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Abstract

Background: Missing values are commonly present in microarray data profiles. Instead of discarding genes or
samples with incomplete expression level, missing values need to be properly imputed for accurate data analysis. The
imputation methods can be roughly categorized as expression level-based and domain knowledge-based. The first
type of methods only rely on expression data without the help of external data sources, while the second type
incorporates available domain knowledge into expression data to improve imputation accuracy.
In recent years, microRNA (miRNA) microarray has been largely developed and used for identifying miRNA biomarkers
in complex human disease studies. Similar to mRNA profiles, miRNA expression profiles with missing values can be
treated with the existing imputation methods. However, the domain knowledge-based methods are hard to be
applied due to the lack of direct functional annotation for miRNAs. With the rapid accumulation of miRNA microarray
data, it is increasingly needed to develop domain knowledge-based imputation algorithms specific to miRNA
expression profiles to improve the quality of miRNA data analysis.

Results: We connect miRNAs with domain knowledge of Gene Ontology (GO) via their target genes, and define
miRNA functional similarity based on the semantic similarity of GO terms in GO graphs. A new measure combining
miRNA functional similarity and expression similarity is used in the imputation of missing values. The new measure is
tested on two miRNA microarray datasets from breast cancer research and achieves improved performance
compared with the expression-based method on both datasets.

Conclusions: The experimental results demonstrate that the biological domain knowledge can benefit the
estimation of missing values in miRNA profiles as well as mRNA profiles. Especially, functional similarity defined by GO
terms annotated for the target genes of miRNAs can be useful complementary information for the expression-based
method to improve the imputation accuracy of miRNA array data. Our method and data are available to the public
upon request.

Background
Missing values are commonly present in microarray data
due to various reasons, such as the limitation on detection
sensitivity, contamination or error induced in experimen-
tal operations, and inappropriate data preprocessing. For
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the sake of accurate analysis on expression profiles, the
estimation of missing values has been a basic and key issue
in microarray data analysis.
Up to now, a variety of methods have been proposed

for imputing missing values in gene expression profiles,
which mainly fall into two categories. The first type is
based solely on expression data, such as KNNImpute [1],
LLSimpute [2] and Bayesian method [3]. The second type
is based on domain knowledge in addition to expression
data [4, 5].
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K-nearest neighbor (KNN) is the most widely used
algorithm for missing value imputation, and many other
methods implement various modified versions of KNN
process. For example, assume that gene g1 whose value
on the first sample is missing, then the Euclidean dis-
tances of expression levels between g1 and other genes are
measured as Eq. 1.

dg1,gj =

√√√√√
sn∑

i=s1
(G1,i − Gj,i)2

n
, (1)

where dg1,gj denotes the distance between g1 and gj. G1,i
and Gj,i are the expression values of g1 and gj at the ith
sample, respectively. {s1, · · · , sn} are the indexes of n sam-
ples where both g1 and gj have valid values. It should be
noted that g1 and gj may have more than one missing val-
ues at different samples, and only the samples that both
genes have valid values are considered. Thus the squared
differences of expression values are averaged over n, i.e.
the number of samples considered.
Once the distances between g1 and all other genes

have been computed, K nearest genes are selected and a
weighted average of their expression values on the first
sample is assigned to G1,1.
In many cases, gene expression level alone cannot guar-

antee good imputation result because of noise, bias or a
large proportion of missing values. Actually, the microar-
ray experimental results are not simply numerical matri-
ces. Instead, these expression data should be treated with
the consideration of biological background, such as func-
tional similarity, biological pathways that genes involved
and interactions between gene products. If the external
annotation data sources can be effectively incorporated
into the algorithms, the imputation quality would be
improved.
Common annotation data include Gene Ontology (GO)

[6], KEGG pathways [7], and GenMAPP [8] etc. Since
GO annotation covers most of human gene products, GO
is most widely used for measuring functional similarity
between genes. GO provides a controlled and standard-
ized vocabulary, which has become an important tool and
knowledge base in bioinformatics research. GO consists
of three organizing principles, i.e. cellular component,
biological process and molecular function. It represents
gene characteristics of the three categories in terms,
which are the basic elements of the GO database orga-
nized in directed acyclic graphs (DAG) including nodes
(terms) and relationships (edges). The semantic similar-
ity between GO terms regarding the locations in the DAG
and common ancesters/descendands directly reflects the
association between gene products [9, 10].

In the past two decades, many efforts have been put on
studying the semantic similarity of GO terms. Early meth-
ods refer to related studies in natural language [11–13],
and mainly consider information content of GO terms, as
defined in Eq. 2. The drawback of these methods is that
they care little about structural information, and treat the
GO structure as a tree instead of a DAG.

IC(x) = − log p(x) = − log
( |Gx|

|Groot|
)
, (2)

where p(x) is the probability of an attribute described
by a GO term x, Gx is the set of genes that are associ-
ated with GO term x (i.e. genes annotated by x and all
of their descendants), and Groot is the set of genes that
are associated with the root term (i.e. all genes that the
DAG can annotate). Here, we use ‘associated with’ instead
of ‘annotated with’ because in GO DAGs, parent nodes
are generalized concept of children nodes, thus a gene
annotated with some terms is also associated with their
parent nodes. Recent methods [14–17] consider more
structural information, such as G-SESAME [15] (http://
bioinformatics.clemson.edu/G-SESAME/), which consid-
ers both common ancestors of two GO terms and their
relative location in the GO graph.
Tuikkala et al. [4] investigated whether semantic sim-

ilarity could improve the performance of missing value
imputation. Their experimental results demonstrated that
even a small proportion of annotated genes can pro-
vide improvements in data quality helpful for imputation.
Besides GO, other biological knowledge has also been
applied to missing value imputation. Xiang et al. [18] pro-
posed a histone acetylation information aided imputation
method, called HAIimpute, which incorporates histone
acetylation information into conventional KNN and LLS
algorithms. Ni et al. used protein-protein interaction (PPI)
annotation data, and proposed PPI-KNNimpute and PPI-
LLSimpute methods [5]. All of these three studies tested
their methods on yeast cDNAmicroarray data, benefitting
by the comprehensive annotation available for yeast.
In recent years, miRNA microarrays have become more

and more common because miRNAs play important roles
in many biological processes and the development of
complex diseases. Especially, the correlation of miRNA
expression profiles with clinical-pathological character-
istics of cancer patients has been largely investigated.
MiRNA expression data is of great help for tumor classifi-
cation and can be effective biomarkers for prognosis even
more precisely than protein-coding genes [19, 20]. The
miRNAs expression profiles also have missing values due
to the low expression intensity of miRNAs. Basically, the
estimation of missing values in miRNA arrays can follow
the same strategies for DNA arrays. However, the domain
knowledge is hard to be utilized because there is no direct
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GO annotation or similar standardized functional anno-
tation for miRNAs. Therefore, the imputation of missing
values for miRNA arrays with domain knowledge is a
relatively tough job and seldom studied.
Considering that miRNAs play their roles mainly by reg-

ulating the expression of target genes at post-transcription
level, the functional similarity of miRNAs can be inferred
based on GO semantic similarities of their target genes
[21]. Identification of target gene is an important issue
and also a well-studied bioinformatics task in miRNA
study. SomemiRNA databases record known targets, such
as TarBase [22], which collects manually curated target
genes with experimental support. Widely used computa-
tional tools for predicting targets of mammalian miRNAs
include picTar [23], TargetScan [24], miRanda [25, 26], etc.
The GO annotation of target genes can be searched in GO
database and pairwise similarity can be defined. Then the
functional similarity between miRNAs can be computed
according to their target genes’ similarities.
We combine miRNA functional similarity with

Euclidean distance of expression profile and develop a
new imputation method. The new method is evaluated
on two miRNA datasets from breast cancer research,
on which the new method achieves improved perfor-
mance compared with the expression-based method.
The experimental results demonstrate that the functional
knowledge retrieved from target genes of miRNAs can
help to improve the estimation of missing values for
miRNA expression profiles.

Results and discussion
Data source
In this study, we used two public miRNA data sets from
NCBI [27], namely GSE26659 [28] and GSE40525 [29].
Both profiles were measured by Agilent-019118 Human
miRNAMicroarray 2.0 G4470B containing probes for 723
human and 76 human viral microRNAs from the Sanger
database v.10.1.
In order to evaluate the performance of the newmethod,

the original data sets were preprocessed by removing
miRNAs with missing values. Then new data sets with
different percentages of missing values were simulated
from the preprocessed complete data. Considering that
missing values are generally not evenly distributed over
the whole profile, we did not generate the data sets by ran-
domly selecting missing elements. Instead, we randomly
selected 50 % of the miRNAs which were assumed to have
incomplete profiles, and then randomly assigned missing
elements in each of these miRNAs’ profiles. The missing
rate was set to be a random integer percentage between
1 and p % (maximum missing rate). Obviously, the bigger
p is, the more missing values are present in the generated
data sets. When p is equal to 20, it can be calculated that
the expected value of missing rate of the whole simulated

data set is 5 %. By changing the value of p, we can get sim-
ulated sets with different missing rates. The generation
of data sets was repeated 100 times. Different imputation
methods were tested and evaluated on all the simulated
data set, and the accuracies were averaged to obtain the
final result.

Evaluation criteria
There are multiple criteria for evaluating imputation algo-
rithms. A commonly used one is the normalized root
mean square error (NRMSE). Let Gest be the estimated
data matrix by the imputation algorithm, and Gtrue be the
matrix of the original complete data matrix. The NRMSE
is defined as:

NRMSE =
√
mean[ (Gest − Gtrue)2]

σ [Gtrue]
, (3)

where σ denotes standard deviation.

Experimental results
Based on semantic similarity retrieved from GO graph
and BMA (best match average) strategy for calculating
similarity of two sets, we obtain the GO-based functional
similarity matrix H of miRNAs. Before proceeding to the
evaluation of the new method, we conduct a hierarchical
clustering and draw a heat map of H. Figure 1(a) and (b)
show clustering results for the data sets extracted from

GSE26659 and GSE40525, respectively. It can be observed
that the miRNAs are grouped into four large clusters dis-
tinguished by depths of color. Different from conventional
imputation method, given the new similarity measure, the
nearest neighbors of a certain miRNA are more likely
chosen within its function cluster. We use the new sim-
ilarity measure in KNN imputation method. Figure 2(a)
and (b) compare the NRMSE of conventional KNN and
GO-based KNN with different values of K for GSE26659
andGSE40525, respectively, wheremaximummissing rate
is 40 % (the expected value of missing rate for the whole
simulated data set is 10 %). GO-based KNN has better
performance than conventional KNN no matter what the
value of K is. The results also suggest that K has great
impact on the accuracy of imputation. The two data sets
have a similar pattern of varying accuracies, and the opti-
mal value of K is 4 or 5, which is much smaller than that
used in the imputation for mRNA expression profiles.
Figure 3(a) and (b) compare expression-based and GO-

based methods at different maximum missing rates, by
using KNN and LLS (local least squares). The maximum
missing rate, i.e. p, is an upper bound of the percent-
age of missing values. For example, when p equals 40 %,
the missing rate is randomly assigned between 1 and
40 %. In GSE40525 data set which has 120 samples, a
miRNA which is selected to have missing values can
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(a) GSE26659 (b) GSE40525

Fig. 1 Hierarchical clustering of functional similarity matrix of miRNAs

have 48 missing values at most and one missing value at
least with equal probability. Such generation of missing
values is more practical than completely random model
with regard to the real distribution in microarray data.
Here K is set to be 5. Solid lines denote conventional
methods, and dotted lines denotes GO-based methods.
These two figures show that incorporating GO knowl-
edge can improve the imputation accuracy for both KNN
and LLS. The improvement in LLS is not as obvious
as in KNN, since we only use GO-based measure to
select neighbors in LLS, thus the GO information has
less impact on the performance of LLS than that of
KNN. Generally, the LLS method has much less NRMSE
while takes more computation time compared with
KNN.

Compared with previous studies which utilize GO
information for the imputation of missing values on
mRNA expression data, the improvement on miRNA data
is not that significant. Actually, we have found that the
NRMSE of miRNA data sets using conventional imputa-
tion methods is much less than that of mRNA data. The
possible reasons are: a) miRNA profiles with hundreds of
miRNA have much smaller scale than mRNA profile with
tens of thousands of probes; b) the expression levels of the
same miRNA vary slightly across samples. In addition, we
observe that higher maximum missing rate does not nec-
essarily results in bigger NRMSE. Similar cases are also
present in mRNA expression data sets [4]. And the non-
completely random generation of missing values may also
increase the probability of such result.

(a) GSE26659 (b) GSE40525

Fig. 2 Comparison of NRMSE at different values of K
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(a) GSE26659 (b) GSE40525

Fig. 3 Comparison of NRMSE at different maximummissing rates

Discussions
This study focuses on effective incorporation of biological
knowledge into the imputation of missing values in
miRNA microarray data. Unlike protein-coding genes,
the functional annotation of miRNAs cannot be utilized
directly because no such database is available. Since miR-
NAs play their roles mainly by suppressing or silencing
their target genes’ expression, two miRNAs may have
strong correlation on their function and expession pattern
if their targets are involved in the same biological process
or have similar function. By transferring GO-based pair-
wise similarity of genes to the similarity of two target sets,
the functional similarity of two miRNAs can be indirectly
inferred.
Although the experiments have demonstrated the per-

formance improvement, it is obvious that biological
knowledge can only be treated as a data source com-
plementary to expression levels. On one hand, function
similarity does not directly correlate with expression sim-
ilarity [30]. Similar function only indicates that two miR-
NAs have similar expression pattern with high probability.
On the other hand, the process of calculating GO-based
similarity for miRNAs has some drawbacks.
Firstly, the GO-based semantic similarity does not

accurately reflect gene function similarity. Although we
retrieve semantic information in the Molecular Function
DAG, and the G-SESAME method has considered struc-
tural information, there is still a lot of information lost
here. For example, the method only considers common
ancestors but neglects common descendants. Moreover,
even though we have a perfect method which compre-
hensively utilizes GO graph information, this semantic

similarity is not necessarily corresponds to real functional
similarity because the annotation is incomplete.
Secondly, in order to cover as many miRNAs in our

data set as possible, we adopt computational tools for tar-
get gene identification, which may have unreliable results
although we have set a threshold to control false positives
and false negatives.
In addition, some process steps within the whole work-

flow, which have great impact on the final results, need
further studies. The first issue is the simulation strat-
egy for generating the evaluation set with artificial miss-
ing values. Although the partial-random model used in
this study seems more reasonable than complete ran-
dom model, how to simulate missing values according
to their real distribution in microarray profiles needs
careful studies. The second issue is the integration strat-
egy from pair-wise GO similarity to miRNA similarity.
Here a two-step best match average method is con-
ducted, while other strategies may be examined. For
example, each miRNA can be directly regarded as a
GO set with redundant GO terms from its targets.
A pairwise similarity for such redundant set can be
defined.
As more and more miRNA functions have been

revealed, available annotation for miRNAs increase
rapidly, and other biological knowledge with regard to
miRNAs can also be utilized. For example, Wang et al.
[30] usedmicroRNA-associated diseases to definemiRNA
functional similarity. Undoubtedly, the miRNA functional
similarity provides complementary but important infor-
mation to ensure the quality of data analysis on miRNA
expression profiles.
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Conclusions
Biological domain knowledge has been demonstrated to
be very helpful to improve the imputation of missing val-
ues in DNAmicroarray data profiles. However, because of
the lack of function annotation for miRNAs, the domain
knowledge-based imputation methods have rarely been
studied for miRNA expression data. In this paper, we
propose to use the pairwise functional similarity of miR-
NAs based on the semantic similarity of target genes in
GO graph as a complementary information for expression
data and define a new similarity measure. This new mea-
sure can work together with conventional KNN and other
imputation methods. The experiments have been con-
ducted on two breast cancer miRNA expression profiles,
and the normalized root mean square error (NRMSE) is
compared under different values ofK andmaximummiss-
ing values. The GO-based new imputation method shows
decreased NRMSE on both data sets.
Our method is applicable to not only human miR-

NAs but also other species as long as the target genes
can be obtained. With the rapid accumulation of miRNA
microarray data, the studies on domain knowledge-based
function similarity for miRNAs are of great need to
improve expression data quality and eventually benefit for
the identification of novel miRNA biomarkers and novel
potential functions of miRNAs.

Methods
As shown in Fig. 4, our method consists of four major
parts. The first part builds a connection between miRNAs

and target genes. The second part builds another connec-
tion between genes and GO terms. The third part focuses
on the computation of pairwise similarity of GO terms,
and the last part implements KNN (or other imputation
algorithm) with the new similarity measure. The whole
workflow can be summarized in the following steps:

1. Identify target genes of miRNAs via computational
prediction tools or public databases

2. Search GO terms annotated for each target gene
obtained in Step 1

3. Compute similarity for each pair of GO terms
obtained in Step 2

4. Compute similarity for each pair of target genes from
the similarity of their GO terms

5. Compute similarity of each pair of miRNAs from the
similairty of their target genes

6. Define new similarity measure by combining
GO-based similarity and expression level-based
distance

7. Impute missing values with the new measure

GO similarity
In order to compute the functional similarity of two genes
g1 and g2 from their GO annotation, we firstly retrieve
GO term list of each target gene for miRNAs. Two genes
correspond to two GO sets, i.e., Tg1 = {t1, t2, · · · , tk},
Tg2 = {t′1, t′2, · · · , t′s}, and the computation of gene pair-
wise similarity turns out to be the similarity between two
GO sets. There are two issues here. The first issue is

Fig. 4 Flowchart of GO-based imputation algorithm for miRNA expression data
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to define the similarity between two GO terms accord-
ing to their correlation in the GO DAGs. We adopt
G-SESAME implemented in R package GOSemSim [31],
and compute GO similarity in the DAG of Molecular
Function (MF), which is a widely used knowledge base
of gene function. The second issue is how to integrate
the pairwise similarities to the similarity between two
sets.
Given two sets of GO terms Tg1 and Tg2 , which have k

and s terms respectively, and similarity of each pair of GO
terms, there are four basic methods to obtain gene sim-
ilarity, i.e. the similarity of these two sets, namely max,
avg, rcmax and BMA [31]. The former two methods com-
pute similarity for each pair of (t1, t2), where t1 ∈ Tg1 and
t2 ∈ Tg2 , and use the maximum (max) or average (avg)
value to represent the similarity of the two genes. These
two methods have obvious disadvantages. The max strat-
egy fails to consider the overall similarity of two sets. For
example, it regards the similarity of two sets as 1 even if
they have only one term in common. As for the ave strat-
egy, even though the two sets are exactly the same, the
similarity between two sets is not 1. The rcmax method
works like following:

1. For each term ti ∈ Tg1 , find the maximum similarity
between ti and the terms in Tg2

2. Get average value of the k maximum values obtained
for all terms in Tg1 from 1), and name it asmax1

3. For each term tj ∈ Tg2 , find the maximum similarity
between tj and the terms in Tg1

4. Get average value of the s maximum values obtained
for all terms in Tg2 from 3), and name it asmax2

5. Assignmax(max1,max2) to the gene similarity

rcmax is often biased when the sizes of GO sets differ
considerably. The last method BMA (best match average)
has the same steps 1) and 3) of rcmax. The difference is
that it calculates the overall average value of k maximum
values of terms in Tg1 and s maximum values of terms in
Tg2 . The gene similarity is defined in Eq. 4.

simBMA(g1, g2) =

k∑
i=1

max
1≤j≤s

sim(ti, t′j) +
s∑

j=1
max
1≤i≤k

sim(ti, t′j)

k + s
(4)

BMA has been used in many studies [15, 21]. Here we
also adopt BMA to compute gene similarity based on GO
pairwise similarity. Since each miRNA corresponds to a
set of target genes, miRNA similarity can be computed by
gene similarity in the same manner.
In this study, we use computational prediction tools to

identify targets of miRNAs, because the experimental-
supported target databases, like TarBase, only house a
small portion of miRNAs in the data sets. We have found

that miRanda provides prediction results for the most
miRNAs in our date sets than other tools. In order to avoid
too many false positives, we set a threshold of mirSVR
score ≤ −1 to ensure the prediction accuracy. It should
be noted that the naming of some miRNAs is inconsistent
between databases andmiRNA array.We refer tomiRBase
[32] to deal with the inconsistency.

GO-based imputation algorithm
In our method, we combine the GO-based functional sim-
ilarity with the Euclidean distance obtained from expres-
sion profiles as a new measure. Here we adopt a similar
strategy used in Tuikkala’s work [4]. Given the functional
similarity matrixH and Euclidean distance matrixD, each
element of the new distance matrix C is defined as Eq. 5.

Ci,j = (1 − Hi,j)
αDi,j, (5)

where i, j = 1, · · · , n, and n is the number of miRNAs in
the data set. α is a positive parameter of weight, denoting
the impact of GO-based similarity in the combined mea-
sure. If α = 0, C turns out to be D. The bigger α is, the
more impact that GO information has on the selection
of nearest neighbor and performance of imputation. The
value of α is determined on an evaluation set extracted
from the original complete data set.
Given the new distance matrix C, the following steps

are the same as conventional expression-based imputation
algorithm. Assume that we want to estimate miRNA gi’s
missing value at the tth sample, and the nearest K miR-
NAs according to the new measure are gs1 , · · · , gsK . The
estimated value Ḡi,t = ws1Gs1,t +ws2Gs2,t +· · ·+wsKGsK ,t .

For KNN, wsj = 1/Cgi ,gsj∑
1/Cgi ,gsj

, 1 ≤ j ≤ K , and for LLS, wsj

are the coefficients of the linear combination, obtained by
solving the least squares optimization problem.
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