions can highlight possible beneficial
therapeutic strategies. Looking at all LGG and GBM
patients, the Kaplan—Meier curves show no difference
between patients with normal and elevated copy number
of HAS2, and a marked decrease in survival in patients
with low copy number of HAS2 (Fig. 2a). No difference
in expression can be seen among patients with different
copy numbers of HAS2 (Fig. 2b). The survival difference
seen between LGG and GBM patients with a loss of
HAS2 and normal copy number is not supported by a
corresponding difference in HAS2 expression in the
same patients. These discrepancies require a narrowing
focus for this type of analysis. When focusing on pa-
tients exposed to Irinotecan, survival analysis through
the lens of drug treatment presents a clearer picture.
The loss of HAS2 and exposure to Irinotecan showed a
marked and clear decrease in survival (Fig. 2c). The dif-
ference between normal and increased copy number,
while not statistically significant (p =.067), is far more
clearly defined than in the first analysis (Fig. 2a). Com-
pared to Fig. 2b where no expression difference was ob-
served among patients with different copy number of
HAS2, when focusing on patients exposed to Irinotecan
in Fig. 2d, we observed a significant (p = .045) expression
difference between the low and normal/increased copy
number patients. This shows that the HAS2-Irinotecan
interaction identified based on copy number also mani-
fests at the gene expression level. This analysis was also
performed for LGG and GBM separately, but did not re-
veal significant interactions due to the small numbers of
patients exposed to this drug. Being drug-specific and

Genes
Drug LGG GBM LGG+ GBM  Shared significant  Fisher test confirmed  Expression data ~ Genes
genes (p-sig means reject)
Temozolomide 2914 0 5072 2531 0 0
Bevacizumab 1050 0 611 232 8 7 MIR607, LCOR, MMS19, SFXN2,
EXOSC1, ZDHHC16, C100rf12, PGAM1
Lomustine 0 0 9 0 0 0
Irinotecan NA 404 97 78 1 1 HAS2
Dexamethasone  NA 0 0 0 0 0
Carmustine NA 0 7 0 0 0
Gliadel Wafer NA 0 0 0 0 0
Etoposide NA 396 142 115 115 89 See Additional file 1
Procarbazine NA NA 8 0 0 0

The number of genes found to be significant at each step of the pipeline are shown. The first two columns show number of identified genes when LGG and GBM
were analyzed separately. NA entries represent combinations of cancer and drug that could not be analyzed because the number of available patients was below
our threshold. The zero entries in the table represent that no significant genes were found at the given stage of the analysis. Third column shows the number of
genes identified in the pooled analysis. Column four shows the number of genes shared between individual and pooled analysis. Column five shows the
application of a fisher test to excluded genes differentially expressed between cancer types, and hence were artificially significant because of pooling. The final
columns show the number and names of the genes with available expression data, out of the genes found significant up to this point in the pipeline
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Fig. 2 HAS2-Irinotecan Survival Analysis. a Survival of HAS2 in pooled LGG + GBM, n = 645. KM survival analysis of pooled LGG and GBM patients
for HAS2 CNV. Green illustrates increased CNV while red shows decreased CNV and black shows survival for patients with normal copy number.
b HAS2 expression and CNV for LGG + GBM, n = 645. Expression values of HAS2 by CNV where group 1 has decreased copy number, group 2 has
a normal copy number of HAS2 and group 3 has an increased copy number. There is no statistical difference by t-test between these groups
when all LGG and GBM patients are examined. This does not take into account drug exposure. Expression in log 2 (x+ 1) form. ¢ Survival analysis

of HAS2 CNV and Irinotecan exposure in pooled LGG and GBM patients, n = 76. KM survival curve of LGG and GBM pooled patients exposed to
Irinotecan. Green illustrates increased copy number while red shows decreased copy number and black shows survival for patients with normal
copy number. Decreased copy number of HAS2 has a distinct decrease in survival when Irinotecan exposure is considered. d HAS2 expression
and CNV for pooled LGG + GBM, Irinotecan Exposure, n = 29. Expression values of HAS2 in pooled LGG and GBM patients by CNV where group 1
has decreased copy number, group 2 has a normal copy number of HAS2 and group 3 has an increased copy number. This plot is derived from
patients who have expression, CNV, drug and survival data recorded in TCGA. There is a statistical difference in expression (p =.045) between
group 1 and group 3, with a close to significant (p =.11) difference between group 1 and group 2

pooling of LGG and GBM has the combined effect of
highlighting gene drug interactions of interest and pro-
viding more patients to power the detection of these
important interactions.

A review of the literature after this interaction was
identified showed that there has already been some inde-
pendent investigation of this interaction. Irinotecan is
topoisomerase inhibitor that in inhibits cell division and
has been shown to repress tumor growth in cell lines
with HAS2 over production. The previous analysis of
this interaction was performed in a mouse xenograft
model [8] and it was suggested that Irinotecan inhibited
tumor regrowth after chemotherapy. Hyaluronan is
believed to act as a carrier molecule for Irinotecan

improving its delivery to tumor cells. This interaction
has been studied in clinical trials and has shown promise
in treating colorectal cancer [18]. Here our method has
identified an interaction that can be verified from an
independent source.

PGAM1-bevacizumab interaction

Our analysis identified another gene-drug interaction,
PGAM1 and Bevacizumab, which also has literature sup-
port. PGAMI1 is an enzyme that plays a role in allowing
the cell to balance glycolysis and biosynthesis [19]. Bevaci-
zumab is an anti-vascular endothelial cell growth factor
antibody that is used to restrict the growth of new blood
vessels causing hypoxia in tumors. This interaction was
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explored in cell lines and the loss of PGAM1 was shown
to decrease the effects of hypoxia on the tumor by inhibit-
ing the ability of the cell to regulate balance between gly-
colysis and biosynthesis allowing tumor growth that
would be inhibited in a hypoxic state [20]. Figures can be
found in the Additional file 2.

COL22A1-etoposide interaction

An instance of an unknown gene-drug interaction, that
of COL22A1 and Etoposide, can be seen in Fig. 3. While
loss of COL22A1 copy number can be linked to lowered
survival over the entire pool of patients (Fig. 3a), pa-
tients with different COL22A1 copy number do not
show significant difference in COL22A1 expression
(Fig. 3b). Similar to the HAS2 example, the correlation
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between COL22A1 and survival is not supported by
gene expression when all LGG and GBM patients are
considered. The real difference in expression that aids in
validation of the survival analysis is highlighted when
only patients with Etoposide exposure are considered.
While the number of patients for this analysis is lower
than that in previous examples, there is still a difference
between survival and copy number, which is mirrored in
gene expression levels (Fig. 3¢ & d).

There is no current research in the literature that
shows a possible link between COL22A1 and Etoposide.
Etoposide is a topoisomerase inhibitor and COL22A1 is
a collagen protein that acts as a cell adhesion ligand for
skin epithelial cells and fibroblasts [21]. COL22A1 up-
regulation has been linked to prognosis in head and
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Fig. 3 COL22A1- Etoposide Survival Analysis. a COL22A1 expression and CNV for LGG + GBM, n =645. KM survival analysis of pooled LGG and
GBM patients for COL22A1 CNV. Green illustrates increased CNV while red shows decreased CNV and black shows survival for patients with
normal copy number. b COL22A1 expression and CNV for LGG + GBM, n = 645. Expression values of COL22A1 by CNV where group 1 has
decreased copy number, group 2 has a normal copy number of COL22A1T and group 3 has an increased copy number. There is no statistical
difference by t-test between these groups when all LGG and GBM patients are examined. This does not take into account drug exposure.
Expression in log 2 (x+ 1) form. ¢ Survival analysis of COL22AT CNV and Etoposide exposure in pooled LGG and GBM patients, n = 34. KM survival
curve of LGG and GBM pooled patients exposed to Irinotecan. Green illustrates increased copy number while red shows decreased copy number
and black shows survival for patients with normal copy number. Decreased copy number of COL22A1 has a distinct decrease in survival when
Irinotecan exposure is considered. d COL22A1 expression and CNV for pooled LGG + GBM, Etoposide Exposure, n = 16. Expression values of
COL22A1 in pooled LGG and GBM patients by CNV where group 1 has decreased copy number, group 2 has a normal copy number of COL22A1
and group 3 has an increased copy number. This is derived from patients who have expression, CNV, drug and survival data recorded in TCGA
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neck cancers [22]. Here we have identified an interaction
that has not been explored in the existing literature.

Discussion

This method of survival analysis using drug exposure to
highlight gene drug interactions for various cancer types
shows promise. We are able to focus this analysis by look-
ing at small sub populations of patients exposed to a par-
ticular drug, preform survival analysis using gene copy
number variation, and look for significant differences in
survival. Once these differences are identified, expression
data can be used to further confirm a biological basis for
the proposed gene-drug interaction. This method has
shown confirmation of the HAS2/Irinotecan link in sur-
vival which has been shown previously in the literature [8]
in different cancers. This method has also produced sev-
eral interesting drug and gene combinations (Table 2) that
can be examined experimentally for possible strategies for
personalized medicine.

Conclusion

This data processing pipeline is far from perfect. This
multiple layer filtering process removed many individ-
uals from the patient pool at each stage of the analysis,
giving a limited number of patients for any given can-
cer/gene-drug combination. The currently available data
collected in projects such as TCGA is an excellent start.
Future queries along this idea of drug-specific analysis
need to address the hurdles of formalizing drug expos-
ure by name, and loss of information such as different
parts of patient omics and clinical data (CNV, expres-
sion, drug exposure, survival). More data of higher qual-
ity will be needed in the foreseeable future for accurate
analyses of this type. The pipeline itself can be improved
by exploring other possible methods for examining sur-
vival and alternative strategies for p-value correction and
reordering. Methods for incorporating expression data
in a more direct manner might also improve the identifi-
cation of gene-drug interaction. Exploring methods to
account for drug treatment order and removing the
assumption that drug treatments are independent would
help illustrate synergistic or antagonistic effects of
multiple drug treatments.

During our analysis, one interesting and unexpected
pattern was seen. For all the identified gene-drug inter-
actions, increased survival was always associated to nor-
mal or increased copy number. No increase in survival
was seen in the case of a gene deletion or decrease in
copy number. The reasons for this could be multiform.
Current trends in cancer treatment focus on inhibiting
oncogenes, inhibiting the increased activity from these
genes or promoting apoptosis. Therefore, for patients
with increased copy number or expression of a target
gene, the drug is more likely to show an effect. For a
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patient with a deletion, the drug is less likely to show
strong effect. This is a possible explanation as to why all
identified gene-drug interactions have the same survival
pattern where deletion lowers survival.

Additional files

Additional file 1: This document contains descriptions of all material
located in Additional file 2 as well as descriptions of how to access data
used in this analysis. A more indepth description of the PGAM1-
Bevacizumab interaction is also included. (DOCX 59 kb)

Additional file 2: This file contains additional figures, sample code, a
gene list for table 2 and a drug name change list. (ZIP 1090 kb)
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