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Abstract

Background: Hepatocellular carcinoma (HCC) is an aggressive epithelial tumor which shows very poor prognosis
and high rate of recurrence, representing an urgent problem for public healthcare. MicroRNAs (miRNAs/miRs) are a
class of small, non-coding RNAs that attract great attention because of their role in regulation of processes such as
cellular growth, proliferation, apoptosis. Because of the thousands of potential interactions between a single miR
and target mRNAs, bioinformatics prediction tools are very useful to facilitate the task for individuating and selecting
putative target genes. In this study, we present a chemically-induced HCC mouse model to identify differential
expression of miRNAs during the progression of the hepatic injury up to HCC onset. In addition, we describe an
established bioinformatics approach to highlight putative target genes and protein interaction networks where they
are involved.

Results: We describe four miRs (miR-125a-5p, miR-27a, miR-182, miR-193b) which showed to be differentially expressed
in the chemically-induced HCC mouse model. The miRs were subjected to four of the most used predictions tools and 15
predicted target genes were identified. The expression of one (ANK3) among the 15 predicted targets was further
validated by immunoblotting. Then, enrichment annotation analysis was performed revealing significant clusters,
including some playing a role in ion transporter activity, regulation of receptor protein serine/threonine kinase signaling
pathway, protein import into nucleus, regulation of intracellular protein transport, regulation of cell adhesion, growth
factor binding, and regulation of TGF-beta/SMAD signaling pathway. A network construction was created and links
between the selected miRs, the predicted targets as well as the possible interactions among them and other proteins
were built up.

Conclusions: In this study, we combined miRNA expression analysis, obtained by an in vivo HCC mouse model, with a
bioinformatics-based workflow. New genes, pathways and protein interactions, putatively involved in HCC initiation and
progression, were identified and explored.

Keywords: MicroRNA, hepatocellular carcinoma, HCC mouse model, diethylnitrosamine, DEN, target prediction

* Correspondence: alessandra.tessitore@univaq.it
1Department of Biotechnological and Applied Clinical Sciences, University of
L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
Full list of author information is available at the end of the article

© 2015 Del Vecchio et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Del Vecchio et al. BMC Bioinformatics  (2015) 16:408 
DOI 10.1186/s12859-015-0836-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0836-1&domain=pdf
mailto:alessandra.tessitore@univaq.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Hepatocellular carcinoma (HCC) is a highly aggressive
epithelial tumor originating both from mature hepatocytes
and stem cells [1]. It is characterized by poor prognosis
and very high rate of recurrence. Epidemiological studies
indicate that HCC is the fifth most common cancer and
the third most common cause of cancer-related death
worldwide [2]. Major risk factors include HBV/HCV in-
fection, alcohol/drug abuse, aflatoxin exposure and genetic
defects such as primary hemochromatosis and Wilson’s
disease [3]. The use of animal models helped to better
understand the different phases of the entire cancerous
process. In this regard, animals’ treatment with diethylni-
trosamine (DEN) is one of the most frequently used ap-
proaches [4]. Diethylnitrosamine is a well-known hepatic
carcinogen. At the cellular level, particularly inside the
hepatocyte, it acts as an alkylating agent, producing le-
sions and DNA mutations [5]. A study demonstrated that
DEN administration for several weeks induces a rapid can-
cer development and promotes HCC formation in 100 % of
male and 10–30 % of female mice [6]. Literature reports in-
dicate that tumor molecular profile of mice exposed to
DEN are comparable to those related to human HCC cases
characterized by a poor prognosis [7]. This is the reason
why it is considered a typical approach for hepatocarcino-
genesis in vivo studies. MicroRNAs (miRNAs) are a class of
small, non-coding RNAs that generated a great impact in
the molecular biology field. They can negatively regulate
the expression of target genes in a post-transcriptional
manner, inducing mRNA degradation or inhibiting mRNA
translation [8]. After their discovery, miRNAs received
enormous attention because of their ability to regulate al-
most every aspect of cellular functions, such as differenti-
ation, development, apoptosis and proliferation [9]. MiRNA
deregulated activity has been described in various patholo-
gies including cancer [10]. In order to make easier the iden-
tification of specific target genes, bioinformatics tools have
been set-up. They provide the possibility to analyze a par-
ticular sequence located at the 5’ end of miRNA, called
“seed region”, in order to predict the most probable genes
potentially interacting with it. Although complementarity
remains the main feature, the tools take into account other
important characteristics such as site accessibility, sequence
conservation, multiple binding sites [11]. Bioinformatics
tools have greatly improved methods for detection of
miRNA targets, due to their ability in quickly processing
huge datasets. Looking at literature, some reports describe
the exploitation of these algorithms to make prediction
about miRNAs-target gene interactions for HCC, but the
majority of these studies halted to the miRNA profiling and
the validation of target genes for a specific miRNA [12, 13].
In this paper, we moved forward in order to obtain a list of
potential genes, all together related to a small group of sig-
nificantly altered miRNAs in HCC. So, we started to predict

putative target genes by making use of relatively different
bioinformatics algorithms [14–18]. Secondly, we conducted
enrichment annotation analysis to identify functional clus-
ters which could be related to those target genes. Finally,
we built up networks to visualize the possible circuits and
pathways where the selected miRNAs could be involved,
providing a resource for further functional studies on HCC
pathogenesis.

Results
Histological analysis
Livers from DEN-treated and control mice were sub-
jected to gross anatomical examination and microscopic
analysis. Little nodular structures (0.1–0.2 cm maximal
dimension) were observed in 20 % of mouse livers be-
longing to 6 months DEN-treated animals (Fig. 1a),
whereas all of the mouse livers from 11 months group
developed voluminous hepatic nodules (Fig. 1b). In total,
fifty two nodular structures with maximal dimensions
ranging from 0.3 to 2 cm were excised. Infiltrating lym-
phocytes were shown already after 3 months from DEN
treatment, indicating the presence of inflammatory pro-
cesses (Fig. 1d). In particular, 50 % of hepatic tissue sam-
ples from 3 months DEN-treated animals showed
infiltrating lymphocytes, and this percentage increased
up to 70 % in the 6 months DEN-treated group.
Regarding the 11 months group, it was observed that
100 % of samples were characterized by lymphocyte in-
filtration (Fig. 1f ). Histological evaluation showed typical
dysplastic alterations in samples from 6 months group
(Fig. 1e). Moreover, 11 months-hepatic tissues exhibited
particular histological features such as hyperaemia, neo-
angiogenesis, micronodules and wide fibrotic branches,
showing a specific feature disrupting the normal hepatic
lobular architecture (Fig. 1f ).

MiRNAs expression
Pooled RNAs from whole hepatic tissues of mice sacri-
ficed after 3, 6 and 11 months were subjected to miR-
NAs’ expression analysis. Several miRNAs were found
differentially expressed in hepatic tissues from DEN-
treated animals, with respect to those from control mice,
after 3, 6, and 11 months, and in tumors with respect to
controls or peritumor liver tissues from DEN-treated
animals. Among them, and after a literature review, we
focused our analysis on four miRNAs (miR-27a, miR-
125a-5p, miR-182, miR-193b), whose dysregulated ex-
pression was already described in hepatocarcinogenesis
[19–26] and also observed in a high-fat diet-induced
hepatocarcinogenesis C57BL/6J model we are analyzing
(Tessitore et al., “unpublished observations”), further
supporting their putative role in liver cancer. We moni-
tored the miRNA expression level during the above-
mentioned time-points (Table 1). An expression increase
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of miR-125a-5p, which was up-regulated after 11
months, was detected in DEN mice. MiR-182 was iso-
expressed in DEN-treated groups at 3 and 6 months,
whereas it was found to be up-regulated at 11 months.
MiR-193b appeared iso-expressed or weakly over-
expressed during the experimental time points in DEN-
treated animals. MiR-27a appeared to be down-regulated
at 3 months and showed high expression level at 6 and
11 months in DEN-treated mice with respect to con-
trols. MiR-125a-5p, miR-182, miR-193b and miR-27a re-
sulted all over-expressed in tumors in comparison to
hepatic tissues from control mice, whereas miRNA-
125a-5p, miR-182 and miR-193b displayed over-
expression or slight increase in the comparison between
tumors and paired hepatic tissues from DEN-treated
mice.

Target prediction
A bioinformatics workflow focused on identifying puta-
tive target genes with respect to our selected microRNAs
was set up and used for the study. A schematic repre-
sentation is provided in Fig. 2. The first step of analysis
involved the construction of a local database (DB) that
contained information related to miRNAs and target
prediction for Mus musculus (Table 2). The selected
microRNAs were analyzed by MiRanda, TargetScan,
PITA, and Rna-22, which are some of the most used tar-
get prediction tools, in order to identify target genes all
at once regulated by the four microRNAs. The first two
programs make predictions employing a conservation
filter, whereas PITA and Rna-22 are based on free-
energy criteria. MiRanda generated two lists including
all targets with a good miRSVR score and a good

A B C

D E F

Fig. 1 Progressive liver damage induced by DEN. a-b) Livers from mice sacrificed at 6 (a) and 11 months (b). Dark arrows indicate nodular
structures visible on liver’s surface. c) H&E staining showing normal hepatic parenchyma (L lobe, original magnification 10X) from a control mouse
sacrificed after 3 months. d-e) Mouse hepatic tissues (L lobe) from 3- (D, original magnification 10X) and 6-months (E, original magnification 40X)
DEN-treated mice. Dashed circle and arrows indicate the presence of infiltrating lymphocytes and cellular atypia. f) Liver parenchyma from an
11-months DEN-treated mouse (L lobe, original magnification 10X). Marked hyperaemia, micronodules and high density of perisinusoidal lymphocytes
are detected

Table 1 Relative expression of miRNAs considered for the analysis in livers and tumors

RQ 3 M RQ 6 M RQ 11 M RQ 11 M RQ 11 M

(DEN/CTR) (DEN/CTR) (DEN/CTR) (DEN-T/CTR) (DEN-T/DEN)

125 a-5p 0,75 0,92 2,2 3,34 1,52

182 0,97 1,05 3,52 10,09 2,86

193 b 1 1,65 1,33 4,89 3,67

27 a 0,17 15,72 4,27 4,89 1,11

RQ value is the relative quantification of miRNA expression, depending on the treatment’s length (3, 6, 11 months), obtained by comparing hepatic samples from
DEN-treated (DEN), controls (CTR), and tumor samples (DEN-T) from DEN-treated mice, as indicated in the round brackets. Results are mean of 3 iterations
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conservation score, respectively. Then, it searched for
links among the lists and created an intersecting final
table comprising all target genes with the highest two
types of scores. In order to work with stringent criteria
and to limit false positive prediction results, a list of 29
“Good miRSVR score, non-conserved miRNA” genes,
containing the most probable target genes potentially
interacting with those miRNAs, was obtained. Selected
microRNAs were then subjected to TargetScan, by tak-
ing into consideration the Pct score for measuring site
conservation and for better translating the results from
mouse to human. From the “Conserved Family Info Re-
sult” table, a total number of 148 genes was obtained.
PITA and Rna-22 analysis resulted in a final group of 91
and 178 genes, respectively. All the data are described in
more detail in an additional file (see Additional file 1:
Table S1). For the final analysis, we decided to consider

only genes predicted by at least 2 of the above-mentioned
4 prediction programs. ANK3 mRNA was the unique
target predicted by three different programs (MiRanda,
TargetScan, PITA). In addition to ANK3, fourteen mRNAs
were predicted by 2 different programs (Fig. 3, Additional
file 2: Table S2).

ANKG expression in livers and tumors
In order to assess the applicability and pertinence of the
described workflow, liver tissues from 11 months DEN-
treated and control mice as well as tumors from 11
months DEN-treated mice were analyzed for the expres-
sion of ANKG, which is the protein product of ANK3.
ANKG isoforms at 200, 170, 120, and 105 kDa have
been detected in mouse tissues [27]. Results from im-
munoblotting (Fig. 4) show a weaker expression of the
170 kDa ANKG isoform in liver tissues from 11 months
DEN-treated mice with respect to those from 11 months
controls, and a further reduced ANKG expression is ob-
served in tumors from 11 months DEN-treated animals.
The results are in line with those evidenced in miRNA
expression analysis, which, on the contrary, show a cor-
responding miRNAs’ expression level increase in DEN
tissues and tumors. The evidences obtained provide a
validation of in silico data.

Enrichment annotation analysis and network construction
For the network construction and the enrichment annota-
tion step, we took advantage of Genemania [28], which

Fig. 2 Workflow of the miRNA analysis. MiR-125a-5p, miR-27a, miR-193b and miR-182 have been considered in our analysis. We look for their
common targets on four on-line DB (microrna.org, Targetscan.org, PITA and Rna-22) in order to obtain four predicted targets lists, one for each DB.
From these lists, only 15 targets have been considered. We gave the filtered list of targets as input to GENEMANIA in order to obtain a physical relation
network. Finally, we built up a network showing the relationships between miRNAs and targets, as well as those among targets by using Neo4j

Table 2 Databases and Tables used for miRNAs/targets
interaction analysis

DB name Considered table

Mirbase Data Base mirnaTable

Microrna Data Base gcpredSCTable

PITA Data Base PITA_sites_mm9_0_0_ALL table

RNA22 Data Base mus_musculus_ensembl 65 table

TargetScan Mouse Data Base Conserved Family Info table

The on-line DB (left) and the respective specific tables considered to extract
targets’ information (right) are reported
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operated a schematic clusterization of the gene list, also
reporting FDR (False Discovery Rate) and gene coverage
for each cluster. The results obtained were included in a
Neo4J database [29] to provide a graphical representation
of miRNAs-targets interactions, including the 15 top tar-
get genes as well as 59 secondary genes (Fig. 5). Concern-
ing the 15 top target genes, we extracted 26 significant
clusters (FDR ≤ 0.05) regarding multiple cellular mecha-
nisms such as ion transporter activity, regulation of recep-
tor protein serine/threonine kinase signaling pathway,
protein import into nucleus, regulation of intracellular
protein transport, regulation of cell adhesion, growth fac-
tor binding, positive regulation of pathway-restricted
SMAD protein phosphorylation (see Additional file 3:
Table S3). Five genes (SCN2B, SLC8A1, KCNC1, ACVR2A,
CYLD) appear with a “5-times” average in those categor-
ies. Moreover, in order to check for significant categories
specifically related to hepatic cancer, we extended the ana-
lysis to the whole 59 secondary genes set and we obtained
20 significant clusters (Additional file 4: Table S4). In
addition, we focused the analysis on a subset of 33
out of 59 secondary genes which, on the basis of
PubMed search results, appeared to be specifically de-
scribed in liver tumor pathogenesis (Additional file 5:
Table S5). In this case, we collected 14 significant

functional clusters (Additional file 6: Table S6). Regu-
lation of TGF-beta/SMAD signaling pathway, which is
known to be involved in liver damage and HCC [30],
was evidenced among the most significant and im-
portant clusters identified by the above-mentioned
data elaborations (Additional file 5: Table S5).

Discussions
In the present study we show the results of a massive ana-
lysis for retrieving possible targets and pathways involved
in the initiation and development of chemically-induced
hepatocellular carcinoma, by using the C57BL/6J mouse
model. The adoption of a combination of microRNAs
analysis and computational-based approach allowed us to
produce a set of 15 top genes predicted to be the best po-
tential targets for four microRNAs (miR-125a-5p, miR-
182, miR-193b and miR-27a). The following enrichment
annotation analysis, performed both on the 15 top genes
and the resulting secondary genes, allowed us to identify,
among several pathways and genes involved in, some
which plays an important role in liver tumor pathogenesis
(i.e., TGF-beta/SMAD signaling pathway). Among the 15
top targets, some protein products have been already de-
scribed in oncogenesis and metastasis. ANK3 seems to be
the most solid candidate, being predicted by 3 out of 4
programs: in particular, it results a suitable target for miR-
182, which is greatly up-regulated at 11 months in tumor
samples compared to controls. ANK3, in mouse, is distrib-
uted in several cell types, especially in renal, hepatic, mus-
cular and nervous tissues, where different isoforms (200,
170, 120, and 105 kDa) have been detected [27]. Our re-
sults show expression decrease of the protein product an-
kyrin G (170 kDa) in liver tissues from DEN-treated with
respect to those from control mice, and a further reduced
expression in tumors with respect to DEN peritumor tis-
sues. Data are in line with the contextual expression levels
of miRNAs in hepatic tissues and tumors, providing evi-
dence about the effectiveness of the procedure here pre-
sented and used. ANK3, member of the ankyrin protein
family (ANK1, ANK2 and ANK3), is typically known as
epithelial ankyrin. Its protein product acts as a bridge be-
tween the plasma membrane and cytoskeleton, where it
links spectrin-proteins to integral membrane proteins and
is involved in regulating cellular functions such as cell mo-
tility and proliferation [31]. In several human cancer types,
ANK3 appeared to be down-regulated contributing to a
poor prognosis [32]. Some authors proposed a possible
connection between ANK3 dysregulation and epithelial-
to-mesenchymal transition (EMT) [33]. They stated that
decreased levels of Ankyrin-G in tumoral cells caused by
the EMT process could free-up the neurotrophin
receptor-interacting melanoma antigen (NRAGE) for
translocation into the nucleus, where it could interact with
the repressor protein TBX2 to suppress p14ARF expression.

Fig. 3 Schematic diagram illustrating the resulting 15 potential top
targets for the selected microRNAs. The list includes only genes
predicted by at least 2 of 4 prediction tools. Blank boxes represent
too low (under the considered cut-off, see “Enrichment annotation
analysis and network construction” section in “Materials and
Methods”) or null association with microRNAs. Genes predicted by
miRanda genes predicted by TargetScan genes

predicted by PITA genes predicted by Rna-22
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In normal cells, p14ARF acts to block NRAGE-TBX2 com-
plex, allowing NRAGE sequestration by Ankyrin-G. This
confers sensitivity to “anoikis”, a specific apoptosis program
activated when cells are able to detach from extracellular
matrix and adhere to other substrates in order to limit their
migration potential. Therefore, it could be hypothesized
that p14ARF down-regulation could protect cancer cells
from anoikis activation. An indirect confirmation of the
ANK3/EMT relation comes from an interesting work [34]
where the role of HOOK1, an interaction ANK3 partner
we previously observed in Genemania network (see “En-
richment annotation analysis and network construction”
section in “Materials and Methods”), was described in this
phenomenon. The authors showed that HOOK1 displayed
a regulatory effect on EMT, since its overexpression led to
EMT inhibition. Conversely, reduced HOOK1 expression
level contributed to EMT phenomenon. The existence of a
physical link for Ankyrin G and HOOK1 provide thus an
additional clue to the hypothesized role of ANK3 in the

regulation of EMT for tumor metastases [35]. Another
compelling mechanism involving a possible role of ANK3
in cancer pathogenesis is presented by an elegant work by
Ignatiuk et al. [36] where it was demonstrated that smaller
isoforms of ANK3, called ANK120 and ANK105, were able
to bind the PDGFR-binding subunit of PI3K, p85, influen-
cing the lysosomal degradation of the receptor. These pro-
teins, particularly expressed in liver, lack the repeat domain
which is responsible for their positioning on plasma mem-
brane and for this reason they localize to late endosomes
and lysosomes to target materials to be degraded [37].
ANK120 and-105 overexpressing-cells exhibited a rapid
degradation followed by reduced levels of PDGF receptor
and an overall minor sensitivity to proliferation upon PDGF
stimulation. In HCC cells, down-regulation of these iso-
forms could lead to delayed PDGFR degradation that could
give rise to a sustained signalling of PDGF and downstream
pathways, resulting in enhanced proliferation. Keeping in
mind that PDGFR expression is reported to be up-

A B

Fig. 4 Ankyrin-G expression levels in liver tissues and tumors. a From the top to the bottom: AnkG expression in liver tissues from 11 months old
untreated control mice, DEN-treated mice, and tumors, each excised from the corresponding mouse analyzed in the previous DEN panel (i.e.,
1457-1457T, 1557-1576T, etc.). Numbers indicate mice ID, M marker. b Densitometric analysis of the western blots presented in A. The intensity of
the bands of AnkG was normalised to the intensity of the actin bands, and the obtained values were plotted (Y axis). The actin reference value
was arbitrarily set to 1
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regulated in HCC human livers [38], focused analysis of this
mechanism could be very intriguing to explore.
CYLD, here identified as a potential miRNAs target

and in functional clusterization, is a protein implicated
in the regulation of protein localization and transport in-
side the cells. CYLD is a gene whose loss or mutations
predispose to the development of human cylindroma, a
particular type of hair follicle benign tumor. It encodes
for a deubiquitinating enzyme, ubiquitously expressed,
which is depicted as a tumor suppressor since it lacks its
expression in various human tumor types [39]. CYLD
removes ubiquitin chains from different molecules, such
as TNF receptor-associated factor 2/6 (TRAF2/6) and B-
cell limphoma-3 (BCL-3), thus participating in pathways
involved in cell proliferation and survival [40]. Literature
reports illustrated some mechanisms specifically involving
this gene in tumor tissues. Pannem et al. [41] showed that
CYLD-deficent mice developed hepatic tumors after
DEN-treatment, using an animal model similar to that
here described. At the molecular level, CYLD down-
regulation led to robust activation of JNK1 which reflected
in c-Myc levels stabilization and enhanced transcription of
cyclin-D1. This mechanism could justify the elevated pro-
liferation rates observed in HCC cells. On the other hand,
other researchers demonstrated also direct CYLD cross-
talk with NF-kB pathway [42]. In this case, CYLD

influenced this pathway through the control of BCL-3
localization. Indeed, BCL-3 was able to associate with NF-
kB heterodimers and triggered the transcription of NF-
kB-related genes such as cyclin-D1, but only when it was
inside the nucleus [43]. In normal cells, BCL-3 was
retained into the cytoplasm, due to the elimination of Lys-
63 polyubiquitin chains, a task mediated by CYLD itself.
During transformation, growth-promoting stimuli pro-
duced BCL-3 transfer from the cytoplasm to the peri-
nuclear region. Here, decreasing CYLD levels activated
BCL3 accumulation followed by its import into the nu-
cleus, probably mediated by an interaction between the
polyubiquitin chains of BCL-3 and importins. Once inside
the nucleus, BCL-3 can bind to NF-kB to form a complex
that was able to selectively recognize NF-kB binding sites,
stimulating trascription of oncogenes. Based on our find-
ings, CYLD was predicted to be a target of miR-125a-5p
and miR-182. Effectively, CYLD is validated for human
miR-182, according to miRTarBase (ISBLab) [44]. In light
of all these evidences, we can deduce that miR-125a-5p
and miR-182 could modify CYLD expression in cancerous
tissues causing a marked reduction.
Clusterization analysis reveals the presence of SLC8A1

as an additional gene targeted by the selected micro-
RNAs. Our data showed that this gene could be regu-
lated by miR-182 and miR-27a which have been already

Fig. 5 Neo4J software graphical visualization of miRNA-target interactions concerning the four considered miRNAs in HCC. Blue circles represent
miRNAs. Green circles represent top target genes that are physically linked with secondary genes indicated by purple circles. Orange circles represent
top target genes that have no physical interactions. Results are from Genemania elaboration. Edges indicate physical interactions
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described as over-expressed microRNAs in human HCC
cells [20, 24, 25]. SLC8A1 belongs to the large family of
solute carrier (SLC) transporters, proteins designated to
transport different molecules including nutrients, metals,
ions and drugs across the membranes [45]. Generally,
they are influx transporters and SLC8A1 represents one
of them. This gene encodes a protein, called NCX1,
which regulates the extra- and intracellular levels of so-
dium (Na+) and calcium (Ca++), allowing Na+ influx and
Ca++ efflux in normal conditions [46]. NCX1, known as
an important Ca++ exchanger in plasma membrane,
could invert this flux in pathological conditions, deter-
mining Ca++ influx. This situation provokes a rise of
intracellular calcium levels and the consequent activa-
tion of Ca++-dependent signaling pathways that stimu-
late specific responses, such as apoptosis activation. In
some human cancers, SLC8A1 expression was shown to
be decreased, producing a corresponding reduction of
intracellular calcium levels which leads to apoptosis eva-
sion and more sustained proliferation rate [47]. Moreover,
as described by Januchowski et al. [48], SLC8A1 was ad-
dressed as responsible for multidrug resistance, one of the
big problems in chemotherapeutic treatments. In this con-
text, the authors documented a strong SLC8A1 downregu-
lation in several drug-resistant ovarian cancer cell lines,
claiming that it could represent an interesting therapeutic
target for this malignancy. These data fit with our results;
indeed, miR-27a and miR-182 up-regulation might be re-
sponsible of SLC8A1 ipo-expression in HCC tissues. Al-
though there are no evidences in literature about SLC8A1
expression level in HCC, a number of studies have de-
scribed its lowered activity in other human cancers [47, 48].
Hence, it could be useful to evaluate its expression also
in another completely different environment, like HCC
could be.
Another interesting gene linked to our group of se-

lected miRNAs and comprised in the 15 top target gene
set is MAGI1 (membrane-associated guanylate kinase,
WW and PDZ domain containing 1), which is a scaffold
protein whose principal activity is to regulate and
stabilize cell-cell contacts [49]. Because of this activity,
MAGI1 is considered an important regulator for cell
junctions with tumor suppressor behaviour. Some stud-
ies elucidated its functions stating that it recruits PTEN
to the E-cadherin complexes located at junctional sites
and, subsequently, induce PTEN to downregulate
phosphatidylinositol-3,4,5 trisphosphate pools, leading to
the activation of the effector downstream molecules
[50]. Zhang et al. reported MAGI1 downregulation at
mRNA and protein level in HCC human tissues and
they found a direct correlation between its reduced ex-
pression and a poor prognosis [51]. These results fitted
with our predictions. In fact, our data indicated MAGI1 as
a putative target for all of the four miRNAs, in particular

for miR-182. Considering that all of these miRNAs were
up-regulated in tumor tissues in our system, we could
speculate that one or more of them could block the ex-
pression of MAGI1 in HCC tissues.

Conclusions
Since their discovery, many advances were made about
the understanding of microRNA functions and their pos-
sible use for biomedical purposes. Especially for cancer,
an increasing number of studies highlighted their poten-
tial in defining diagnosis, prognosis and therapy and
great efforts are being made to support the use of these
molecules in clinical applications. In this work we com-
bined biomolecular results, based on an in vivo model,
with in silico analysis. We created a workflow able to
connect miRNAs, found to be dysregulated in chemically-
induced hepatocarcinogenesis, to respective putative
targets; then we generated a wide protein interaction net-
work involving other proteins physically interacting with
them. The workflow was validated by evaluating and con-
firming the expression levels of one among the micro-
RNAs’ predicted targets (ANKG) in the animal model
here described. In conclusion, the experimental procedure
could be used and employed for further researches on
HCC initiation, development and progression.

Methods
Animal husbandry
Three groups, each composed by eight 14 days old
C57BL/6J mice (Charles River laboratories, France) were
treated with intra-peritoneal injection of diethylnitrosa-
mine DEN (25 mg/kg) in saline solution, and sacrificed
by CO2 asphyxiation after 3, 6, and 11 months. As many
groups of as many 14 days old mice were treated, in par-
allel, with intra-peritoneal physiological saline solution
injection, and sacrificed at the same experimental time
points. Animals were fed with a standard diet (Harlan
2918, Teklad Global 18 % Protein Rodent Diet) and
housed under the same conditions (T = 20-21 °C, 12 h
light–dark cycle). All experimental procedures were
performed in conformity with national and international
laws and policies (European Economic Community
Council Directive 86/609, Italian Legislative Decree 116/
92, National Institutes of Health Guide for the Care and
Use of Laboratory Animals) and were approved by the
Internal Committee and the Italian Ministry of Health.

Tissue collection
After sacrifice, livers were explanted and weighed. Liver tis-
sues were stored in RNA Later (Ambion), frozen at –80 °C
or fixed in formalin for further analyses.
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Histological analysis
Immediately after removal, hepatic tissue sections were
fixed in 10 % neutral buffered formalin. (formaldehyde 4 %
w/m, phosphate buffer 0,05M, Bio Optica). After 48 h, tis-
sue sections were paraffin-embedded using standard proce-
dures. Finally, 3 μm sections were stained with hematoxylin
and eosin and then observed by light microscope (Nikon
Eclipse E200) to visualize the general hepatic architecture.

RNA extraction
Total RNA was extracted by using MiRVana kit (Ambion)
which allows the recovery of total RNA, including the
fraction less than 200 nt in lenght, according to the manu-
facturer’s instructions. RNA quantification and purity was
measured with Nanodrop 1000 v3.7 (Thermo Scientific)
and RNA quality was verified by ethidium bromide stain-
ing, after agarose gel electrophoresis.

MiRNA analysis
Same amounts of total RNA, extracted by livers from
eight mice belonging to every experimental group, were
mixed together to obtain pools from DEN-treated and
control mice. RNAs were also extracted from 7 tumors
from 11 months DEN-treated mice (1 tumor per mouse,
tumors from the eighth mouse were too small to be
excised -2 mm maximal dimension-), and pooled together
as well. For the analysis, 700 ng of mixed RNAs were sub-
jected to retro-transcription by using the TaqMan Micro-
RNA RT kit and the Megaplex Rodent Primer Pool A
(Life Technologies), and analyzed for microRNAs’ expres-
sion levels by using the TaqMan rodent MicroRNA array
set A, v3.0 (Life Technologies), according to the manufac-
turer’s instructions. Mamm-U6 was used as endogenous
control. Each RNAs’ pool was analyzed in triplicate. To
collect data, ViiA-7 system and software (Life Technolo-
gies) was used, and the ΔΔCt comparative method was
applied. We considered Relative Quantification values
RQ ≥ 2 or RQ ≤ 0.5 as up- and down-regulation cut-off,
respectively.

Western blot
Tissues were homogenized by using Tissue Lyser (Qia-
gen), and proteins were extracted in RIPA buffer. Pro-
teins from livers and tumor tissues were recovered from
the same samples used for miRNA analysis. We ana-
lyzed, at the individual level, seven samples from 11
months controls, DEN-treated mice, and tumors from
paired DEN-treated mice. Thirty micrograms of total ex-
tracts were loaded onto a 4–15 % SDS-PAGE precast get
(Bio-Rad). After electroblotting (250 mA, 1.5 h), proteins
were stained with Ponceau, and membrane was washed,
blocked with 5 % non-fat milk in TBST 1X for 1 h, and
then incubated overnight at 4 °C with 1:500 anti-ANKG
antibody (Santa-Cruz) in TBST 1X. The membrane was

washed and incubated with the secondary anti-rabbit
antibody (Santa Cruz) for 1.5 h at room temperature.
After washing, SuperSignal West Pico Chemilumines-
cent Substrate (Thermo Scientific) was added and im-
ages were collected by using CGel Doc XR+ (Bio Rad)
instrument, by using the same exposure time. Densito-
metric analysis was performed by using Image Lab 4.0
(Bio-Rad). Actin (Santa Cruz) was used as endogenous
control, by following the same experimental conditions.

Target prediction analysis
Four miRNAs (miR-125a-5p, miR-182, miR-193b and miR-
27a) were selected and subjected to target prediction.
MySQL technology [52] was used to construct a local data-
base. In particular, Mirbase [53] has been considered to ex-
tract data about microRNA, whereas four on-line DB were
used to perform predictive analysis: MiRanda (August 2010
release) [14], TargetScan Mouse v6.2 (June 2012 release)
[16–54], PITA (Segal lab of computational biology) [17],
and Rna-22 (Thomas Jefferson University) [18].
According to the MiRanda authors’ discussion in [15], –

1.2 was chosen as cut-off mirSVR score to obtain a reason-
able empirical probability of target mRNA downregulation.
Data were downloaded from the MiRanda database Mir-
Base. For TargetScan, only genes with a probability of con-
served targeting (Pct) > 0.1 were considered. Data from
PITA were recovered downloading the “3/15 flank All”
table in “Mouse” column in “PITA Targets catalog” and set-
ting 10 kcal/mol as a general cutoff value. Regarding Rna-
22, only genes with a binding energy less than -25 kcal/mol
were included in the subsequent steps.

Network construction and enrichment annotation analysis
A list constituted by primary target genes was sub-
jected to software analysis as a query list using the
software Genemania v3.1.2 and then an interaction
network was retrieved, selecting molecular functions
as weighing method (dysplaying n.100 related genes
and n.20 related attributes in the “number of gene re-
sults” field). Similar lists were built by considering also
the set of 59 secondary genes and a subset of 33 genes
which, on the basis of a PubMed search, appeared
already described in liver cancer. Due to the higher
number of input genes, the Number Gene parameters
were, in this case, reduced to 10 related attributes and
10 related genes. Gene targets network construction
was made using the same software Genemania v3.1.2.
In particular, physical interactions between targets
were considered. The Genemania “Functions” panel
that allows the user to visualize all the clusters for
Gene Ontology (GO) terms related to the query gene
list was used. Thus, this possibility was exploited to
carry out enrichment annotation analyses for our
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target genes list. The results hitherto obtained were
included in a Neo4J database to provide a graphical
representation of miRNAs-targets interactions (Fig. 5).

Additional files

Additional file 1: Table S1. List of target genes obtained from
TargetScan Mouse v 6.2, List of potential targets from PITA, List of target
from Rna-22, List of target genes predicted by MiRanda. Four Excel sheets
showing the four lists of potential targets for the miR 125a-5p, miR-193b,
miR-182 and miR-27a obtained from the prediction softwares TargetScan
Mouse, PITA, Rna-22 and MiRanda. (XLSX 32 kb)

Additional file 2: Table S2. The group of fifteen top target genes
inferred from target prediction analysis. A table comprising the fifteen
top target genes for the miR 125a-5p, miR-193b, miR-182 and miR-27a,
retrieved from at least 50 % of prediction softwares used. (DOCX 11 kb)

Additional file 3: Table S3. Most significant functional groups obtained
from clusterization process by Genemania (FDR ≤ 0.05). Excel table
presenting the 26 most significant cluster extracted by Genemania after
selection of the fifteen top target genes. The table shows the false
discovery rate and the gene coverage for each cluster. (XLSX 14 kb)

Additional file 4: Table S4. Most significant functional groups obtained
from clusterization process by Genemania, regarding 59 secondary genes
(FDR ≤ 0.05). Excel table presenting the 20 most significant cluster
extracted by Genemania on the whole set of 59 secondary genes. The
table shows the false discovery rate and the gene coverage for each
cluster. (XLSX 11 kb)

Additional file 5: Table S5. List of secondary genes from Genemania
involved in liver cancer on the basis of literature (PubMed) review. Excel
table presenting 33 out of 59 secondary genes, already described in liver
tumor pathogenesis. (XLSX 9 kb)

Additional file 6: Table S6. Most significant functional groups obtained
from clusterization process by Genemania, regarding 33 secondary genes,
most closely related to liver cancer (FDR ≤0.05). Excel table presenting
the 14 most significant cluster extracted by Genemania after selection of
the 33 secondary genes. The table shows the false discovery rate and the
gene coverage for each cluster. (XLSX 11 kb)
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