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Abstract

Background: When constructing new biomarker or gene signature scores for time-to-event outcomes, the
underlying aims are to develop a discrimination model that helps to predict whether patients have a poor or good
prognosis and to identify the most influential variables for this task. In practice, this is often done fitting Cox models.
Those are, however, not necessarily optimal with respect to the resulting discriminatory power and are based on
restrictive assumptions. We present a combined approach to automatically select and fit sparse discrimination models
for potentially high-dimensional survival data based on boosting a smooth version of the concordance index
(C-index). Due to this objective function, the resulting prediction models are optimal with respect to their ability to
discriminate between patients with longer and shorter survival times. The gradient boosting algorithm is combined
with the stability selection approach to enhance and control its variable selection properties.

Results: The resulting algorithm fits prediction models based on the rankings of the survival times and automatically
selects only the most stable predictors. The performance of the approach, which works best for small numbers of
informative predictors, is demonstrated in a large scale simulation study: C-index boosting in combination with
stability selection is able to identify a small subset of informative predictors from a much larger set of non-informative
ones while controlling the per-family error rate. In an application to discover biomarkers for breast cancer patients
based on gene expression data, stability selection yielded sparser models and the resulting discriminatory power was
higher than with lasso penalized Cox regression models.

Conclusion: The combination of stability selection and C-index boosting can be used to select small numbers of
informative biomarkers and to derive new prediction rules that are optimal with respect to their discriminatory power.
Stability selection controls the per-family error rate which makes the new approach also appealing from an inferential
point of view, as it provides an alternative to classical hypothesis tests for single predictor effects. Due to the shrinkage
and variable selection properties of statistical boosting algorithms, the latter tests are typically unfeasible for
prediction models fitted by boosting.
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Background
In the evaluation of biomarkers and gene signatures for
survival data, the focus is often on the ability of a new
marker combination to discriminate between patients
with larger and smaller survival times [1–3]. For exam-
ple, one is often interested in predicting whether patients
survive a specific time point of interest, e.g., five years
after baseline examination. In practice, prediction models
are often derived using Cox regression, which, however,
suffers from restrictive regularity assumptions such as
the proportional hazards assumption. It is well known
that, if violated, these assumptions may cause Cox regres-
sion to result in suboptimal model fits with a decreased
prediction accuracy [4].
Despite its limitations, Cox regression remains the

predominant technique for modeling survival data in
biostatistics (see [3, 5] for recent examples). In fact,
most attempts to relax the proportional hazards assump-
tion (such as stratification of the baseline hazard and
time-varying coefficients) retain the basic properties and
limitations of the Cox model. Similarly, regularization
schemes for survival models (such as penalized Cox
regression [6, 7], and univariate preselection of mark-
ers [8]) are usually based on Cox modeling. On the
other hand, non-Cox-based approaches from the machine
learning field such as support vector machines for survival
data [9] or random survival forests [10] have the prob-
lem that they lead to black box predictions with limited
interpretability.
In this paper we focus on a statistical modelling

approach that results in additive predictors

η := β0 +
p∑

l=1
βl · xl = X�β

which are optimized with respect to the concordance
index for survival data (often denoted as Harrell’s C or
C-index) [11–13]. The C-index is a discrimination mea-
sure for the evaluation of prediction models. The C-index
is not based on restrictive regularity assumptions (in con-
trast to Cox regression) but is non-parametric in the sense
that it only evaluates to which extent the ranking of the
values of the linear combination η is in agreement with the
ranking of the survival times. In a recent article [14] it was
shown that the C-index can be optimized efficiently via a
gradient boosting approach (“C-index boosting”), which is
also feasible in high-dimensional data situations. Since the
C-index is a popular evaluation criterion in bioinformatics
and biostatistics [15–17], the method proposed in [14] has
the additional advantage that optimization of the C-index
results in prediction rules that focus directly on the per-
formance measure of interest instead of using a different
optimization criterion such as the partial log-likelihood in
Cox regression.

Despite its good performance, especially in situations
where the proportional hazards assumption is violated,C-
index boosting has the drawback that variable selection
cannot be accomplished as easily as with traditional boost-
ing algorithms designed for the calibration of a prediction
model (such as LogitBoost [18, 19], which optimizes the
conditional probability estimates for a binary outcome). In
fact, the discriminatory nature of the C-index, which eval-
uates the ranking of the values of η but does not involve
probability estimation, has been observed to be relatively
insensitive to overfitting, making traditional regulariza-
tion approaches for boosting (such as early stopping [20])
infeasible. This observation coincides with a recent result
by Wyner et al. [21] who demonstrated that overfitting in
boostingmodels for binary outcomes is unlikely to happen
as long as discriminatory measures (such as the percent-
age of observations correctly classified) are used for eval-
uation. While resistance to overfitting is often considered
to be an advantage in machine learning research, it also
implies that sparse prediction rules, which are desirable in
biomedical applications for reasons of interpretability and
generalizability [22], are difficult to obtain.
To address this problem, we propose a new variable

selection technique for C-index boosting that is able to
identify the most influential and stable predictors for
survival. The method is based on the stability selection
approach proposed by Meinshausen and Bühlmann [23],
which has recently been enhanced [24] and adapted to
gradient boosting estimation [25, 26]. The idea of stability
selection is to fit the model to a high number of subsets of
the original data. One then determines the average num-
ber of subsets in which a variable was selected. Variables
where the selection frequency exceeds a certain threshold
are considered to be stable. Importantly, variable selection
is accomplished via controlling the per-family error rate
(PFER) of the predictor variables selected for inclusion
in the boosting model. As a consequence, the sparsity of
the resulting prediction model is governed by the desired
level of error control, and resistance to overfitting is no
longer an issue. Using a comprehensive simulation study,
as well as a gene expression data set on lymph node nega-
tive breast cancer collected by Desmedt et al. [27], we will
demonstrate that stability selection can also be adapted
to perform variable selection in C-index boosting. In par-
ticular, our results suggest that the new method is able
to both optimize the C-index and to identify the most
relevant predictors for survival at the desired error level.

Methods
The C-index for survival data
The concordance index evaluates the rank-based
concordance probability between a continuous predictor
η and the outcome [11, 12]. The non-parametric criterion
can be applied for continuous, ordinal and dichotomous
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outcomes, as well as for time-to-event outcomes. In the
latter case, it is defined as

C := P(ηj > ηi |Tj < Ti) ,

where Tj, Ti are the survival times and ηj and ηi the pre-
dictors of two observations in an i.i.d. test sample. The
C-index measures whether large values of η are associated
with short survival times T and vice versa. The interpre-
tation is similar to the widely known AUC (area under
the receiver operating characteristics curve): A C-index
of 1 represents a perfect discrimination while a C-index
of 0.5 will be achieved by a completely non-informative
marker. In fact, it was shown that theC-index is equivalent
to the area under the time-dependent receiver operat-
ing characteristics (ROC) curve, which summarizes the
discriminatory power of η over all time points [1].
An extension of the C-index that evaluates the concor-

dance probability between η and T up to a pre-specified
time point τ is the truncated C-index

Ctr := P(ηj > ηi |Tj < Ti, Tj ≤ τ) .

The truncated C-index is an alternative to the C-index
in situations where the right tail of the estimated survival
function of T is unstable [1, 28–30]. While we do not
explicitly consider the truncated version of the C-index in
this work, our methodology easily extends to truncated
time ranges of the form [ 0, τ ] (see below).
Although following a relatively simple and straight-

forward definition, in practice the estimation of the C-
index becomes problematic in samples with censoring.
Some estimators proposed in the literature omit observa-
tion pairs where the smaller survival time was censored,
however this can lead to biased results [31]. Others rely
on the assumptions of a Cox proportional hazards model
[32, 33] which becomes problematic in settings were those
are not fulfilled. For an overview and comparison of differ-
ent estimators for the C-index and other discriminatory
measures for survival data see Schmid and Potapov [13].
To overcome these issues, Uno et al. [28] proposed

an asymptotically unbiased estimator which incorporates
inverse probability of censoring weighting [34]:

ĈUno(T , η) :=
∑

j,i
�j

Ĝ(T̃j)2
I(T̃j < T̃i)I

(
η̂j > η̂i

)
∑

j,i
�j

Ĝ(T̃j)2
I(T̃j < T̃i)

.

The term �j
Ĝ(T̃j)2

accounts for the inverse probability that
observation j is censored. �j represents the censoring
indicator, T̃ are observed survival times subject to cen-
soring and Ĝ(·) denotes the Kaplan-Meier estimator of
the unconditional survival function for the censoring time
Tcens (estimated from the learning data via the observed T̃
and taking �j as event indicator).

When a truncated time range [ 0, τ ] is considered, the
truncated C-index can be estimated by an extension of
ĈUno(T , η) defined by (c.f., [30])

Ĉtr(T , η, τ) :=
∑

j,i �j�iI(T̃j < T̃i, T̃j ≤ τ)I
(
η̂j > η̂i

)
∑

j,i �j�iI(T̃j < T̃i, T̃j ≤ τ)

Of note, the estimator ĈUno(T , η) is a consistent esti-
mator of the C-index if censoring is independent of T
(coarsening completely at random, [28, 30]). If censoring
is independent of T conditional on η (coarsening at ran-
dom), the terms Ĝ(·) in the definition of ĈUno(T , η) can
be replaced by conditional terms Ĝ(·|η) that are derived
from a survival model for the censoring distribution [29,
30]. Wang and Long (2016) also analyzed the proper-
ties of ĈUno(T , η) in situations where censoring is not
independent of T.

Boosting the C-index
To find the optimal predictor η with respect to the C-
index, we adapt a component-wise gradient boosting algo-
rithm [35] with simple linear models as base-learners.
Boosting originally emerged from machine learning, but
during the last 15 years has evolved into a powerful tool to
fit statistical models (“statistical boosting”, [36, 37]). The
basic idea is to apply simple regression functions as base-
learners (in the easiest case simple linear models) and
iteratively fit them one-by-one to the negative gradient of
a loss function. In every boosting iteration only the best-
fitting base-learner is included in the model, effectively
leading to variable selection.
The loss function defines the type of regression setting

the additive predictor is optimized for. The L2 squared
error loss leads to classical regression of the mean [38],
the L1 loss to median regression which can be extended to
quantile regression via the check-function [39]. Incorpo-
rating the negative log-likelihood as loss function allows to
fit classical generalized linear or additive models (GLMs
or GAMs, [35]). For an overview of different loss func-
tions for gradient boosting and their implementation see
Hofner et al. [40].
Using Uno’s estimator for the C-index as loss function,

however, is unfeasible because ĈUno(T , η) is not differ-
entiable with respect to η. To solve this problem, we
approximate the indicator function I(η̂j > η̂i) by a sigmoid
function (similar to Ma and Huang [41])

K(η̂j − η̂i) = 1/
(
1 + exp

(
− (η̂j − η̂i)

σ

))
,

leading to a smooth estimator of ĈUno

Ĉsmooth(T , η̂) =
∑

j,i
�j

Ĝ(T̃j)2
I(T̃j < T̃i) · K(η̂j − η̂i)∑

j,i
�j

Ĝ(T̃j)2
I(T̃j < T̃i)
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which is differentiable with respect to η and will serve as
loss function for the algorithm. A more detailed overview
on the algorithm for boosting the C-index and its applica-
tion is provided in the Additional file 1.
The variable selection properties of statistical boosting

algorithms are controlled by the stopping iteration mstop
[20]. If the algorithm is stopped before convergence (early
stopping), variables that have never been selected up to
this iteration are effectively excluded from the final model.
The stopping iteration mstop is typically chosen such that
it optimizes the prediction accuracy on separate test data
generated via resampling techniques (e.g., bootstrapping
or subsampling).
In case of C-index boosting, this common procedure,

however, becomes problematic as the rank-based loss
function is rather robust against overfitting and early
stopping is hardly possible. An optimal mstop often can-
not be determined in this case. Similar results have been
described for binary outcomes if discriminatory measures
are used to evaluate the prediction performance [21]. In
case of C-index boosting, in many practical settings it
hence makes sense to run the algorithm until convergence
and omit the optimization ofmstop (see [14]).

Stability selection
To ensure the selection of the most influential predic-
tors despite this resistance to overfitting, we incorpo-
rate the stability selection approach by Meinshausen and
Bühlmann [23] which was later refined by Shah and Sam-
worth [24]. Stability selection is a generic method that
applies to a wide range of statistical estimation techniques
which conduct variable selection [42], including penalized
regression approaches such as lasso [43], boosting [18] or
tree based approaches such as random forests [44].
The principle idea is to use subsamples of size n/2 and

fit a boosting model on each of the B subsamples until a
pre-specified number of variables q out of the p possible
predictor variables is selected. Average selection probabil-
ities π̂j are computed for each predictor (j = 1, . . . , p) and
only variables that exceed a pre-specified threshold πthr
are included in the final model. An important advantage
of stability selection is that it controls the per-family error
rate PFER = E(V ), whereV is the number of false positive
variables, and thus provides error bounds for the number
of false positives. An upper bound to the PFER (depending
on p, q and πthr) can be derived as

E(V ) ≤ q2

(2πthr − 1)p
under certain conditions [23].
Shah and Samworth [24] propose to use 2 · B comple-

mentary pairs, i.e., use the subsample as well as its com-
plement. With additional assumptions on the distribution
of the selection frequencies (unimodality or r-concavity),

tighter error bounds can be derived [24]. This r-concavity
can be seen as an interpolant between unimodality and
log-concavity. With r = −∞ r-concavity equals the uni-
modality assumption and with r = 0 log-concavity is
assumed (for a thorough definition see [24]). Error bounds
with unimodality assumption are tighter than the stan-
dard error bounds from the equation above, but not as
tight as error bounds with r-concavity assumption. Usu-
ally, both assumptions hold [24].
The selection of the parameters q, πthr and PFER are

crucial for the performance of stability selection. In gen-
eral, we advice to choose q large enough to select all influ-
ential variables but small enough to reflect the researchers
believe in the sparsity of the resulting model. In a sen-
sible range, the actual size of q is of minor importance.
Similarly, Meinshausen and Bühlmann [23] found that the
actual choice of the threshold πthr is of minor importance
as long as it is in a sensible range (∈ (0.6, 0.9)). Note that
for a fixed q it is computationally very easy to change
either the threshold or the PFER as the resampling results
can be reused. Hence, for fixed q different thresholds (cor-
responding to different levels of error control) can be
easily compared. Larger thresholds lead to sparsermodels,
while thresholds close to 0.5 lead to models which are less
sparse. This is also reflected in the upper bound for the
PFER which decreases with increasing threshold. Selec-
tion frequencies resulting from stability selection can also
be used as a descriptive statistic to assess which variables
are selected with high frequencies and which variables are
rarely selected.
If error control is of primary interest, we advice to chose

q and the upper bound for the PFER. The PFER should be
chosen such that α ≤ PFER ≤ m · α, with significance
level α andm hypothesis tests. This provides a good ratio-
nale for a sensible error control with the extreme cases of
FWER-control (family-wise error rate; PFER = α) and no
multiplicity adjustment (PFER = m · α).
For an in-depth overview of stability selection in the

context of boosting, see Hofner et al. [26].

Implementation
All presented methods are made available for the open
source statistical programming environment R [45]. The
algorithm for boosting the C-index is implemented via
the Cindex() family for the add-on package mboost.
Stability selection is implemented via the stabsel()
function from the stabs [46] package, which is also
incorporated in mboost. It provides an implementation
of the classical approach [23] and the extended sampling
scheme using complementary pairs [24]. For evaluating
the discriminatory power of the resulting models on test
data, Uno’s estimator for the C-index the is provided
with the UnoC() function of the survAUC [47] package.
A worked-out example on how to apply these function
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in practice is provided in Additional file 1, the R-code
to reproduce the analyses of this article is included as
Additional file 2. In order to benchmark our results, we
used the competing Cox lasso approach implemented in
the glmnet package [48] which also can be combined
with stability selection via stabs. Note that also other
implementations for boosting survival models are avail-
able in the R framework (gbm [49], CoxBoost [50]) as
well as methods depending on the Brier score [51], like the
peperr [52] and the pec [53] packages.

Results
Simulation study
We carried out a simulation study to check the perfor-
mance of stability selection in combination with C-index
boosting under known conditions. The aims of the simu-
lation study were:

(i) To analyze if the algorithm is able to correctly identify
a small subset pinf of informative variables from a
larger set of p possible predictors in settings of p > n.

(ii) To investigate the impact of the two parameters
which have to be specified for stability selection,
namely the number of selected variables q per
boosting run and the threshold πthr for the necessary
selection probability.

(iii) To compare the resulting discriminatory power of the
final models (containing only stable predictors) with
the ones from C-index boosting without stability
selection and the competing Cox lasso approach.

(iv) To check the performance of our approach in
scenarios where the proportional hazards assumption
does not hold.

The survival times T were simulated from a log-logistic
distribution for accelerated failure time (AFT)models [54]
and are based on the model equation

log(T) = μ + φ · W ,

where μ and φ are location and scale parameters, and
W is a noise variable following a standard logistic distri-
bution. The true underlying model was μ = x�β with
β = (1.5, 1,−1,−1.5, 0, ..., 0)� for pinf = 4 and was cor-
respondingly extended for other numbers of informative
predictors pinf ∈ {4, 12, 40}. The predictorsX1, ....,Xp were
drawn from a multivariate normal distribution with pair-
wise correlation (ρ = 0.5) and p ∈ {50, 500, 1000}. Note
that only a very small amount pinf of the p available predic-
tors have an actual effect on the survival time. In scenarios
where the proportional hazard assumption should not be
fulfilled, also the scale parameter φ depended on a pre-
dictor variable φ = exp(x1)/5, otherwise it was a simple
scalar (c.f., [13]).

Additionally to the survival times T, we generated for
every observation i = 1, ..., n an additional censoring
time Tcensi and defined the observed survival time by
T̃i := min(Ti,Tcensi) leading to independent censoring
of on average 50 % of the observations. The sample size
remained fixed with n = 200 observations. For sta-
bility selection we used 2 · B = 100 complementary
subsamples and computed the error bounds under the
r-concavity assumption (cf., [26]). The final models con-
taining only the selected stable variables were fitted with
a fixed mstop = 1000. We compared the performance of
this approach also with C-index boosting on all p predic-
tors (also without tuning, but with fixed mstop = 10000)
and the Cox lasso. For the latter, the shrinkage parameter
was optimized via 10-fold cross-validation.

Variable selection
First, we compared the selection rates for different val-
ues of q and πthr. The median number of true and false
positives from 100 simulation runs for the different sce-
narios are presented in Table 1. One can observe that the
algorithm is able to correctly identify the true informa-
tive predictors out of up to 1000 possible predictors in
case of pinf = 4: In all combinations of q and πthr the
four true informative variables were included in the final
model if at least four variables had been selected at all. The
latter especially becomes a problem if q was chosen too
small with respect to p (e.g., q = 5 for p = 1000). These
results also hold if the proportional hazard assumption is
violated.
For given q, the parameter πthr controls the sparsity of

the resulting models: For p = 1000, q = 100 and pinf =
4, for example, on average eight variables were falsely
selected with a threshold value of πthr = 0.5. This number
decreased over three (πthr = 0.6), and one (πthr = 0.7) to
zero for higher threshold values πthr. Thus, for threshold
values of πthr ≥ 0.8 only the four informative predictors
were included in the final model.
Comparing the results for pinf = 4 and different num-

bers of predictors p, it gets clear that the optimal combi-
nation of q and πthr depends not only on the number of
true informative variables but also on p. For larger num-
bers of p, q should also be larger to give the algorithm the
chance to select enough variables on each subsample so
that the informative ones pass the threshold: For p = 50
this could be achieved already with q = 5; for p = 1000
at least q = 15 is necessary (better results for q = 50 or
higher). This interdependence between q, p and πthr can
be also observed via the computed upper bound for the
PFER (following the error bounds provided in [24]). It has
to be noted, however, that on average much less variables
were falsely selected in practice than could be in theory
(following the upper bound of the PFER). This indicates
that the error bound is conservatively controlled.
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Table 1 Variable selection results from 100 simulation runs: median number of true positives | false positives and calculated upper
bound for the per-family-error rate (PFER, in brackets) for different values of q and πthr

C-index boosting Cox
p pinf n PH-viol q πthr = 0.5 πthr = 0.6 πthr = 0.7 πthr = 0.8 πthr = 0.9 without πthr lasso

1000 4 200 false 100 4|8 (24.8) 4|3 (11.4) 4|1 (4.27) 4|0 (1.92) 4|0 (0.75) 4|180 4|36
50 4|1 (5.20) 4|0 (2.61) 4|0 (0.97) 4|0 (0.43) 4|0 (0.17)
20 4|0 (0.61) 4|0 (0.33) 3|0 (0.14) 3|0 (0.06) 2|0 (0.02)
15 4|0 (0.32) 3|0 (0.17) 3|0 (0.08) 3|0 (0.04) 2|0 (0.01)
10 3|0 (0.13) 3|0 (0.07) 3|0 (0.04) 2|0 (0.02) 2|0 (0.01)
5 2|0 (0.03) 2|0 (0.02) 2|0 (0.01) 2|0 (0.00) 1|0 (0.00)

500 4 200 false 100 4|14 (51.9) 4|5 (27.9) 4|2 (10.4) 4|0 (4.73) 4|0 (1.87) 4|166 4|31
50 4|3 (12.4) 4|1 (5.71) 4|0 (2.13) 4|0 (0.96) 4|0 (0.38)
20 4|0 (1.55) 4|0 (0.82) 4|0 (0.30) 3|0 (0.14) 3|0 (0.05)
15 4|0 (0.79) 4|0 (0.44) 3|0 (0.17) 3|0 (0.07) 3|0 (0.03)
10 4|0 (0.31) 3|0 (0.16) 3|0 (0.07) 3|0 (0.03) 2|0 (0.01)
5 3|0 (0.07) 3|0 (0.03) 2|0 (0.02) 2|0 (0.01) 1|0 (0.00)

500 4 200 true 100 4|13 (51.9) 4|5 (27.9) 4|2 (10.4) 4|0 (4.73) 4|0 (1.87) 4|171 4|36
50 4|2 (12.4) 4|1 (5.71) 4|0 (2.13) 4|0 (0.96) 4|0 (0.38)
20 4|0 (1.55) 4|0 (0.82) 4|0 (0.30) 4|0 (0.14) 3|0 (0.05)
15 4|0 (0.79) 4|0 (0.44) 4|0 (0.17) 3|0 (0.07) 3|0 (0.03)
10 4|0 (0.31) 4|0 (0.16) 3|0 (0.07) 3|0 (0.03) 2|0 (0.01)
5 3|0 (0.07) 3|0 (0.03) 2|0 (0.02) 2|0 (0.01) 1|0 (0.00)

50 4 200 false 20 4|7 (50.0) 4|4 (50.0) 4|2 (6.33) 4|1 (3.06) 4|0 (1.25) 4|43 4|14
15 4|3 (50.0) 4|2 (8.12) 4|1 (2.88) 4|0 (1.34) 4|0 (0.54)
10 4|1 (5.19) 4|0 (2.79) 4|0 (1.04) 4|0 (0.47) 4|0 (0.19)
5 4|0 (1.24) 4|0 (0.57) 4|0 (0.21) 4|0 (0.10) 3|0 (0.04)

500 12 200 false 100 12|12 (51.9) 12|4 (27.9) 12|1 (10.4) 11|0 (4.73) 9|0 (1.87) 12|150 12|78
50 9|2 (12.4) 8|0 (5.71) 7|0 (2.13) 6|0 (0.96) 3|0 (0.38)
20 5|0 (1.55) 4|0 (0.82) 3|0 (0.30) 2|0 (0.14) 1|0 (0.05)
15 4|0 (0.79) 3|0 (0.44) 2|0 (0.17) 1|0 (0.07) 0|0 (0.03)
10 3|0 (0.31) 2|0 (0.16) 1|0 (0.07) 0|0 (0.03) 0|0 (0.01)

500 40 200 false 200 17|13 (500) 12|5 (500) 8|2 (63.3) 4|0 (30.6) 1|0 (12.5) 35|139 9|12
100 16|12 (51.9) 11|4 (27.9) 7|2 (10.4) 4|0 (4.73) 1|0 (1.87)
50 6|2 (12.4) 4|1 (5.71) 2|0 (2.13) 1|0 (0.96) 0|0 (0.38)
25 2|0 (2.6) 1|0 (1.3) 0|0 (0.48) 0|0 (0.21) 0|0 (0.08)

In every setting pinf predictors were truly informative, p − pinf were non-informative; PH-viol: settings were the proportional hazards assumption was violated. C-index
boosting without stability selection (without πthr) was fitted on all p predictors with a fixed largemstop; in case of the Cox lasso the shrinkage parameter was optimized via
10-fold cross-validation

For higher numbers of informative variables pinf the
algorithm had more problems identifying the correct
ones. For pinf = 12, the number of selected variables per

subsample has to be increased to q = 100 to incorporate
all true informative ones. For smaller values of q, even for
πthr = 0.5 only parts of the true predictors were selected;
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however, stability selection still mostly prevented incorpo-
rating false positives. The competing Cox lasso approach,
in contrast, also on average achieved to identify the true
pinf = 12, but additionally included large numbers of non-
informative variables in the final model. For pinf = 40, the
picture became more extreme: Now both approaches, C-
index boosting with stability selection and the Cox lasso
were no longer able to select the correct predictors. Only
for q = 200 and πthr = 0.5 on average 17 out of 40 pre-
dictors were correctly identified by C-index boosting with
stability selection (13 false positives), the Cox lasso incor-
porated 9 true predictors in the model (12 false positives).
C-index boosting without stability selection in this case
correctly identified 35 predictors.

Discriminatory power
The discriminatory power of the final models was eval-
uated on independent test data with n = 1000 obser-
vations. The resulting median C-index values (obtained
from Uno’s original estimator) for the different scenarios
are presented in Table 2. The estimates for ĈUno reflect the
results from the variable selection in Table 1: The highest
discriminatory power was achieved if the correct variables
had been identified as stable predictors and were included
in the final model. For truly sparse models (pinf = 4),
this could be either achieved via large values of q and high
thresholds (e.g., q = 100 and πthr = 0.9 for p = 1000)
or smaller values of q and therefore also lower thresh-
olds (e.g., q = 15 and πthr = 0.5 for p = 500). For
larger true models (pinf = 12), a high discriminatory
power could only be achieved when enough variables were
included: Best results were found for combinations with
large q and small thresholds (ĈUno = 0.9218 for q = 100
and πthr = 0.6). The poorest discriminatory power from
our approach resulted from the scenarios with pinf = 40
(ĈUno = 0.6416 for q = 200 and πthr = 0.5). In this case,
with a rather large number of informative predictors, the
additional stability selection even led for all combinations
of q and πthr to poorer results than standard boosting of
the C-index (cf., results with pinf = 50 of Meinshausen
and Bühlmann [23]).
Putting the resulting discriminatory power in Table 2

into relation with the bounds of the PFER provided in
Table 1, in our simulation settings with pinf = 4 the best
results were achieved with a PFER (expected number of
false positives) of 1 to 4. For pinf = 12 and pinf = 40 better
results were achieved when the PFER reaches or exceeds
the number of truly informative predictors pinf.
The final models of the competing Cox-lasso approach

on average led to a slightly lower discriminatory power
than the models from C-index boosting with stability
selection, although in many scenarios the true informative
predictors had been correctly identified. Similar to our
approach, the Cox lasso also yielded the poorest results

for the simulation setting with pinf = 40 (ĈUno = 0.5782)
where it was clearly outperformed even by C-index boost-
ing without stability selection.

Breast cancer data
We analysed the performance of our approach also on
data to build a gene signature for the prediction of
the development of distant metastases in breast can-
cer patients. The data set (n = 196) was collected by
Desmedt et al. [27] to validate a 76-gene expression sig-
nature proposed by Wang et al. [55]. In addition to the
expression levels of the 76 genes, four clinical predictor
variables were considered (tumor size, estrogen receptor
(ER) status, tumor grade and age). Observed metastasis-
free survival ranged from 125 days to 3652 days, with
79.08 % of the survival times being censored. The data set
is available on GEO (http://www.ncbi.nlm.nih.
gov/geo, access number GSE 7390).
To generate independent data sets for model fitting and

evaluation, we constructed 100 training and test samples
via stratified subsampling (stratified for censoring). On
each of the training samples, we fitted C-index boost-
ing and also Cox lasso models with and without stability
selection (with q = p

2 and different values of πthr). The
selected genes were afterwards included together with the
clinical variables in prediction models that were again fit-
ted either via C-index boosting or via Cox proportional
hazard models.

Variable selection
Results regarding the variable selection properties of our
approach and the Cox lasso are presented in Fig. 1 (C-
index boosting left boxplots, Cox lasso right boxplots). In
case of C-index boosting one can clearly observe how the
incorporation of stability selection led to much sparser
models. While C-index boosting on average led to models
containing 50 predictors (median; range= 42−63), incor-
porating stability selection with a minimal threshold value
of πthr = 0.5 yielded only 19 selected variables (median;
range = 13 − 25). Sparsity can be further enhanced by
increasing the threshold: the median number of selected
variables ranged from 14 variables for πthr = 0.6 to 5
variables for πthr = 0.9. In case of the Cox lasso, the
situation was different, as already the original tuning via
cross-validation yielded rather sparse models containing
only 15 variables (median; range = 5 − 37). Incorporat-
ing stability selection with low threshold values can here
even identify more stable predictors than the lasso alone
(e.g., 27 for πthr = 0.5); only for larger threshold values the
models got sparser again (e.g., 7 for πthr = 0.8).

Discriminatory power
The discriminatory power of the final models (estimated
via the original ĈUno on the test samples) is presented

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Table 2 Resulting discriminatory power of C-index boosting in combination with stability selection for different values of q and πthr

compared to the competing Cox lasso approach

C-index boosting Cox
p pinf n PH-viol q πthr = 0.5 πthr = 0.6 πthr = 0.7 πthr = 0.8 πthr = 0.9 without πthr lasso

1000 4 200 false 100 0.8150 0.8286 0.8358 0.8393 0.8396 0.7889 0.8148

50 0.8343 0.8365 0.8381 0.8357 0.8253

20 0.8324 0.8252 0.7829 0.7662 0.7394

15 0.8309 0.7813 0.7694 0.7519 0.7340

10 0.7799 0.7683 0.7519 0.7426 0.6202

5 0.7497 0.7426 0.7323 0.6176 0.5993

500 4 200 false 100 0.7998 0.8179 0.8305 0.8361 0.8391 0.7735 0.8161

50 0.8268 0.8332 0.8375 0.8388 0.8340

20 0.8358 0.8351 0.8309 0.7744 0.7607

15 0.8346 0.8314 0.7835 0.7672 0.7521

10 0.8279 0.7801 0.7672 0.7587 0.7400

5 0.7627 0.7587 0.7444 0.7347 0.6154

500 4 200 true 100 0.8304 0.8481 0.8612 0.8656 0.8671 0.7886 0.8345

50 0.8555 0.8635 0.8664 0.8668 0.8664

20 0.8657 0.8654 0.8626 0.8477 0.7662

15 0.8654 0.8626 0.8554 0.7743 0.7573

10 0.8598 0.8442 0.7757 0.7614 0.7360

5 0.7660 0.7573 0.7391 0.7275 0.6219

50 4 200 false 20 0.8183 0.8248 0.8303 0.8333 0.8358 0.7939 0.8256

15 0.8268 0.8298 0.8329 0.8353 0.8370

10 0.8314 0.8348 0.8366 0.8370 0.8366

5 0.8373 0.8353 0.8324 0.8247 0.7662

500 12 200 false 100 0.9109 0.9218 0.8996 0.8639 0.8081 0.8852 0.8834

50 0.7991 0.7880 0.7451 0.7089 0.6482

20 0.6954 0.6609 0.6239 0.5698 –

15 0.6664 0.6274 0.5830 0.5549 –

10 0.6275 0.5848 0.5610 – –

500 40 200 false 200 0.6416 0.6269 0.6088 0.5755 0.5344 0.6983 0.5782

100 0.6373 0.6245 0.6028 0.5706 0.5308

50 0.5907 0.5703 0.5407 0.5129 –

25 0.5411 0.5269 – – –

In case of C-index boosting, the final models were fitted with fixedmstop = 1000. Numbers represent the median ĈUno on test samples from 100 simulation runs. PH-viol:
settings were the proportional hazards assumption was violated. In cases where no variables at all are identified as stable, no discriminatory power can be computed
(denoted as –). C-index boosting without stability selection (without πthr) was fitted on all p predictors with a fixed largemstop; in case of the Cox lasso the shrinkage
parameter was optimized via 10-fold cross-validation

in Fig. 2. As expected, C-index boosting led to a higher
discriminatory power (median ĈUno = 0.736) than the
Cox lasso (median ĈUno = 0.652). In case of C-index

boosting, additionally incorporating stability selection did
not decrease the performance on test data (ĈUno = 0.735
for πthr = 0.5) when only a minimal threshold value was
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Fig. 1 Variable selection for the breast cancer application. Number of selected variables resulting from boosting a smooth version of the C-index
(left boxplots) and Cox lasso (right boxplots) with and without stability selection for different values of πthr. Boxplots refer to the results from 100
stratified subsamples drawn from the complete data set

applied. Further enhancing the sparsitiy (increasing πthr),
however, inevitably led to a lower discriminatory power,
reflecting the trade-off between small and interpretable
models and high prediction accuracy [56]. In case of the
Cox lasso the situation was similar, only that again the
tuning of the initial model already led to a sparser model
with slightly poorer discriminatory power than themodels
from stability selection with low threshold value (ĈUno =
0.697 for πthr = 0.5). Generally, for any given value of πthr,
the resulting ĈUno was higher for the boosting approach
than for the Cox lasso models.

Discussion
The numerical results from the simulation study and the
breast cancer data suggest that C-index boosting in com-
bination with stability selection is able to correctly iden-
tify small numbers of influential predictors in potentially
high-dimensional settings.
Regarding discriminatory power, C-index boosting out-

performed common Cox-based penalization approaches
both in the simulations and in the breast cancer appli-
cation. This finding is not surprising, as our approach
– in contrast to Cox regression – is specifically tai-
lored to optimize the ability of the model to differentiate
between observations with smaller and larger survival
times.

On the other hand, we emphasize that our approach
is particular favorable for identifying sparse models, the
additional sparsity resulting from stability selection does
not necessarily lead to more accurate predictions. While
in the simulation study, where the algorithm was con-
fronted in most scenarios with very few informative vari-
ables and a much larger set of completely non-informative
ones, the additional stability selection also led to a higher
discriminatory power than standard C-index boosting,
this result was not confirmed in the breast data applica-
tion: It can be assumed that most of the 76 pre-selected
genes will at least have a minor effect on the survival out-
come [55]. Incorporating stability selection in this setting
led to sparser models (Fig. 1), but with higher threshold
values πthr the discriminatory power decreased (Fig. 2). In
fact, also the results of our simulation study have shown
that for larger true models stability selection with a very
strict level of error control seems to discard predictor
variables that have small but non-negligible contributions
to prediction accuracy. In these cases, a higher discrimi-
natory power was achieved without the incorporation of
stability selection. One could hence argue, that increasing
interpretability via sparsity and getting the highest possi-
ble discriminatory power are two different goals that may
not always be achievable at the same time (cf., Hothorn
[56]).
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Fig. 2 Discriminatory power for the breast cancer application. Resulting C-index on 100 test samples from the breast cancer application comparing
both C-index boosting (left boxplots) and Cox lasso (right boxplots) with and without stability selection for different values of πthr

In addition to the C-index considered in this work (see
Chen et al. [57] for a similar algorithm without stability
selection), various other approaches to evaluate the
prediction accuracy of a survival model exist. For exam-
ple, a well-established approach is to evaluate measures
that emulate the R2 coefficient of explained variation by
relating the likelihood of the prediction model to the
respective likelihood of a null model that does not include
the marker η [58, 59]. In contrast to the C-index, these
measures are likelihood-based (or, in case of the Cox
model, based on the partial likelihood) and are therefore
dependent on the correct specification of the survival
model under consideration. Another popular approach
is to consider scoring rules for survival data [51, 60],
which measure prediction error by the distance between
the predicted and the observed survival functions of the
observations in a sample. An often-used scoring rule is
the Brier score, which evaluates the squared distance
between survival functions [51]. Because scoring rules are
based on probability estimates of the individual-specific
survival functions, whereas the C-index is solely based
on the rankings of the survival times and the marker
values, the two approaches share properties that are
similar to the calibration and discrimination approaches,
respectively, considered in binary classification
(e.g., [61]).

Conclusion
The methodology proposed in this paper addresses the
problem of variable selection in C-index boosting. By
combining gradient boosting with stability selection,
we constructed a subsampling-based estimation proce-
dure that incorporates only the most “stable” predic-
tor variables while controlling the per-family error rate.
This property is of considerable interest in biomedical
research, as the identification of a small subset of impor-
tant (here, stable) markers is often considered to be a key
issue in prediction modeling. As pointed out by many
authors (e.g., [22]), sparse prediction models containing
only a moderate number of covariates are desirable in
practice for reasons of interpretability. Furthermore, mea-
suring biomarkers is often costly, so that the implemen-
tation of a prediction model in clinical practice crucially
depends on the level of sparsity of the model.
The combination of gradient boosting and stability

selection may also be considered appealing from an infer-
ential point of view. Because statistical inference in boost-
ing models is challenging due to the partly unknown
convergence properties of the algorithm and the various
regularization schemes involved, very few approaches to
derive covariate-wise hypothesis tests and p-values exist
[62, 63]. Via stability selection, one can also compute the
per-comparison error rate [64] which can be interpreted
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as a standard overall p-value with multiplicity correction
(for details see [26]). Therefore, by controlling the number
of falsely selected predictor variables, stability selection
provides an alternative to covariate-wise tests for assess-
ing the relevance of predictor variables via inferential
procedures.

Additional file

Additional file 1: Supporting Information. The document provides a more
detailed description of the presented approach and its implementation.
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Additional file 2: R Code. This R-file provides the underlying functions to
reproduce the results of the simulation and the breast cancer analysis.
(R 21 kb)
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