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Abstract

Background: In order to find genetic and metabolic pathways related to phenotypic traits of interest, we analyzed
gene expression data, metabolite data obtained with GC-MS and LC-MS, proteomics data and a selected set of
tuber quality phenotypic data from a diploid segregating mapping population of potato. In this study we present
an approach to integrate these ~ omics data sets for the purpose of predicting phenotypic traits. This gives us
networks of relatively small sets of interrelated ~ omics variables that can predict, with higher accuracy, a quality
trait of interest.

Results: We used Random Forest regression for integrating multiple ~ omics data for prediction of four quality traits
of potato: tuber flesh colour, DSC onset, tuber shape and enzymatic discoloration. For tuber flesh colour beta-
carotene hydroxylase and zeaxanthin epoxidase were ranked first and forty-fourth respectively both of which have
previously been associated with flesh colour in potato tubers. Combining all the significant genes, LC-peaks, GC-
peaks and proteins, the variation explained was 75 %, only slightly more than what gene expression or LC-MS data
explain by themselves which indicates that there are correlations among the variables across data sets. For tuber
shape regressed on the gene expression, LC-MS, GC-MS and proteomics data sets separately, only gene expression
data was found to explain significant variation. For DSC onset, we found 12 significant gene expression, 5
metabolite levels (GC) and 2 proteins that are associated with the trait. Using those 19 significant variables, the
variation explained was 45 %. Expression QTL (eQTL) analyses showed many associations with genomic regions in
chromosome 2 with also the highest explained variation compared to other chromosomes. Transcriptomics and
metabolomics analysis on enzymatic discoloration after 5 min resulted in 420 significant genes and 8 significant LC
metabolites, among which two were putatively identified as caffeoylquinic acid methyl ester and tyrosine.

Conclusions: In this study, we made a strategy for selecting and integrating multiple ~ omics data using random
forest method and selected representative individual peaks for networks based on eQTL, mQTL or pQTL
information. Network analysis was done to interpret how a particular trait is associated with gene expression,
metabolite and protein data.

Keywords: Data integration, Genetical genomics, Networks, Random forest

* Correspondence: chris.maliepaard@wur.nl

'Wageningen UR Plant Breeding, Wageningen University & Research Centre,
PO Box 6700 AJ, Wageningen, The Netherlands

Full list of author information is available at the end of the article

- © 2016 Acharjee et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1043-4&domain=pdf
mailto:chris.maliepaard@wur.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Acharjee et al. BMC Bioinformatics 2016, 17(Suppl 5):180

Background

In order to understand how quantitative variation in
phenotypic traits is related to the underlying genetic
differences between plants, and to differences in gene
expression, protein constitution and metabolic variabil-
ity, an approach is needed in which the combined mo-
lecular signature of the plants is shown to be predictive
for the phenotypic traits of interest [1-3]. We can use
high-throughput ~ omics technologies, such as gene ex-
pression microarrays [4, 5], mass spectrometry (LC-MS
and GC-MS) [6, 7] and protein chips [8, 9] to obtain
molecular signatures of a population of plants. In
addition we can study phenotypic differences in the
same population and hypothesize that differences in the
phenotypic trait in the population are related to the vari-
ation in these combined molecular profiles across the
different data sets [10]. Finding the ~ omics variables
that are related to the phenotypic traits of interest can
then be used in two ways: 1) for prediction of the traits
from these molecular profiles. For example Steinfath et
al., 2010 [11] explored metabolomics data to predict
agronomic phenotypes of potato crop plants grown in
different environments. They identified metabolites that
can be used as biomarkers for these traits and hence to
improve the selection on these traits which can be im-
plemented in breeding programs. 2) to identify func-
tional relationships between traits and molecular
networks of the plants [11-12].

This means that we are not just interested in inter-
relating these ~ omics data sets for their own sake to
find genetic and metabolic networks, but the networks
and their elements should actually be predictive for a
phenotypic trait of interest. On the other hand, in the
context of genetics and plant breeding, we also want to
be protected against finding relationships between
phenotype and ~ omics data that are just caused by en-
vironmental or developmental differences. Instead, we
are interested to find relationships that have a basis in
the genetic differences between plants. Therefore a map-
ping population is an ideal target for this kind of study: we
can study whether an observed relationship between a
phenotypic trait and ~ omics variables is also based on gen-
etic differences between the plants in the segregating popu-
lation, as we can actually map the phenotypic variation as
well as the variation in the ~ omics data sets. A relationship
that would be just based on variation in environmental in-
fluences or conditions would not result in mapped QTLs
for the phenotypic traits or the ~ omics variables [12, 13].

We are interested in the association between a number
of phenotypic traits related to tuber quality of potato and
several ~ omics data sets, some of which were published
previously by us [14—16]. In addition, we use mapping and
genotyping information since the population that we use
is a mapping population. The quality traits considered are
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1) potato tuber flesh colour, 2) enzymatic discoloration
after peeling, 3) starch gelatinization as measured by dif-
ferential scanning calorimetry (DSC) and 4) tuber shape.
Out of these four phenotypes, starch gelatinization as
measured by differential scanning calorimetry (DSC) and
tuber shape phenotypes were not analyzed before. The
other two phenotypes were included to make the link with
the previous papers and to permit validation and accuracy
testing of our used network analyses.

In this study, we relate transcriptomics, metabolomics
and proteomics data to genetic variation in these quality
traits in the mapping population. For this, we use a novel
strategy consisting of three steps. First, using the same ap-
proach as in an earlier study [14], we apply Random Forest
regression (RF) to find, per single trait and per individual ~
omics data set, the variables that play a significant role in
the prediction of each of the quality traits. In the second
step, we use QTL mapping of the quality traits and of the
~omics variables to select variables that have a QTL
(eQTL, mQTL or pQTL) cosegregating with a quality trait
QTL and to remove redundancy in the set of selected vari-
ables. Finally, we construct regularized partial correlation
networks, for each of the quality traits, of the selected sets
of variables over the four ~ omics data sets that have a gen-
etic association with the traits per QTL.

Because already much is known about the regulatory
genetic and metabolic pathways involved in tuber flesh
colour [17-19], we used this trait to validate the approach,
as we had done for individual data sets in [14, 16, 19].
Here we analyze all ~ omics data sets simultaneously to
construct networks related to phenotypic traits consisting
of features across all these data sets. We demonstrate that
also for the other phenotypic traits we can find networks
of small sets of interrelated gene expression profiles, pro-
teins and metabolites that are associated with and predict-
ive for these quality traits.

Methods

Plant material

We used 96 individuals, including the parental clones, of a
diploid potato backcross population (CxE) [20]. This popu-
lation is derived from an original cross between potato
clones C (USW533.7) and E (77.2102.37) and is described
in detail in [21]. All clones were grown in multi-year re-
peats in the field, Wageningen, The Netherlands during the
normal potato-growing season in The Netherlands (April—
September) [14, 20, 21]. For each genotype, tubers were
collected from three plants and representative samples were
either used for phenotypic analysis or mechanically peeled
and immediately frozen in liquid nitrogen before being
ground into a fine powder and stored at —-80 °C for metabo-
lomics, transcriptomic and proteomic analyses. The deter-
mination of carotenoids was as described in [22]. This was
a targeted metabolic analysis which includes compounds
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like zeaxanthin, violaxanthin and a compound for which
the chemical behaviour is like violaxanthin (here denoted
as ‘violaxanthin-like’).

Differential scanning calorimetry (DSC) is extensively
used to study physical properties of starch granules. DSC-
onset measurements (DSC onset) report water tempera-
tures at which starch granules reach their gelatinization
state [23]. DSC measurements provided gelatinization on-
set temperatures of starch granules for 96 individuals of
the C x E population ranging between 61.5 °C and 66.7 °C.
Enzymatic discoloration of tubers after peeling and being
exposed to air (room temperature) at different time points
such as after 5 min, 30 min, 3 h and difference in discolor-
ation between 3 h and 30 min and 3 h is described in [18].
In this study, we considered only enzymatic discoloration
after 5 min since the measurements at later time points
are all highly correlated. Potato tuber shape was scored
between 1 (round) and 5 (long) [21].

Omics data sets

We generated different types of ~ omics data to integrate
and find novel relationships among them. Parts of the ~
omics data sets were already published individually, for ex-
ample, the transcriptomics data [14, 22], GC-MS data [16],
LC-MS data [14]. Only the proteomics data was generated
more recently (manuscript in preparation) and these data
have not been considered for a combined analysis over all
~ omics technologies simultaneously.

In this section, we briefly summarize the different omics
data generation methods and refer to [14, 16, 19, 22] for
further details. The phenotypic data and ~ omics data are
provided in a supplementary file (Additional file 1).

Transcriptomic data

RNA was extracted from the 96 samples using the hot phe-
nol method described previously [24]. (All samples were la-
beled with both Cy3 and Cy5-dye using the low RNA input
linear Amplification Kit, PLUS, Two colour (Agilent tech-
nologies) according to the manufacturer’s protocol starting
with 2 pg of purified total RNA [19]). For additional data
analyses only genes with a Pearson correlation coefficient
higher than 0.8 between the Cy3 and Cy5 datasets were in-
cluded resulting in 15,062 expressed genes. We took into
account only the Cy3 gene expression signals for further
statistical analysis. For visualization, we used the gene no-
menclature in the following way: Gene_Gene ID (for ex-
ample: Gene_13945). The number refers to the gene ID of
the supplementary material of [19].

LC-MS, data generation, processing and identification

Potato tuber samples were analyzed for variation in
semi-polar metabolite composition using an untargeted
accurate mass LC-MS approach. In total 14,428 mass
signals were obtained from mass spectrometry and
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selected based on the following criteria: signals should
be present in at least 10 samples and with at least one
amplitude higher than 100 units (about 5 times the noise
value). Finally, data redundancy of signals derived from the
same compound, i.e. isotopes, adducts and in-source frag-
ments, was removed by by retention time-dependent clus-
tering. This clustering of the 3024 signals resulted in 233
reconstructed metabolites (centrotypes). The untargeted
metabolites are represented as centrotype_mass_scan num-
ber as in [14]. As an example: 818_795_918 means that the
centrotype number is 818, the mass number 795 and the
scan number 918. For visualization and simplicity we used
LC-centrotype number (for example: LC_818). For more
information on data generation, processing and identifica-
tion see the Methods of [14].

GC-MS data generation, processing and identification
GC-MS data were generated from the same 96 genotypes
of the CxE population. Detailed materials and methods for
GC-MS data generation, processing and identification are
as in [16]. In short, raw data were processed by Chroma-
TOF software 2.0 (Leco Instruments) and MassLynx soft-
ware (Waters), and further analysis was performed using
MetAlign software to extract and align the mass signals.
Mass signals that were present in fewer than two samples
were discarded. Signal redundancy per metabolite was re-
moved by means of clustering, and mass spectra were re-
constructed [25]. This resulted in 139 reconstructed polar
metabolites (representative masses called as “centrotype”).
Compounds were subjected to tentative identification by
matching to the NIST08 and Wiley spectral libraries.
Library hits were manually curated, and a series of com-
mercial standards was used to check annotation.

For visualization and simplicity we used GC-
centrotype number. For example, 7275_20721700_73
means that the centrotype number is 7275, the mass
number 20721700 and the scan number 73. For
visualization only GC_7275 is used.

Proteomics data generation, processing and identification
Protein extraction

Total protein was extracted from approximately 0.5 g of
ground tuber material, to which 1 ml of pre-heated (95 °C)
lysis buffer (50 mM sodium phosphate buffer pH 7, sucrose
(5 % w/v), SDS (4 % w/v), DTT (0.3 % w/v), PVP-P
(10 % w/v)) was added. Samples were homogenized and
protein amount was measured using the RC/DC assay
(Biorad, Veenendaal, the Netherlands).

Protein labelling

A single lysine per protein molecule was labelled using the
fluorescent CyDyes from the Difference Gel Electrophoresis
(DIGE) technology (GE Healthcare/ Amersham Biosciences)
according to the manufacturer’s protocol. The internal
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standard was labelled with Cy2 and consists of an equal
mixture of 20 randomly chosen samples of the experiment
(9 random samples from 2002 to 2003 each and both par-
ents C and E from 2003).

Every 2D-gel contains one sample labelled with Cy3,
one labelled with Cy5 and the internal standard labelled
with Cy2. This means that every sample on each gel can
be compared by using the internal standard sample la-
belled with Cy2.

2D-Electrophoresis

Electrophoresis was performed using first dimension
electrophoresis on 24 cm immobilized pH gradient strips
(GE Healthcare/Amersham Biosciences) with a linear
pH range from 4 to 7 on an Ettan IPGPhor isoelectric
focusing (IEF) system. Cydye labelled samples (total of
150 pg protein) were loaded to the strips and focusing
was run for 18 h at 20 °C with the following settings: 3 h
150 V, 3 h 300 V, from 300 V to 1000 V in 6 h, from
1000 V to 10,000 V in 1 h and finally 5 h at 10,000 V.
After equilibration in the dark at room temperature in
equilibration buffer (urea 6 M, 50 mM Tris—HCI pH 8.8,
glycerol 30 % (v/v), SDS 2 % (w/v)) containing DTT 1 %
(w/v)the second dimension electrophoresis was run on
the Ettan Dalt 12 system on precast 12.5 % SDS polyacryl-
amide slab gel (size: 255x196x1 mm) and buffers from GE
Healthcare/Amersham Biosciences. The separated CyDye-
labelled proteins were visualized by scanning with a Ettan
Dige Imager (GE Healthcare/ Amersham Biosciences), using
for Cy2 an 480 nm laser and an emission filter of 530 nm,
for Cy3 an 540 nm laser and an emission filter of 595 nm
and for Cy5 an 635 nm laser and an emission filter of
680 nm.

Gel images were analysed with the Decyder software
version 7 according to Decyder 2Dv7 manual; GE
Healthcare/Amersham Biosciences. Detected spots were
filtered based on spot volume larger than relative value
30,000 to exclude spots that could be just background
noise or dust particles. The internal standard in each gel
was used to automatically match all images to the refer-
ence (the gel with the largest number of detected spots.
The spot volume ratio to the internal standard of each
protein and the individual volume of the spots were cal-
culated and logo transformed. In the QTL analysis the
spot volume (intensity) value was used. Each of the pro-
teins is presented by Pro_X where “X” represents con-
secutive protein numbers.

Protein identification

Spots of interest were excised from gel using the Ettan
Spot Picker. Peptide mass determinations were carried
out using the Applied Biosystems 4800 Proteomics
Analyzer. Both PMF and MS/MS in reflectron mode
analyses were carried out with the samples. Calibration
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was carried out with a peptide mass calibration kit.
Proteins were identified by searching against the NCBI
‘viridiplantae’ and an EST ‘viridiplantae-eudicots’ data-
base using MASCOT.

Random Forest regression

Random Forest [26, 27] was used for regression of the
phenotypic trait such as flesh colour, tuber shape, DSC
onset, enzymatic discoloration on the transcriptomics,
GC-TOF-MS signals, LC-MS signals, 2D-DIGE proteo-
mics. RF constructs a predictive model for the response
using all predictors but quantifies the importance of
each, here the metabolites, gene expression and proteins
in explaining the variation present in the trait. RF by it-
self does not provide significance levels of individual me-
tabolites and does not perform a variable selection to
choose a predictive subset of associated metabolites.
Therefore, we included a permutation test to indicate
significance of the association of a metabolite with a
trait. In each of 1000 permutations of the trait values we
estimated the variance explained by the RF model (R?)
and the variable importance of each metabolite in terms
of the decrease in node impurities [26]. We ordered
node purity values from the permuted data sets and took
the 95 percentile from the distribution of impurity
values as the significance threshold of the individual me-
tabolites. The same procedure was done for R? values of
the model: The 95 percentile was taken as a significance
threshold for the RF model. R* in Random Forest is not
just a measure of goodness-of-fit of the data at hand but
is determined on left-out samples (the ‘out-of-bag’ sam-
ples) so it should be interpreted as a measure for pre-
dictive quality (here considered as prediction R?) of the
Random Forest on independent samples that have the
same properties as the in-bag sample [26]. Random For-
est analysis was done using R statistical software using
the randomForest package.

QTL analysis and cis- and trans-eQTLs

We mapped expression QTLs (eQTLs) from the gene
expression data, metabolite QTLs (mQTLs) both for
LC-MS and GC-MS, and protein QTLs (pQTL) from
the proteomics data to find regions on the genome
explaining genetic variation in gene expression, metabol-
ite and protein values using the integrated linkage map
of the C and E parents for QTL analysis [19].

Further, we used the potato genome physical map [28] to
investigate eQTL physical positions of genes identified as
predictive for phenotypic traits from the Random Forest
analyses. The potato oligo (60-mer) microarray (POCI)
used in the experiments contains 42,034 features based on
a potato unigene set [15]. To allow discrimination between
cis- and trans-eQTLs all unigenes were blasted against the
genome scaffold sequences, predicted coding sequences
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(CDS) and predicted gene regions (including 5 and 3’-
UTRS’). Features with a unique and significant hit were
assigned to genome scaffolds for which the majority has
chromosome information. Identified QTLs on the same
linkage group as their physical map position are identified
as cis-acting while QTLs on different linkage groups are de-
fined as trans-acting. Features on the array for which no
physical map position could be assigned are classified as
unknown [19]. All QTL analyses were done using metanet-
work [29] package in R.

Network reconstruction

From the RF analyses, for each of the traits, we obtain a list
of significant genes, metabolites and proteins. For
visualization in an association network, we reduced the
number of genes by checking chromosomal positions of
each of the predicted significant genes, metabolites (LC-MS
and GC-MS) and proteins. We took the most significant
single gene, LC-MS signal, GC-MS signal and/or protein
per chromosome as representative for that ~ omics data set
and chromosome and made a full order regularized partial
correlation network with these genes, metabolites, proteins
and traits as nodes in the network [30] and the strength of
the interaction as edges in the network. Partial correlation
measures the correlation between two variables after their
linear dependence on other variables is removed. It can dis-
tinguish between direct and indirect associations whereas
correlation-based network cannot and often yield many
spurious edges [32-31]. A detailed description of regular-
ized partial correlation is provided in [33].

Results

Selection of ~ omics features predictive for quality traits
The prediction of variation in potato tuber flesh colour
[14] from the gene expression, LC-MS, and protein data
sets was quite high (>50 % explained variance using all
features, 60 to 75 % for smaller subsets of only signifi-
cant features), but much lower for the GC-MS data
(10 % and 33 % for unselected and selected features
(Tables 1 and 2). For flesh colour, the microarray data
and the LC-MS data were equally good for prediction in
terms of the explained variance, but the numbers of sig-
nificant features were very different: the prediction of
flesh colour using 7 significant LC-MS features is almost
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the same as for 233 significant gene expression profiles
(of which the genes are distributed over different regions
in the genome) from the microarray data set. From the
gene expression data, the gene which ranks first and
third with respect to variable importance for predicting
flesh colour was a beta-carotene hydroxylase (Bch). Two
oligos were present on the array targeting the same
beta-carotene hydroxylase gene, hence the two high
ranks for the same gene. Another gene from the carot-
enoid pathway, zeaxanthin epoxidase (Zep) ranked forty-
fourth. Based on our current knowledge of potato tuber
flesh colour and carotenoid content [17, 22], these two
genes were expected to be associated with flesh colour.
From the GC-MS data, out of six significant metabolites,
four had an annotation: malic acid, 2-4-5-trihydroxypen-
tanoic acid, glucopyranose, 2-butenedioic acid(z)- and
bis(trimethylsilyl) ester.

For the three other traits the gene expression data was
more predictive than the metabolomics and proteomics
data sets, and for tuber shape actually no significant fea-
tures were found for GC-MS, LC-MS and the protein data,
while significant gene expression differences explain 55 %
of the variation in tuber shape. For starch gelatinization
(DSC) no LC-MS features were significant, for enzymatic
discoloration no GC-MS features were significant.

Associated genomic regions

Using Random Forest regression, we generated lists of
candidate genes, metabolite features and proteins that are
predictive for quality traits of potato tubers (Tables 1 and
2). However, from this prediction we cannot conclude that
these associations necessarily have a basis in genetic differ-
ences between the plants since they could also be caused
by environmental variation in both the trait and the levels
of the features, or in developmental differences. Therefore
we also investigated QTL positions for both the pheno-
typic traits and the ~ omics features. When co-segregation
of an eQTL, mQTL or pQTL with a trait QTL is ob-
served, this could imply a functional relationship or iden-
tify causal genes/proteins/metabolites. However, this is
not necessarily the case since any linked but functionally
unrelated QTLs will also show this co-segregation. Still,
these sets of predictive genes highlight genomic regions of
interest, comparable to standard QTL analysis, and can

Table 1 Percentage variance explained (R in out-of-bag (OOB) prediction by Random Forest (RF) models using all genes, LC-peaks,

GC-peaks or proteins separately

Quality trait Gene expression LC peaks GC peaks Proteins
Flesh colour 58 % 63 % 10 % 53 %
Tuber shape 32% NS NS NS

DSC Onset 42 % NS 12 % 22 %
Enzymatic discoloration 14 % 16 % NS 13 %

Non-significant models are indicated as NS (alpha = 0.001)
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Table 2 Percentage variance explained (R?) using only significant gene expression, LC-peaks, GC-peaks or proteins

Quality trait Gene expression LC peaks GC peaks Proteins

Combining significant genes,
LC peaks, GC peaks and proteins

Combining significant genes, LC peaks,
GC peaks and proteins from max. one
QTL per dataset per chromosome

Flesh colour 73 % (233) 74% (7) 33% (6) 60 % (10)

Tuber shape 55 % (303) NS NS NS

DSC onset 44 % (487) NS 27 % (5) 28 % (2)

Enzymatic 51 % (420) 32% (8) 36 % (22)

discoloration

75 % (256) 73 % (Fig. 1)
Gene(8) + LC(2) + GC(2) + Protein(1);

Total =13

53 % (Fig. 2)
Gene (11)

45 % (Fig. 3)
Gene(12) + GC(5) + Protein(2);
Total =19

43 % (Fig. 4)
Gene(4) + LC(2) + Protein(2);
Total =8

55 % (303)

51 % (494)

46 % (450)

The numbers of significant (alpha= 0.001) genes, LC-peaks, GC-peaks or proteins are between brackets. Non-significant models are indicated as NS

provide additional information or help to narrow down
the region of the causative polymorphism.

For tuber flesh colour the 233 eQTLs of significantly
predictive gene expression profiles from RF mapped to
eight chromosomes: 2, 3, 4, 5, 8, 9, 11 and 12. A large
number of these (132) eQTLs were mapped to chromo-
somes 2 and 3. Significant GC-MS peaks mapped to two
chromosomes, 1 and 2. QTLs for significant LC-MS peaks
mapped to chromosomes 2 and 3 and QTLs for significant
protein spots mapped to chromosome 3. Using 13 vari-
ables (one per chromosome with a QTL, per data set) as
predictor set for flesh colour the RF out-of-bag prediction
explains 73 % of the phenotypic variation.

For tuber shape the expression QTLs of the significant
genes mapped to chromosome 1 to 11 but not to
chromosome 12. However, the largest number (185) ex-
pression QTLs of the significant genes map to chromo-
some 10. Using one representative gene from each of
those 11 chromosomes as a predictor set for tuber
shape, the RF prediction explains 53 % of the variation
in the trait. No proteins or GC- or LC-variables were in-
cluded since none were significantly associated to tuber
shape. Only the chromosome 10 representative gene ex-
plains already 38 % of the phenotypic variation.

For starch gelatinization (DSC onset), the eQTLs of the
significant genes mapped to all the 12 chromosomes but
the largest number (201) mapped to chromosome 2. QTLs
for significant GC-MS peaks mapped to five chromosomes:
2, 4, 5, 9 and 11. QTLs for significant proteins were
mapped to chromosomes 2 and 5. These 19 selected vari-
ables explain 45 % of the variation in starch gelatinization.

For enzymatic discoloration the expression QTLs of
the significant genes mapped to four chromosomes:
1,3,5 and 8. QTLs for significant LC-MS peaks mapped
to chromosomes 3 and 5 and for significant protein
spots to chromosomes 1 and 3. These 8 selected vari-
ables (genes and LC-MS peaks) explain 43 % of the vari-
ation in enzymatic discoloration.

Integration of ~ omics data and network visualization
With Random Forest we selected genes, metabolites
and proteins that have a significant association with
quality traits. Many of these have QTLs on the same
genomic regions and can be considered as redundant.
Therefore we selected a single representative feature
per QTL region per data set for network visualization
(Figs. 1, 2, 3 and 4). The networks show partial correla-
tions with a lasso penalty. The nodes in the network
show the phenotypic trait of interest and selected
genes, metabolites and proteins (one per QTL per data
set). Positive partial correlations are shown in solid
lines, negative partial correlations in dotted lines.

Networks reconstructed from the integrated ~ omics
technology platforms can provide a formal framework for
investigating plant metabolism. For example, the network
shown in Fig. 1a is completely based on the ~ omics data,
the one in Fig. 1b is based on the known carotenoid path-
way as in [34]. In Fig. 1b we can see that Bch interacts
with zeaxanthin and that violoxanthin is produced. By
using only the ~ omics data (Fig. 1a) we could reproduce
part of the carotenoid pathway. This finding is extended
to other traits as well in order to hypothesize how genes/
proteins/metabolites are regulated.

Discussion

We used Random Forest regression for integrating tran-
scriptomics, metabolomics and proteomics data for pre-
diction of four quality traits of potato: tuber flesh colour,
DSC onset, tuber shape and enzymatic discoloration. For
each of these traits, we selected sets of genes, metabo-
lites and proteins that were significant in explaining vari-
ation in the trait. We then quantified the amount of
variance explained in the prediction using these selected
sets of ~ omics features, and we constructed partial cor-
relation networks for subsets of genes, metabolites and
proteins using QTL mapping information.
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GC_7275

GC_3270

Geranylgeranyl pyrophosphate

Pro_1129
Phytoene synthase
Zeaxanthin Phytoene
Gene_12604 Phytoene desaturase
Zeta Carotene
1 Zeta Carotene desaturase
LC_1684
- Lycopene
Gene_19850 Lycopene beta and epsilon cyclase
1 Lycopene beta cyclase
Alpha Carotene Beta Carotene
Bch b v
Gene_29210 . Beta and epsilon hydroxylase l Beta Carotene hydroxylase (Bch)
Zeaxanthin
Lutein
Gene_15777 Zeaxanthin epoxidase(ZEP) 1 Violaxanthin epoxidase
Gene_7755
Violaxanthin
Gene_10709 Gene_20107 1 Neoxanthin synthase
Neoxanthin

Fig. 1 (a) A partial correlation network of the phenotypic trait tuber flesh colour (yellow) with gene expression features (red), metabolites from LC-MS
(black), metabolites from GC-MS (purple) and proteins (green). The dotted lines represent negative partial correlation coefficients, solid lines represent
positive partial correlation coefficients. Bch = beta-carotene hydroxylase, LC_X represents metabolites derived from LC-MS with centrotype number X,

GC_X represents metabolites derived from GC-MS with centrotype X, Gene_X = Gene with gene ID X. Pro_X represents a protein with protein ID X.
(b) Shows the existing published part of the carotenoid pathway [37], and some of the genes: Bch and Zep are identified by our data

Flesh colour
For validation of our approach, we took advantage of what
was known about the relationship between the trait tuber
flesh colour and previously published genes associated to
flesh colour. In our analyses, we found that beta-carotene
hydroxylase [35] and zeaxanthin epoxidase (Zep) [17]
were ranked first and forty-fourth respectively for predic-
tion of flesh colour and both compounds have previously
been associated with flesh colour in potato tubers [35].

In addition, for the GC-MS data we found that six
metabolites were significant and out of these six, four

were annotated. It was observed that one of the com-
pounds was identified as malic acid. Although there is no
direct link between tuber flesh colour and malic acid, [36]
reported a correlation of malic acid to skin colour in apri-
cot. For the other three metabolites we did not find any
connection with carotenoids or with flesh colour in the
literature.

Using all the significant genes across the technology
platforms, the combined LC-peaks, GC-peaks and pro-
teins, the OOB variation explained (R?) was 75 %, only
slightly higher than what gene expression or LC-MS

Gene_28709

Gene_3579

Gene_22145

Gene_2537

Fig. 2 A partial correlation network of tuber shape (yellow) with gene expression features (red). The dotted lines represent negative partial
correlation coefficients, solid lines represent positive partial correlation coefficients. Gene_X = Gene with gene ID X

Gene_30612

Gene_42398

Gene_38469

Gene_1309

Gene_40280
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Gene_15420 Gene_415Q

Pro_1000

Pro_1064
Pro_1035

Gene_42153

Fig. 3 A partial correlation network of DSC onset (yellow) with gene expression features (red), metabolites from GC-MS (purple) and proteins (green). The
dotted lines represent negative partial correlation coefficients, solid lines represent positive partial correlation coefficients. GC_X represents metabolites
derived from GC-MS with centrotype X, Gene_X = Gene with gene ID X. Pro_X represents proteins with protein ID X

data explain by themselves (Table 2) which indicates
that there are correlations among these variables
across the data sets. This is indeed the case: for
example, from the proteomics data, Pro_1129 and
1684_644 1727 from the LC-MS data are strongly
correlated with beta-carotene hydroxylase gene expres-
sion, with Pearson correlation coefficients of —-0.73 and
0.78 (Additional file 2) and, partial correlations of

-0.66 and 0.52, respectively. Based on the correlations
among the selected ~ omics data, two main clusters of

~ omics features related to flesh colour are visible
(Additional file 2).

Tuber shape
For tuber shape regressed on the gene expression, LC-
MS, GC-MS and proteomics data sets separately, only

DecolSmin

Pro_379
Pro_1245
Pro_175

GC_5032

Fig. 4 A partial correlation network of enzymatic discoloration (yellow) with gene expression features (red), metabolites from LC-MS (black) and
proteins (green). The dotted lines represent negative partial correlation coefficients, solid lines represent positive partial correlation coefficients.
LC_X represents metabolites derived from LC-MS with centrotype number X, Gene_X = Gene with gene ID X. Pro_X represents proteins with protein 1D X
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gene expression data was found to explain significant
variation. More than half of the eQTLs of significant
genes are mapped to chromosome 10. Tuber shape is
thought to be regulated by a single locus Ro on chromo-
some 10, where round (Ro) is dominant over long (roro)
[37, 38]. At the Ro-locus a series of multiple alleles can
explain all intermediate shapes between round (going to
flat) and long [37]. The large number of eQTLs of genes
predictive for tuber shape can be due to linkage to this
Ro locus. No metabolites and proteins were found as
significantly predictive of tuber shape, which indicates
that for this particular trait, gene expression data is more
informative than metabolomics or proteomics data.

DSC onset

For DSC onset, we found 12 significant gene expression, 5
metabolite levels (GC) and 2 proteins that are associated
with the trait. Using those 19 significant variables, the
variation explained was 45 %. In order to find what gen-
omic regions the selected genes are regulating, eQTL ana-
lyses were performed. The analyses showed many
associations with genomic regions in chromosome 2 with
also the highest explained variation compared to other
chromosomes. For gene contig MICRO.9632.C4 the
eQTL analysis revealed a large QTL region at the bottom
of chromosome 2 between 73 ¢cM and 86 cM. eQTL ana-
lysis for EST BF_LBCHXXXX_0013B11_T3M.SCF pro-
duced a single QTL on the same chromosomal location.
For the GC-MS data, out of five metabolites we could
identify three: proline, glucopyranose and 2-Piperidone
that were associated to DSC onset. The two proteins that
were associated with DSC onset could not be identified.

Enzymatic discoloration
Transcriptomics and metabolomics analysis was previ-
ously done for enzymatic discoloration after 5 min and
resulted in 420 significant genes and 8 significant LC
metabolites, among which two were putatively identified
as caffeoylquinic acid methyl ester and tyrosine [14, 18].
In this paper we used genetic information through QTL
analysis on the one hand and prediction of the traits using
RF analysis from transcriptomics, metabolomics and prote-
omics analysis on the other hand. From the QTL analyses,
we can identify the map position of the QTLs for gene ex-
pression or metabolite signals but we expect that functional
genes and genes that are only linked and that influence
other pathways will show similar correlations. For ex-
ample: we obtain a large number of significant genes
for prediction of flesh colour mapped to chromosome
3 but from previous published results [14, 35], we
know that only Bch on chromosome 3 is responsible
for flesh colour, so it is likely that the remaining genes
are all associated because of linkage to Bch.
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In RF regression, the prediction of phenotype from
metabolomics, transcriptomics or proteomics data is
possible in a way that genes, metabolites and/or proteins
might be linked with a phenotype but independent of
the genetic information [14]. In this study where we
combine the prediction of the phenotype with QTL in-
formation, the selected genes are not only significant for
predicting the phenotype of interest but also co-
localized with the phenotypic trait QTLs. Further, for
the predictive genes we checked their location in the
genome sequence to find genomic positions of those
genes irrespective of QTL analysis.

The key advantage of eQTL, mQTL or pQTL mapping
in addition to the traditional mapping of phenotypic
QTLs, is that it connects variation at the level of RNA ex-
pression, metabolite or protein abundance to variation at
the level of DNA. The latter provides versatile tools for
breeding whereas the first can reveal information on the
biology of a trait and can direct to new candidate genes.
Mapping of eQTL to the gene itself indicates that cis-
regulation is responsible for the different expression levels,
whereas map positions of eQTL different from the pos-
ition of the corresponding genes indicate trans-regulation
which allows deriving regulatory networks of genes [22].

In this study, RF regression was used as a tool for data
integration of metabolites, gene expression and protein
profiles relating to a phenotypic trait of interest where it
was used to identify leads for further exploration. For ex-
ample: flesh colour was associated with metabolites and
after putative identification of the metabolic peaks 4,7-
Megastigmadiene-3,9-diol-glucoside and 2,3-Dihydroxy-4-
megastigmen-9-one-glucoside were identified as caroten-
oid derived compounds. Such approaches give us leads for
further research on the metabolites and help to
hypothesize which components (genes, metabolites, pro-
teins) are in a specific pathway of interest and the genetic
basis of the genes, metabolites or proteins involved in the
pathway. Metabolite peaks that are not identified but that
also show an association to the trait, could in many cases
be breakdown products of the carotenoid pathway [22].

Conclusions

In this study, we devised and evaluated a strategy to inte-
grate multiple ~ omics data with phenotypic traits of inter-
est and to select sets of co-expressed genes, metabolites
and proteins. Prediction of significant features was ob-
tained through RF regression, then through a genetical
genomics study [12] we mapped those QTLs from gene
transcripts (eQTLs), metabolites (mQTLs) and proteins
(pQTLs). We selected a single gene transcript, metabolite
and/or protein per chromosome if multiple features
mapped to the same position to use for an integrated net-
work analysis and visualization using lasso regularized
partial correlations; this network can subsequently be used
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as a predictive network for the trait of interest. By doing
so, we selected genes, proteins and metabolites which are
not only predictive for a trait of interest but also explain
variation of the trait of interest. Further, we explored pre-
viously published results on the same mapping population
and extended our integrative approach, previously applied
to transcriptomics and metabolomics data sets [14, 16, 18]
on the combined data over all the ~omics platforms
(transcriptomics, GC- and LC-MS and proteomics).

For the selected combined data sets as stated before
the results are interesting because there is an improve-
ment of the R* prediction value as compared to the un-
selected data. This improvement is most likely due to
filtering out noise variables from the data set, as is ex-
plained in [14] in more detail. For DSC onset, none of
the LC-MS peaks were significant which might indi-
cate that primary metabolism is more important for this
trait compared to secondary metabolism, whereas for en-
zymatic discoloration the situation is the other way around.

Now questions arise to which type of ~ omics data is
important to study a trait. Our study indicates that, de-
pending on the type of trait, different data sets are im-
portant. For example, if the trait is a quality trait then
metabolomics data will be useful to investigate further
the biochemical pathways and to arrive at potential can-
didate genes (for example: flesh colour was associated
with metabolites and after putative identification of the
metabolic peaks 4,7-Megastigmadiene-3,9-diol-glucoside
and 2,3-Dihydroxy-4-megastigmen-9-one-glucoside were
identified as carotenoid derived compounds) [14].

We selected significant genes, metabolites and pro-
teins based on permutation tests and finally selected rep-
resentative individual peaks for networks based on
eQTL, mQTL or pQTL information. Network analysis
was done to interpret how a particular trait is associated
with gene expression, metabolite and protein data. For
these networks, we used regularized partial correlation
coefficients because these quantify the correlation be-
tween two variables (e.g. gene and metabolite, gene and
protein or metabolite and protein) while conditioning on
one or several other variables [39]. Those genes, metab-
olites and proteins might be considered as leads with
connections to the phenotype. Although the identified
chromosomal regions do not lead automatically to genes
or metabolites directly involved in the trait, and it might
be necessary to know more about the metabolic pathway
and indirect acting genes and/or metabolites the loca-
tions surely will help us to zoom in on potential candi-
date genes. In other words, even though we are not
finding the genes directly, this procedure is still helpful
in guiding us towards metabolic pathways or genetic
regulation of these pathways. However, further study
would be needed to analyze the combined effect of mul-
tiple QTL regions over different chromosomes.
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An important limitation of this approach is validation in
the absence of prior knowledge regarding genes, metabo-
lites or proteins of the trait under investigation; a second
limitation is the difficulty in identification of metabolites
and especially proteins. Further, validation of such predict-
ive networks is necessary to show that statistical association
is also pointing to functional relationships in biology.
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