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DECIPHER: harnessing local sequence context
to improve protein multiple sequence alignment
Erik S. Wright1,2

Abstract

Background: Alignment of large and diverse sequence sets is a common task in biological investigations, yet there
remains considerable room for improvement in alignment quality. Multiple sequence alignment programs tend to
reach maximal accuracy when aligning only a few sequences, and then diminish steadily as more sequences are
added. This drop in accuracy can be partly attributed to a build-up of error and ambiguity as more sequences are
aligned. Most high-throughput sequence alignment algorithms do not use contextual information under the
assumption that sites are independent. This study examines the extent to which local sequence context can be
exploited to improve the quality of large multiple sequence alignments.

Results: Two predictors based on local sequence context were assessed: (i) single sequence secondary structure
predictions, and (ii) modulation of gap costs according to the surrounding residues. The results indicate that
context-based predictors have appreciable information content that can be utilized to create more accurate
alignments. Furthermore, local context becomes more informative as the number of sequences increases,
enabling more accurate protein alignments of large empirical benchmarks. These discoveries became the basis
for DECIPHER, a new context-aware program for sequence alignment, which outperformed other programs on
large sequence sets.

Conclusions: Predicting secondary structure based on local sequence context is an efficient means of breaking
the independence assumption in alignment. Since secondary structure is more conserved than primary
sequence, it can be leveraged to improve the alignment of distantly related proteins. Moreover, secondary
structure predictions increase in accuracy as more sequences are used in the prediction. This enables the
scalable generation of large sequence alignments that maintain high accuracy even on diverse sequence sets.
The DECIPHER R package and source code are freely available for download at DECIPHER.cee.wisc.edu and from
the Bioconductor repository.

Keywords: Multiple sequence alignment, Secondary structure predictions, Large scale alignment, Benchmark
datasets, Modeling gap penalties

Background
Multiple sequence alignment (MSA) is a ubiquitous task
in biology, and has a wide variety of applications including
homology detection [1], predicting residue couplings [2],
finding evolutionarily important sites [3], oligonucleotide
design [4], and phylogenetics. A multiple sequence align-
ment may reveal many aspects about a gene: which regions
are constrained, which sites undergo positive selection [5],

and potentially the structure of its gene product [6]. Many
of these applications depend on the correct alignment of
thousands of diverse sequences. A variety of methods have
been developed to provide more accurate alignments [7–9],
yet many of these approaches are not amenable to aligning
thousands of sequences in a reasonable amount of time.
Furthermore, performance tends to decrease dramatically
beyond a certain point as more sequences are added to the
input set [10]. Thus, the accurate alignment of large num-
bers of sequences remains an unsolved challenge that is fre-
quently encountered in modern datasets.
It is generally believed that the poor scalability of align-

ment can be attributed to the build-up of error or the
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increasing level of ambiguity as more-and-more sequences
are aligned. Two main strategies have been proposed to
combat the loss in quality as alignments grow in size. The
first strategy is to use a chained guide tree, which is effi-
cient to construct and allows reasonable accuracy to be
maintained on large empirical datasets (>1,000 sequences)
[11]. However, this approach performs poorly on simu-
lated sequence alignments [12], and may not be applicable
for phylogenetic analyses [13]. The second strategy is to
use an iterative divide-and-conquer approach that shows
good performance on simulated sequence sets, but per-
forms comparably to other methods on large empirical
protein benchmarks [14]. A possible third strategy, pro-
posed here, is to shift reliance onto structural informa-
tion as alignments become larger. Since structure is
more conserved than primary sequence, it is possible
that structure-based alignment will maintain accuracy
even as sequence-based alignment loses integrity.
MSA programs are typically optimized and assessed

based on their ability to recreate the alignments in
benchmark datasets. In this way, benchmarks determine
the objective to which alignment programs strive to at-
tain. There is an ongoing debate over whether simulated,
structural, or other types of benchmark are preferable
[15]. Simulated alignments are generated by “evolving”
sequences along a predetermined tree under a model of
substitution. Therefore, the complete evolutionary his-
tory of the sequences is known and the entire alignment
can be used as a reference. In typical simulations, the
choice of insertion and deletion rates across sites is spe-
cified, a substitution matrix is used, covariation between
positions is ignored, and there is no selective pressure
on the tertiary structure. Furthermore, real sequence sets
often include spurious (e.g., chimeric [16]) sequences, se-
quencing errors, uneven taxon sampling, rearrangements,
and uneven lengths that have largely been neglected in
studies relying on simulations.
In contrast, many structural benchmarks have been built

from related RNA or protein tertiary structures that have
been superimposed to provide an empirical alignment that
is free of many of the simplifications of simulated align-
ments. By this definition residues in the same column of an
alignment should occupy the same structural position in
space. A major downside of structural benchmarks is that
“gappy” regions are typically not considered in scoring be-
cause they are not superimposable in space [17]. Some
downstream applications of multiple sequence alignment
may be especially sensitive to false homologies in gappy re-
gions, such as tree building and the detection of positive se-
lection [18, 19]. Nevertheless, structural benchmarks have
generally been preferred over simulated benchmarks,
resulting in an emphasis on the maximization of true hom-
ologies in “core blocks” (homologous regions), with less re-
gard for false homologies.

The focus on maximizing true homologies has been
furthered by a reliance on Q-score for performance
comparisons with structural benchmarks. Q-score is de-
fined as the average pairwise fraction of reference hom-
ologies that are also found in the test alignment (i.e, the
alignment program’s output). Q-score does not directly
penalize for aligning positions that are unaligned in the
reference, also known as over-alignment [20]. Over-
alignment can be quantified using the Modeler score
(here termed M-Score), which is the fraction of aligned
homologies that are also aligned in the reference [21]. A
higher M-score indicates fewer false homologies, and vise-
versa. The M-score does not penalize for under-alignment
[20], as the correct alignment of only one position would
result in a perfect M-score (i.e., 1). Hence, it is necessary
to compare both true and false homologies when judging
alignment performance.
Assessment of over-alignment is one step in the on-

going effort to create more biologically meaningful align-
ments [22]. Other efforts have focused on specific
sequence features that may be present in some align-
ments but are neglected by most alignment programs.
This has resulted in specialist alignment programs for
different mutational events, such as long tandem repeats
[23], domain rearrangements [24], and inversions [25].
Prevalent sequence features, such as short repeats and
the local sequence context around insertions and dele-
tions, have been identified as informative, yet are largely
ignored by alignment programs [26]. In contrast, one
source of information that has received significant atten-
tion is the use of secondary structure to provide a stron-
ger biological basis for the alignment process. Those
programs that have integrated secondary structure pre-
dictions into alignment have shown noteworthy gains in
Q-score [27–31].
However, these gains have come at a cost because sec-

ondary structure is time consuming to accurately predict,
which prevents these methods from scaling to a large
number of sequences. Presently none of the alignment
programs that use predicted secondary structure can align
a thousand or more sequences in a reasonable amount of
time [29]. This inefficiency is due to the need to find and
align many sequences that are related to each sequence
for which secondary structure is being predicted. Using
the most accurate secondary structure predictions in se-
quence alignment therefore indirectly incorporates more
sequence information into the alignment process. An al-
ternative to this approach is to directly add more se-
quences to those being aligned, which has also been
shown to substantially improve the accuracy of aligning
small sequence sets [32]. Both of these approaches lever-
age large external databases of sequences that may not
provide additional information when the input set is
already large or all-encompassing.
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In this study, I began by comparing the accuracy of
structural benchmarks that would form the foundation
for the rest of the study. Next, I investigated whether it
was possible to efficiently integrate secondary structure
predictions with negligible added time and no additional
sequences other than those being aligned. To do this I
relied on less accurate, but very fast, predictions made
using the GOR method [33] for secondary structure pre-
diction. The GOR method provides the probability of a
residue being in helix (H), β-sheet (E), or coil (C) con-
formation based on local sequence context. Drawing in-
spiration from the GOR method, I created a model of
gap placement that was also based on local sequence
context. These features became the basis of a new pro-
gram for multiple sequence alignment named DECIPHER.
Finally, I compared DECIPHER’s performance with that of
other popular alignment programs on high-quality struc-
tural benchmarks.

Methods
Secondary structure assignments
To compare empirical benchmarks, secondary structure
assignments according to DSSP [34] were downloaded
from Pfam [35] for proteins with solved structures. Pairs
of sequences in each reference set were replaced with
their corresponding secondary structure to generate an
alignment of secondary structure states. A multiple
alignment of n sequences therefore resulted in (n2 - n)/2
different pairwise alignments. The pairwise secondary
structural identity of each of these alignments was calcu-
lated and used to compare benchmarks. Secondary
structure identity was defined as the number of columns
with matching secondary structure (8-state DSSP) nor-
malized by the maximum number of matches possible.
The large number of data points was simplified for
plotting by finding the shortest contour line on the
kernel density surrounding 75 % of points. The R
programming language [36] was used for all analyses.
P-values were calculated using the Wilcoxon signed
rank test in R [36].
For secondary structure predictions, the GOR

method was re-implemented as the DECIPHER func-
tion “PredictHEC”, and used automatically during
alignment of amino acid sequences. The GOR method
was trained on the dataset in Li et al. [37], which was
reduced from 8-states to 3-states according to the con-
vention: H = (G, H, I), E = E, C = other [34]. In the
GOR method, probabilities at a site are assigned to
each of the three states while taking into account a
window of seven residues to either side of the site.
Contributions from single residues and pairs of resi-
dues were considered, as in version IV of the GOR al-
gorithm [33]. Probabilities were normalized relative to the
background distribution in accordance with version V of

the algorithm [38], which results in a modest improve-
ment over version IV predictions. Only unaligned single
sequences were used in the calculation of 3-state probabil-
ities that were used in sequence alignment.

Multiple sequence alignment benchmarks
HOMSTRAD [39] multiple alignments were down-
loaded on February 20th, 2015 from the website mizu-
guchilab.org/homstrad. The HOMSTRAD alignments
were realigned using MUSTANG (v3.2.1) [40]. All
other benchmarks were downloaded as part of the
bench (v1.0) collection from www.drive5.com/bench.
This collection includes OXBench [41], PREFAB (v4.0)
[42], and transitively-consistent alignments from SAB-
mark (v1.65) [43] in both their original form and rea-
ligned with MUSTANG [40]. These benchmarks were
compared (see Results), and PREFAB and HOMSTRAD
were selected for benchmarking MSA programs due to
their high quality and breadth of sequence identities. The
selected benchmarks required slight modification before
they could be used to assess the alignment of large num-
bers of sequences.
To create HOMSTRAD-mod, columns of the align-

ment that were in agreement between the original and
MUSTANG alignments were kept uppercase to define
core blocks. Therefore, HOMSTAD-mod alignments are
identical to those of HOMSTRAD in the regions used in
scoring. Alignments with (i) less than 25 % of their
length in core blocks, (ii) a total width of less than 30
sites, or (iii) having greater than 80 % average pairwise
identity were removed. Benchmarks were supplemented
with full-length Pfam [35] sequences downloaded from
each set’s corresponding Pfam family. The matching
Pfam homologous region was required to be less than
three times the width of the respective reference se-
quences. Reference sets with fewer than 100 supplemen-
tal sequences were removed. PREFAB-mod reference
pairs were left untouched from the original PREFAB se-
quences realigned with MUSTANG. The final bench-
marks contained 717 and 399 reference sets in
HOMSTRAD-mod and PREFAB-mod, respectively. All
benchmarks created for this study are available from
DECIPHER.cee.wisc.edu/Download.html.
When comparing performance, input reference sets

were generated by randomly selecting a predefined num-
ber of supplemental sequences from the pool of available
Pfam sequences. These supplemental sequences were
added to the reference sequences to reach the intended
total number of sequences in each input set (between 125
and 4,000). After alignment, the supplemental sequences
were removed and the remaining (reference) sequences
were tested for alignment accuracy. Only one randomly
selected set of supplemental sequences was used per align-
ment size, up to the maximum number of sequences
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available for each set. The smallest sets of 2 sequences were
created by randomly selecting a pair of sequences from
each reference set. All alignments were scored using qscore
[42] with optional parameters “-ignoretestcase -cline -mod-
eler”. These parameters specify that only uppercase letters
(core blocks) in the reference alignment are used in scoring,
and that qscore should output the Cline shift-score [44]
and Modeler score (M-score) [21].

Gap databases
Sequence pairs in the One Gap Database [26] were
translated and realigned with the objective of creating a
high accuracy unbiased set of aligned sequences with
gaps. The realignment procedure, described as follows,
did not include a model of gap placement. First groups
of sequences were used to create a multiple alignment.
The most similar pairs of sequences with different in-
ternal gap patterns were then realigned to remove any
artifacts from the multiple alignment. Pairs with gaps
remaining after pairwise alignment were kept, and their
gaps were marked to prohibit the reuse of gaps in the
same position in other pairs. This process was repeated
for each protein family to generate a large set of pairwise
alignments with different internal gaps.
To prevent incorrect gap placements, sequence pairs

were required to contain gap events separated by at least
20 residues, and have greater than 50 % sequence iden-
tity. To mitigate the effect of ambiguous gap placements
in repetitive regions, the sequence pairs were realigned
in reverse orientation and then reversed again to gener-
ate a complementary alignment. Finally, local alignments
that were equivalent (e.g., AA/A- and AA/-A) were ex-
panded into all possible permutations and weighted to
split the permutations evenly. The same process was re-
peated with Pfam families to generate a complementary
set of high quality gap placements. The final sets con-
tained 58,509 gaps from the One Gap Database, and
46,168 from the Pfam database. Observed residue fre-
quencies were converted into log-odds in third-bits based
on the formula: log(observed probability/background prob-
ability)*3/log(2). Log-odds scores were highly correlated
between the two datasets (R2 = 0.88), so the average score
was used for model parameters.

Alignment programs
DECIPHER is an R [36] package with functions for pri-
mer design [45], probe design [46], and other bioinfor-
matics tasks. In this study the DECIPHER software was
extended to include multiple sequence alignment with
the function “AlignSeqs”, which can align a set of DNA,
RNA, or amino acid sequences. DECIPHER also in-
cludes functions for alignment of DNA sequences via
their translation (“AlignTranslation”), and the merging
of two existing alignments (“AlignProfiles”). See the

Additional file 1 text for a complete description of the
DECIPHER algorithm. DECIPHER was written in the C
and R programming languages, and is available from
DECIPHER.cee.wisc.edu or BioConductor [47].
The following programs were compared in this study:

Clustal Omega (v1.2.0) [48]
DECIPHER (v1.14.4)
MAFFT (v7.22.0) [49]
MUSCLE (v3.8.31) [50]
PASTA (v2.2.7) [14]
PROMALS [27]

Default parameters were used for all programs with
the exception of MUSCLE and PASTA, which required
changing the maximum number of iterations. For
MUSCLE, “maxiters” was change from 16 to 2 for sets
of 500 or more sequences as recommended by the devel-
opers. For PASTA, the parameter “iter-limit” was chan-
ged to 1 for sets of 500 or more sequences. Attempts to
use the default value of 3 proved prohibitively time con-
suming on larger sets. For MAFFT the “auto” option
was used to automatically switch between different pro-
gressive and iterative strategies based on the number
and length of input sequences. Timings for all sets were
determined on a 2.2 GHz Intel Core i7 with 8 GB of
RAM using a single processor. For consistent timing
comparisons, PASTA and PROMALS were configured
to use only one processor.

Results
Choosing high quality reference alignments for
benchmarking
Different benchmarks often result in contrasting optimal
parameters (e.g., gap opening and extension penalties) and
an incompatible performance ranking of alignment pro-
grams [51]. For these reasons, the choice of benchmark is
of utmost importance when developing and comparing al-
gorithms for sequence alignment. To choose alignment
benchmarks for this study, I began by comparing second-
ary structure concordance across common benchmarks.
This method of comparison requires that the secondary
structure of reference sequences be available, which ex-
cludes the popular BAliBASE benchmarks [52] because
the corresponding secondary structure of most BAliBASE
sequences is unknown [53]. Although secondary structure
agreement alone is insufficient to ensure a high quality
benchmark, a lack of agreement can be an indication of
alignment inaccuracy.
It is expected that better reference alignments will

have a greater percentage of aligned residues with identi-
cal secondary structure. However, some disagreement in
secondary structure is anticipated due to both intrinsic
difficulties in assigning secondary structure [54] and
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challenges inherent to aligning distantly related tertiary
structures [21, 55]. Figure 1 shows the fraction of sec-
ondary structure agreement versus pairwise sequence
identity for four common amino acid benchmarks. The
SABmark [43] and PREFAB [42] benchmarks contain
the greatest fraction of their sequences in or below the
“twilight zone” of 20 to 35 % sequence identity, while
the emphasis of OXBench [41] is on less challenging
alignments. PREFAB appears to be significantly better
aligned overall than SABmark, despite both references
covering a similar range of sequence identities. For se-
quences with less than 10 % identity, PREFAB has
13.4 % greater structural identity (p < 1e-15) than SAB-
mark. These findings are in agreement with a previous
study [53] that found PREFAB to be the best benchmark
designed specifically for comparing MSA programs, al-
though PREFAB is known to contain errors [56].
All columns of the alignments were used to assess the

overall accuracy of each benchmark rather than only
using core blocks (homologous regions), which are typic-
ally delineated by uppercase letters. The choice to use
the entire alignment was made because: (i) the definition
of core blocks varies between benchmarks, (ii) some
scoring procedures make use of the entire alignment
[44], (iii) pairwise distance is calculated using the whole
alignment, and (iv) the HOMSTRAD [39] and SABmark

benchmarks do not delineate core blocks. Core blocks in
PREFAB were assigned based on the agreement between
two different structural alignment programs. This moti-
vated me to look at the difference between the original
benchmarks and the same sequences realigned with the
sequence-independent structural alignment program
MUSTANG [40]. Realignments with MUSTANG exhib-
ited greater secondary structural congruence than the
original benchmarks, except in the case of HOMSTRAD
(Fig. 1). In particular, SABmark had 11.2 % higher sec-
ondary structure identity after realignment with MUS-
TANG (p < 1e-15). This result supports the use of the
HOMSTRAD database as an alignment benchmark even
though it was not originally intended for this purpose.
Since the number of sequences with known structure is

small relative to the number of available sequences, most
benchmarks are supplemented with additional unaligned
sequences that are not considered in scoring. PREFAB ref-
erence alignments are supplemented with additional se-
quences found using PSI-BLAST searches [57] with the
reference sequences. HOMSTAD sequences are com-
monly supplemented with other sequences belonging to
the same Pfam [35] family [11, 48]. I compared these two
approaches by randomly selecting sequences from the
Pfam family corresponding to the PREFAB reference se-
quences. After generating an alignment with the same

Fig. 1 Comparison of structure-based benchmarks commonly used to rank sequence alignment programs. Each contour line surrounds the densest 75 %
of points representing pairwise alignments in the benchmark. Structural identity is based on matching 8-state DSSP [34] secondary structure assignments
(see Methods). Perfect secondary structure agreement would result in a score of 1 on the y-axis. Reference alignments exhibit decreased structural similarity
as the distance between sequence pairs increases. Realignments using MUSTANG [40] showed improved quality in some cases, especially relative to the
original SABmark [43] reference alignment
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number of supplementary sequences, a neighbor joining
tree was constructed to determine the breadth of the
added sequences. The average tree length was 1.6 times
longer for random Pfam sequences than those included
with PREFAB (p < 1e-15). This indicated that extending
the input set in a way that is not directly dependent on
the reference sequences results in the greatest diversity
of supplemental sequences.
It is unclear which reference benchmark most ad-

equately reflects a typical user’s sequences, and the wide
diversity of MSA applications probably spans most of
the alignment scenarios found in benchmarks. SABmark
sets cover a narrow range of sequence identities, while
OXBench focuses on closely related sequences that are
easier to align. Due to both alignment quality and
breadth of sequence identities, I chose to continue the
rest of this study with slightly modified versions of the
original PREFAB and HOMSTRAD datasets, called
PREFAB-mod and HOMSTRAD-mod (see Methods).
To supplement the modified benchmarks, I added full-
length sequences belonging to the same Pfam family.
Full-length sequences were used rather than only the
shared domain to make the alignments more challen-
ging and to represent a greater variety of potential usage
scenarios. Oftentimes sequences being aligned have
varying lengths because they cover overlapping regions
of a gene, or were trimmed differently based on their
quality scores at each terminus.

Scalable incorporation of secondary structure into alignment
Despite the close connection between secondary struc-
ture and sequence alignment, most popular protein
alignment programs do not predict structural informa-
tion. The main drawback of secondary structure predic-
tion is that it is slow to accurately compute, which
prevents it from scaling to the alignment of hundreds of
sequences in a reasonable amount of time [29]. Less ac-
curate secondary structure predictions can be obtained
very rapidly using single-sequence approaches that do
not rely on constructing a multiple alignment with hom-
ologous sequences. The GOR method is one of the most
accurate given a single sequence [38]. In this method
secondary structure is assigned to one of three states:
helix (H), sheet (E), or coil (C) based on the local se-
quence context surrounding a residue. This approach
has the advantage that it is extremely fast (< 1 % of the
time required for alignment), provides a probability
value for each state, and offers about 65 % accuracy [33].
To integrate secondary structure predictions into the

dynamic programming framework for profile-profile
alignment, I added a new 3 × 3 symmetric matrix
representing the log-odds of aligning an H, E, or C in
one sequence with another position assigned to H, E,
or C in a second sequence. Coupling this matrix with

the probability assigned to each of the three structural
states allowed for profile-profile alignment of the sec-
ondary structures. The score obtained from aligning
secondary structure profiles augmented the traditional
substitution matrix based score determined from the
primary sequences (see Additional file 1 text). In this
way, primary and secondary structure agreement can
be maximized simultaneously.
Figure 2 displays an example alignment of the lactate/

malate dehydrogenase protein family (Pfam [35] acces-
sion no. PF00056; HOMSTRAD “ldh” family) obtained
using this approach. The DSSP [34] assignments are in
general agreement across the HOMSTRAD-mod align-
ment, which is based on the known tertiary structures of
these proteins. Predictions made with the GOR method
reflect these secondary structure assignments with some
discrepancies. The GOR predictions guide the DECIPHER
alignment, which exactly matches the reference alignment
in regions defined as core blocks, denoted by uppercase
letters in the upper alignment of Fig. 2. Regions of the
reference alignment that fall outside of core blocks are
not used in determining accuracy and differ from the
DECIPHER output in some columns.
One advantage of using a small 3 × 3 secondary struc-

ture matrix is that the number of free parameters is far
outnumbered by the number of informative data points,
which makes estimation error negligible (Additional file 1:
Figure S1). To find optimal values for each of the 6 dis-
tinct parameters in the matrix, I performed a grid-search
for the solution that resulted in the best-scoring align-
ments based on the sum of Q-score and M-score on a
subset of HOMSTRAD-mod consisting of 238 reference
sets. At the optimum between over-alignment and under-
alignment, any gain in Q-score is outweighed by the cor-
responding loss in M-score, and vise-versa. The optimized
secondary structure matrix is shown in Fig. 3a. E-states
are very likely to be aligned, as reflected in the large con-
tribution of E/E pairings to the secondary structure score.
The GOR method tends to under-predict β-sheets, result-
ing in a low fraction of E-states in most sequences [33].
Next, I asked whether incorporation of secondary

structure improved sequence alignment, and how this
scaled with the number of sequences being aligned. Av-
eraged across all sizes of sequence sets, incorporation of
secondary structure resulted in a 5.3 % improvement in
Q-score on PREFAB-mod and 2.1 % on HOMSTRAD-
mod. This substantial increase in Q-score came at the
expense of a 0.4 % decrease in M-score on PREFAB-
mod and a 0.3 % decrease on HOMSTRAD-mod. There-
fore, the fraction of homologies that are correctly
aligned slightly decreased, while the total number of cor-
rectly aligned homologies substantially increased. Unsur-
prisingly, the largest gains were on divergent reference
sets where there is the most room for improvement, and
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essentially no gain was made on references with less
than 60 % average distance between pairs (Fig. 3b). Sec-
ondary structure predictions provided a greater benefit
on PREFAB-mod because a larger fraction of its refer-
ence sequences are over 60 % distant.
Interestingly, the improvement from incorporating

secondary structure increased as more sequences were
aligned (Fig. 3c). On the smallest sets of 2 sequences
there was a 3.4 % improvement on PREFAB-mod and
1.2 % on HOMSTRAD-mod. On large 4,000 sequence
sets the advantage increased to 8.5 % and 3.3 %, respect-
ively. Therefore, incorporating secondary structure par-
tially counteracted the decrease in score that is typically
observed with larger alignments [10]. This behavior mir-
rored that of secondary structure prediction, where ac-
curacy increases as more sequences are used in the
calculation [38]. For this reason, the most accurate sec-
ondary structure prediction algorithms make use of mul-
tiple alignments. Similarly, here the initial secondary
structure predictions lack accuracy since they are ob-
tained from single sequences. As more sequences are
aligned, these probabilities are averaged to increase their
accuracy and better guide the alignment. This is in con-
trast to primary sequence, where additional sequences
inevitably result in more ambiguity, which in part causes
a loss of signal that manifest in poor quality alignment
of ambiguous profiles.

Including a model of indel probability to improve gap
positioning
Motivated by the improvement obtained from incorpor-
ating local sequence context via secondary structure pre-
dictions, I next asked whether the same approach could
be applied to gap placement. Previous research has re-
vealed that insertions and deletions (indels) are more
likely to occur adjacent to certain amino acids [26] and
in exposed coil regions [58]. For this reason it is com-
mon to decrease the cost of opening a gap in hydrophilic
stretches [59], or alternatively to increase the cost in
hydrophobic regions [50] that are likely to be buried in
the protein’s constrained core. To my knowledge, a more
sophisticated model of gap likelihood based on local con-
text has not been applied to sequence alignment. To this
end I used the One Gap Database [26] to calculate the
relative frequency of indel events based on the residues to
the left and right of a central gap. This frequency informa-
tion was then converted into log-odds scores according to
the background frequency of each amino acid.
Figure 4 shows the contribution of nearby amino acids

to the likelihood of a gap at position zero. As expected,
hydrophobic residues (FMILYW) greatly decrease the
likelihood of a gap. Hydrophilic and “structure-breaking”
(e.g., P) residues increase the chance of an adjacent gap,
albeit with less of an effect than hydrophobic residues.
Since the log-odds scores are in the same units as the

Fig. 2 C-terminal end of alignments of the lactate/malate dehydrogenase protein family (Pfam [35] accession no. PF00056) colored by predicted
secondary structure. The top alignment (sequences named by PDB ID) is from the HOMSTRAD-mod benchmark colored by DSSP assignments
[34], with upper-case letters denoting core blocks. The lower alignment shows the same sequences (named by organism) realigned with DECIPHER
and colored according to 3-state probabilities predicted by the GOR method [33]. Columns of the lower alignment in bold exactly match columns of
the upper reference alignment
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substitution matrix (third-bits), they can be directly
applied to modulate gap-opening and gap-closing costs
at any position based on its local sequence context
(Additional file 1: Table S1). I evaluated different
window sizes for including this information, and found

that the best window stretched from position -4 to +4
relative to the central gap. Hence, the cost of creating a
gap at any position is the original gap cost plus a score
that is modulated based on the residues to either side of
the gap (see Additional file 1).
Next, I calculated log-odds scores for the residues op-

posing the gap (in the ungapped sequence), and found
that these positions displayed a small bias in amino acid
content (Additional file 1: Table S1). There was a moder-
ate correlation between the log-odds scores for positions
to the left or right of the gap and the residues opposing
the gap (R2 of 0.69 and 0.64, respectively). However, in
this case there was no apparent difference between loca-
tions within the gapped region. For this reason I chose to
simply modulate the gap extension cost based on the aver-
age scores for the “gapped” residues in a position-
independent manner. Altogether, this probabilistic model
of opening and extending a gap adjusts the gap penalty
within a range of about +/- 20 % at each position.
To expand this model of gap placement based on local

sequence context, I next investigated the effect of short
sequence patterns. Repeats are a major source of length
variation in biological sequences [60] and are commonly
found across all branches of life [61]. Repeats have a
wide variety of forms, including short microsatellite re-
peats of a single codon and longer tandem repeats of re-
gions that may evolve through mutation to become
mismatched over time [62]. Longer repeats can be
aligned with specialized programs [23] that employ tan-
dem repeat finding algorithms [63]. Short patterns are
typically neglected as insignificant by these programs
due to their frequent occurrence in sequences. However,
Chang and Benner [26] found that short dipeptide repeats
(e.g., AA) were more common than expected around gaps,
potentially offering a means of modulating gap costs. To
investigate this effect, I examined the occurrence of differ-
ent sequence patterns in the One Gap Database.
Dipeptide repeats (runs of 2 identical amino acids) sur-

rounding gaps were only slightly more likely (< 1 third-bit)
than expected by chance. However, gaps were substantially
more likely to occur around runs of three or longer (e.g.,
AAA), as shown in Additional file 1: Figure S2. This effect
was particularly pronounced in the sequence without the
gap, indicating that gaps are often present because one se-
quence has a longer run than another. Surprisingly, gaps
were less likely to occur at the position after the start of a
run in the opposing sequence (e.g., AA/A-), regardless of
the run’s length. Although the mechanism for this occur-
rence is unknown, it may be due to a biological role for di-
peptide repeats that results in their conservation. A similar
investigation of heteropeptide repeats with periodicity 2
(e.g., ACAC) to 6 did not reveal a strong bias towards
gaps (Additional file 1: Figure S2). Therefore, I chose to
extend the gap model to modulate the gap opening cost

Fig. 3 a Optimized structure matrix for pairings between helix (H),
β-sheet (E), or coil (C) states. b Repeated values are grayed-out since
the matrix is symmetric. After incorporating this matrix into alignment,
the average improvement in Q-score on pairwise alignments was greater
for distant pairs. c Alignments using the structure matrix (open symbols)
showed little decline in accuracy as the number of input sequences
increased relative to alignments made without structural predictions
(closed symbols). Across all alignment sizes, the use of secondary
structure improved Q-score (p< 1e-5 for all). Similarly, the improvement
in Q-score (separation between open and closed symbols) increased as
more sequences were aligned
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at positions before and immediately after the start of a
run in the opposing sequence.
Overall, employing this model of gap placement re-

sulted in a modest improvement of 0.5 % on PREFAB-
mod (p < 1e-4) and 0.3 % on HOMSTRAD-mod (p <
1e-3). The improvements in Q-score were matched by
0.2 % increases in M-score on both benchmarks. These
changes in score were unexpected, as structural bench-
marks do not consider most gapped regions since they
often occur in parts of the structure that are difficult to
superimpose [17], and repeats tend to be found in disor-
dered protein regions [64]. Although, evolutionary simula-
tions offer a means of scoring gapped regions, such
simulations currently do not include a context dependent
model of gap likelihood. Therefore, it is possible that the
placement of gaps improved more than reflected by the
modest increase in scores, but there currently exist no ad-
equate way of measuring the actual advantage of incorpor-
ating a sophisticated gap model into alignment.

Comparison of DECIPHER to other programs for MSA
Having successfully integrated context-awareness into the
DECIPHER software for sequence alignment, I next com-
pared its performance to other state-of-the-art alignment
programs. First, I chose to benchmark DECIPHER against
three popular programs capable of efficiently aligning thou-
sands of sequences: Clustal Omega [48], MAFFT [49], and
MUSCLE [50]. These programs are regularly employed in a
variety of different studies, and have become the de facto
standard for comparison on benchmarks. Figure 5 shows

the performance of each program relative to DECIPHER
for increasing numbers of input sequences. The per-
formance ranking is in strong agreement between the
HOMSTRAD-mod and PREFAB-mod benchmarks, yet
there is a greater spread between programs on PREFAB-
mod because it contains a larger fraction of sequences
in or below the twilight zone.
When only two sequences were aligned from each

benchmark, the alignment programs all gave similar re-
sults, with MAFFT showing the lowest accuracy. In the
sets of 125 sequences, DECIPHER is ranked second be-
hind MAFFT. For input sets of this size, MAFFT uses
its most accurate consistency-based algorithm (L-INS-i)
that is not scalable to larger sequences sets. Beyond 125
input sequences, DECIPHER clearly outperforms the
other three programs (Additional file 1: Table S2), and
its lead improves as more sequences are aligned (Fig. 5).
This reflects the fact that DECIPHER’s accuracy stays
relatively constant with increasing numbers of sequences
(Fig. 3), which is partly attributable to its use of second-
ary structure during alignment. Clustal Omega, MAFFT,
and DECIPHER all have similar M-scores across the
range of input sizes (Additional file 1: Figure S3).
MUSCLE had the poorest performance, with substan-
tially worse Q- and M-scores for all but the smallest in-
put sequence sets. Furthermore, although Q-score, total
column score (TC-score), and Cline shift-score [44]
sometimes give conflicting performance rankings, these
three statistics strongly agreed on both benchmarks
(Additional file 1: Figures S4 and S5).

Fig. 4 Contribution of local sequence context to the cost of opening a gap in the alignment. Hydrophobic residues greatly decrease the
likelihood of a gap, whereas hydrophilic and “structure-breaking” residues increase the likelihood of a gap. In the gap model, positions located
within four residues were used to modulate the cost of opening a gap at position zero
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Over-training to a single reference set has been a con-
cern for some alignment programs [51], although both
reference sets used here showed similar results. How-
ever, other programs may be better trained on the ori-
ginal benchmarks that are not based on the outputs of
the MUSTANG structural alignment program. To verify
that DECIPHER was not over-trained to MUSTANG’s
outputs, I repeated the analysis using the original PRE-
FAB reference pairs, which were aligned independently
of MUSTANG. The unmodified PREFAB reference se-
quences showed strong secondary structure concord-
ance, and therefore provide a high-quality alternative
benchmark. Nevertheless, the results (Additional file 1:
Figure S6) were very similar for both sets of reference
sequences, indicating that DECIPHER’s performance was
not closely tied to MUSTANG’s outputs.
I next compared DECIPHER to PASTA [14], which is a

program intended to extend the accuracy of less-scalable al-
gorithms to large alignments. PASTA works by dividing an
alignment up into overlapping sub-problems that are each
aligned with an accurate strategy, by default MAFFT’s
L-INS-i consistency-based approach. These sub-alignments
are merged using transitivity, and the process is repeated
starting from a new guide tree. Interestingly, PASTA out-
performed DECIPHER on sets of 125 and 250 sequences
on HOMSTRAD-mod (Fig. 5), but was statistically indistin-
guishable on larger sets (Additional file 1: Table S2). How-
ever, DECIPHER substantially outperformed PASTA on

PREFAB-mod, and its lead increased as more sequences
were aligned. Furthermore, PASTA showed a large drop in
accuracy with increasing alignment size. Table 1 shows that
DECIPHER’s performance diminished the least of all align-
ment programs as alignment size increased.
Finally, I compared DECIPHER’s performance to

PROMALS [27], which is a program that relies on more
accurate secondary structure predictions obtained from
PSIPRED [65]. PROMALS first performs PSI-BLAST
searches with representative sequences from the input
set, and then uses accurate secondary structure predic-
tions with a consistency-based approach to align the
sequences. PROMALS greatly out-scored all of the
other alignment programs on the smallest sets of two se-
quences, but its advantage disappeared once other se-
quences were added to the input set (Fig. 5). Furthermore,
it was several orders of magnitude slower that the other
aligners (Fig. 6), and testing input sets larger than 125
sequences proved prohibitively time consuming. More
recent approaches that make use of solved protein
structures are available, such as PROMALS3D [66].
However, it is unclear how to test such approaches on
structural benchmarks, because the reference sequences
are likely present in the same structure databases used
by these programs.
DECIPHER was neither the slowest nor fastest program

benchmarked for aligning each of the sequence sets
(Fig. 6). MAFFT was generally the fastest program, except

Fig. 5 Performance of popular multiple sequence alignment programs relative to DECIPHER on the HOMSTRAD-mod (H-mod) and PREFAB-mod
(P-mod) benchmarks. PROMALS [27] exhibited the best performance on the smallest sets of two sequences. MAFFT [49] had the best performance
on small input sets of 125 sequences, where it uses a much slower consistency-based strategy. MUSCLE [50] showed the worst performance on
larger sequence sets. DECIPHER’s performance relative to other programs improved as more sequences were aligned
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Table 1 Change in average Q-score according to the number of sequences being aligned

Total sequences Clustal Omega DECIPHER MAFFT MUSCLE PASTAa

HOMSTRAD-modb Maximum score 0.898 0.910 0.920 0.881 0.921

Change from max 2 −0.013 −0.02 −0.045 0.000 N/A

125 0.000 0.000 0.000 −0.007 0.000

250 −0.009 −0.011 −0.028 −0.028 −0.003

500 −0.013 −0.014 −0.037 −0.028 −0.016

1000 −0.035 −0.011 −0.049 −0.048 −0.026

2000 −0.035 −0.019 −0.054 −0.088 −0.028

4000 −0.069 −0.030 −0.077 −0.128 −0.049

PREFAB-modb Maximum score 0.875 0.908 0.923 0.855 0.900

Change from max 2 −0.067 −0.085 −0.123 −0.047 N/A

125 0.000 0.000 0.000 0.000 0.000

250 −0.022 −0.007 −0.057 −0.011 −0.015

500 −0.022 −0.004 −0.068 −0.026 −0.029

1000 −0.034 −0.023 −0.090 −0.056 −0.045

2000 −0.069 −0.037 −0.107 −0.093 −0.080

4000 −0.121 −0.026 −0.098 −0.156 −0.116
aScores for aligning two sequences are listed as “N/A” because PASTA cannot perform pairwise alignment
bResults for the subset of reference alignments with at least 4,000 reference sequences are shown (297 alignments for HOMSTRAD-mod and 201 alignments
for PREFAB-mod)

Fig. 6 Average execution time according to the number of sequences being aligned (note the axis breaks and log-scale). PROMALS [27] was
substantially slower than the other programs that do not rely on a large external database of sequences. MAFFT [49] was the fastest program
for large sequence sets. PASTA was the slowest program tested for aligning large sequence sets, requiring an average of 2.7 h to align 4,000
sequences. A noteworthy speed improvement was obtained with DECIPHER by using multiple processors
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for the smallest sequence sets where it uses slower, more
accurate strategies for alignment. The change in elapsed
time is dramatic for MAFFT and MUSCLE beyond 250 se-
quences where more efficient strategies were used. PASTA
was the slowest program, and required an average of 2.7 h
to align 4,000 sequences. Both Clustal Omega and DE-
CIPHER were able to align 4,000 sequences in about half
an hour on average. Since guide tree computation is the
limiting factor for large sequence sets, parallelization may
be useful in such circumstances. For example, DECIPHER
was about twice as fast when 8 processors were used
(Fig. 6). DECIPHER’s maximal memory use was 2GB
when aligning 4,000 sequences.

Discussion
The accurate alignment of very large numbers of
sequences has been a long-standing goal for sequence
alignment programs. DECIPHER exhibited excellent
performance in the range of hundreds to thousands of
sequences, with little decrease from maximal accuracy.
This number of input sequences is common in current
investigations harnessing next generation sequencing or
large online sequence repositories. Even greater numbers
of sequences are often available, but the scalability of
these techniques to ultra-large alignments was not
assessed in this study for two reasons. First, extremely
large sequence sets can likely be reduced to a more
manageable size through the clustering of highly similar
sequences into groups represented by consensus sequences.
Second, it is questionable whether there currently exists a
reasonable empirical benchmark for ultra-large alignments
(> 10,000 sequences). The popular strategy employed here,
of extending structural benchmarks with supplemental
sequences, suffers from a dilution problem as the number
of supplementary sequences begins to greatly outnumber
the reference sequences.
It has been previously established that the vast major-

ity of information indicating whether to align two posi-
tions is contained directly in the amino acid pairing.
This has led to the assumption of positional independ-
ence that is the primary means for efficient alignment
algorithms [67]. However, the results of this study show
that local sequence context can be efficiently harnessed
to further improve alignments. GOR secondary structure
predictions are based solely on local residues, and are
therefore an indirect means of incorporating contextual
information. Previous direct attempts to break the inde-
pendence assumption have been based on substitution
matrices with quadruplets of amino acids [67]. However,
direct approaches have failed to show an improvement
in alignment quality, possible due to the extremely large
number of parameters required to estimate the substitu-
tion matrix of all possible dipeptides (80,200 distinct
values). Very large datasets such as BLOCKS [68] are

still insufficient to accurately determine the frequency of
many amino acid quadruplets [67].
My own attempts to construct a substitution matrix

based on amino acid triplets also showed signs of esti-
mation inaccuracy. However, testing this matrix did
reveal a small improvement in Q-score, albeit far less
than that of using secondary structure predictions. The
GOR (version IV) method employed here uses two
matrices of parameters, one based on single residues and
the other on pairs of residues, which can be accurately
estimated due to their relatively small size. Furthermore,
reduction to a three-letter (H/E/C) alphabet that reflects
an important property of the alignment enables local
sequence context to be efficiently harnessed, because the
contextual information only needs to be computed once
per site and can then be reused under the dynamic pro-
gramming approach to alignment. In contrast, using
large substitution matrices requires re-computing the
covariation score at every site, which is very inefficient
and is not suitable for large sequence sets [67].

Conclusions
The main finding of this study is that fast secondary
structure predictions can be employed in a scalable
manner to counteract the drop-off in accuracy associ-
ated with aligning more sequences. This effect can be
explained by the fact that structure is more conserved
than sequence and therefore remains a reliable predictor
even as sequences diverge greatly. Secondary structure
prediction algorithms exhibit a similar increase in accur-
acy as more sequences are used in the prediction. For
example, accuracy of the GOR algorithm increases by
6 % when multiple sequences are used for prediction
[38]. The same logic was applied in this study, as profiles of
secondary structure predictions are progressively merged
while sequences are aligned along the guide tree, resulting
in improved group-level predictions that assist alignment.
At the top of the guide tree, where the sequence profiles
being merged are highly divergent, the secondary structure
probabilities are more accurate because they are based on
the entire group’s consensus prediction.
There is an inherent trade-off between true and false

homologies, and the results of this study advocate for
the comparison of both in the development and bench-
marking of alignment algorithms. While it is common to
report Q-score and TC-score, these two statistics are
strongly correlated. In contrast, Q-score and M-score
are not linearly related, and beyond a certain optimum
one must be lowered to raise the other. Analyses of
alignment performance have often focused solely on
quantifying true positives (i.e., Q-score), which has the
potential to paint an unbalanced picture of alignment
performance. Similarly, the choice of alignment bench-
mark was carefully analyzed in this study. The results
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showed that not all reference sets are equally well
aligned, and therefore benchmarks should be com-
pared in addition to alignment programs [53]. Treating
all benchmarks as intrinsically equivalent risks devel-
oping algorithms that are trained for the wrong goal.
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